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Abstract

The Collatz conjecture has earned itself the reputation of being one of the hardest problems in
modern mathematics. While it is relatively easy to define and understand, a rigorous proof has
eluded even some of the most talented mathematicians for almost a century. It is unclear when the
Collatz problem was first introduced to the world of mathematics. Perhaps, because of this reality
it has also acquired a few other names such as Syracuse problem, Hasse’s Algorithm, Kakutani’s
Problem and Ulam’s problem. According to Lagarias [1] the first publication on the problem dates
back to 1963, although it appears to have circulated around the mathematical community for some
time already at that point. Some speculation even dates it back as far as the 1930’s.

In this thesis we discuss the problem itself, some results related to it and the possibility of cycles in
the Collatz sequence. To achieve this, we will be using an accelerated Collatz sequence, which may
be obtained using 2-adic arithmetic. The main result of this thesis will be a test to check whether
cycles can exist in this accelerated sequence for any given length, as well as a resulting bound for
minimum cycle length.
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1 Introduction

Throughout this thesis, we take N to be the set of positive integers.

In this thesis we will investigate the Collatz conjecture and more specifically cycles in the corre-
sponding Collatz sequence using 2-adic arithmetic. However, before we begin studying the Collatz
conjecture we must define some basic concepts and formulate the conjecture itself. Firstly, we start
by defining the Collatz sequence in its original form.

Definition 1 (Collatz sequence).
The Collatz sequence for a positive starting integer c0 is defined as

cn+1 =

¨

3cn + 1 cn ≡ 1 mod 2
cn
2 cn ≡ 0 mod 2

.

Now let us take a look at some short examples to get an idea of how this sequence behaves. Set c0
to 13 and begin iterating under the above rule. We get the sequence

(13,40, 20,10, 5,16, 8,4, 2,1, 4,1, 4, ...).

We can stop iterating after the second occurrence of 4 as the sequence has entered a cycle. This is
visualized as a digraph in Figure 1.1. We can do this for some other numbers and we would find
that the sequence enters the same cycle as in the above example. Now let us take a look at some
larger numbers to see if this behavior continues. Since these calculations can be very long, some
examples are visualized in Figures 1.2 and 1.3.

Figure 1.1: Sequence digraph for 13

5



Figure 1.2: Sequence graph for 8826522

Figure 1.3: Sequence graph for various starting integers

Again we observe the same behavior—after a finite number of steps the sequence enters the exact
same cycle: (1,4, 2)—this is called the trivial cycle.
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Figure 1.4: The trivial cycle

This may lead us to conjecture that we get this behaviour for every possible positive starting integer,
which is exactly what the Collatz conjecture formally states. If we put this idea into more formal
terms, we get

Conjecture 1 (Collatz).
Let cn denote the Collatz sequence with starting integer c0. Then it holds that

∀c0 ∈ N : ∃n ∈ N: cn = 1.

The above definition is equivalent to our observation as 1 is contained in (1,4, 2).

While this problem may not look very difficult at first glance it is indeed one of the hardest problems
in modern mathematics. Countless mathematicians have studied it and discovered various different
results about it [1, 2]. However, a rigorous proof of the conjecture is still missing. In the next chapter
we will take a look at some of the most famous results as well as some results that will be relevant
for the topic of this thesis.
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2 Known results

In this chapter we will present some relevant results on the Collatz conjecture. However, as most
of these results have complicated proofs, we will only present the results itself without going into
technical detail. For this and further discussion of the results we refer the reader to the original
publications. We will begin this chapter by presenting one of the most prominent results on the Col-
latz conjecture at this time, which has only been discovered recently. Although only a probabilistic
result, it is likely as close as we can get without delivering a rigorous proof of the conjecture itself.
We define cmin(N) := infn∈N cn(N) with c0(N) := N , i.e. we define define cmin(N) to be the minimal
value of the collatz orbit of N .

Theorem 1 (Almost all Collatz orbits attain almost bounded values [3]).
Let f : N→ R be any function with limN→∞ f (N) = +∞. Then we have cmin(N) < f (N) for almost
all N ∈ N.

Our next result concerns itself with the computational verification of the Collatz conjecture.

Theorem 2 (Convergence verification of the Collatz conjecture [4]).
The Collatz conjecture has been verified for all starting integers up to 268.

The next two results focus specifically on cycles in the Collatz sequence.

Theorem 3 (Minimal cycle length [5]).
The length of any nontrivial cycle in Collatz sequence is at least 1,027,712,276.

For an extensive overview of the Collatz conjecture we refer the reader to [1, 2].

We will close this chapter with a major result on a close relative of the Collatz conjecture. Consider
the following natural generalization of the Collatz conjecture as introduced by Conway [6].

Definition 2 (Collatz function).
Let P be a positive integer and let a0, a1, ..., aP−1 and b0, b1, ..., bP−1 be non-negative rational numbers
s.t. g(n) given by

g(n) = ain+ bi if n≡ i mod P

is always an integer. Then g(n) is called a Collatz function.

In this notation the Collatz function that yields the original Collatz sequence is given by P = 2 and

a0 =
1
2

b0 = 0,

a1 = 3 b1 = 1.

With the concept of Collatz functions we can formulate a natural generalization of the Collatz Prob-
lem.

Definition 3 (Natural generalization of the Collatz Problem).
Let g be a Collatz function and let n0 be a positive starting integer. Does the sequence of iterates gk
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reach 1 for every n0, i.e. does the statement

∀n0 ∈ N : ∃k ∈ N: gk(n0) = 1

hold?

It is important to note that we abstained from calling the above statement a conjecture, as the class
of Collatz functions contains elements for which this statement can be easily proven. One such func-
tion is given by choosing P = 1, a0 = 0, b0 = 1, in which case gk(n0) = 1 for every k and every n0.
However, for most functions, this problem is very difficult. We have

Theorem 4 (Undecidability of the generalized Collatz Problem [7]).
The generalized Collatz Problem is undecidable.

As discussed in [7], the generalized Collatz conjecture is strongly related to the universal halting
problem and in terms of computational complexity, it is even located in the same layer of the arith-
metical hierarchy. For the interested reader we provide the following result.

Theorem 5 (Complexity of the generalized Collatz Problem [7]).
The generalized Collatz Problem is Π0

2-complete.
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3 The reduced Collatz sequence

Moving forward, it will be useful to work with an alternate version of the Collatz sequence. We
introduce this version mainly for the purpose of obtaining a closed form of the i-th sequence element.
In order to achieve this we will combine one 3x + 1-step with all of its subsequent x/2-steps. This
leads us to the following definition.

Definition 4 (Reduced/Accelerated Collatz Sequence).
The reduced Collatz sequence for a positive starting integer r0 (with r0 ≡ 1 mod 2) is defined as

rn+1 =
3rn + 1

2v2(3rn+1)
,

where v2(n) is the 2-adic valuation on Z.

This sequence is called reduced since it does not contain all elements of the original sequence—only
the odd ones. The 2-adic valuation removes all even elements. We can see this reduction by plotting
both the reduced and the standard sequence in Figure 3.1.

Figure 3.1: The reduced and standard sequence for 2802385

It is important to note that it does not matter much which sequence we study— the reduced sequence
is merely a subsequence of the standard sequence. More precisely, it is the subsequence formed by
the odd entries of the original sequence. Results from the standard sequence can be translated into
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results about the reduced sequence and vice versa. We can also just copy our original definition of
the Collatz conjecture since 1 is an odd number. Figure 3.2 illustrates several accelerated Collatz
sequences.

Figure 3.2: The accelerated sequence for various (odd) starting integers

We can see that the sequences show similar behavior as the standard ones. However, there is one
detail we have to change — the trivial cycle (1,4, 2) is now reduced to the cycle (1). For the reduced
sequence, we also have a known lower bound for cycle length.

Theorem 6 (Minimal cycle length [8]).
The length of any nontrivial cycle in the Reduced/Accelerated Collatz sequence is at least 17,985.

3.1 Basic properties of the reduced Collatz sequence

We begin this section by establishing the closed form of the reduced sequence from Definition 3.

Theorem 7 (Closed form of the reduced sequence).
For any given n ∈ N the n-th element of the reduced Collatz sequence can be written as

rn =
3nr0

2s(r0,n,1)
+

n
∑

i=1

3n−i2−s(r0,i,n),

where s(r0, i, n) is defined as
n
∑

j=i

v2(3r j−1 + 1).
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Proof.
This result can be obtained simply by iterating the reduced sequence.

r1 =
3r0

2v2(3r0+1)
+

1
2v2(3r0+1)

r2 =
32r0

2v2(3r0+1)+v2(3r1+1)
+

3
2v2(3r0+1)+v2(3r1+1)

+
1

2v2(3r1+1)

...

After n steps this will give us the desired result.

Corollary 7.1.
If the reduced Collatz sequence is constant, then ∀n ∈ N : rn = 1.

Proof.
If the sequence is constant then it must hold that

rn = rn+1

rn =
3rn + 1

2v2(3rn+1)

2v2(3rn+1) =
3rn + 1

rn

2v2(3rn+1) = 3+
1
rn

.

Since 2v2(3rn+1) is an integer it follows that rn = 1.

This corollary establishes that the trivial cycle is the only cycle of length 1. We can take this concept
further and apply it to cycles of any given length. This leads us to the following theorem.

Theorem 8.
If the reduced Collatz sequence is k-cyclic (i.e., has a cycle of length k) then r0 can be written as

r0 =
1

2s(r0,1,k) − 3k
2s(r0,1,k)

k
∑

i=1

3k−i2−s(r0,i,k),

where s(r0, i, k) is defined as in Theorem 7.

Proof.
Without loss of generality, we can assume that the sequence r is cyclic from the first element onwards.
Otherwise we can define a new sequence r̄ starting where the original sequence r entered a cycle.
Then we have that

r0 = rk,

or using the closed form from Theorem 7,

r0 =
3kr0

2s(r0,1,k)
+

k
∑

i=1

3k−i2−s(r0,i,k).
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Rearranging this a little gives

r0 =
3kr0

2s(r0,1,k)
+

k
∑

i=1

3k−i2−s(r0,i,k)

r0 −
3kr0

2s(r0,1,k)
=

k
∑

i=1

3k−i2−s(r0,i,k)

2s(r0,1,k)r0 − 3kr0 = 2s(r0,1,k)
k
∑

i=1

3k−i2−s(r0,i,k)

(2s(r0,1,k) − 3k)r0 = 2s(r0,1,k)
k
∑

i=1

3k−i2−s(r0,i,k)

r0 =
1

2s(r0,1,k) − 3k
2s(r0,1,k)

k
∑

i=1

3k−i2−s(r0,i,k),

which yields the desired result.

It is important to note that we can generalize this result to any cycle element by simply shifting the
sequence.

Corollary 8.1. If the reduced Collatz sequence is k-cyclic (i.e., has a cycle of length k) then any cycle
element r can be written as

r =
1

2s(r,1,k) − 3k
2s(r,1,k)

k
∑

i=1

3k−i2−s(r,i,k).

Proof.
Shift the sequence such that the first element is the desired one and apply Theorem 7.

Using this form we can now analyze the 2-adic reductions that can occur in cycles.

3.2 2-adic reductions in cycles

In this section we will take a look at what types of 2-adic reductions can occur if the sequence is
cyclic. We will also take a look at the implications this has for the sequence elements themselves. We
will start off using the identity we proved for cyclic elements in the last chapter. Using this identity
we can prove the following theorem.

Theorem 9.
Assume that the odd positive integer r0 starts a cycle of length k in the reduced Collatz sequence. Then
we have

r ≡ 1 mod 6 =⇒ v2(3rk−1 + 1) even,

r ≡ 5 mod 6 =⇒ v2(3rk−1 + 1) odd.
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Proof.
Since we have a cyclic sequence the following holds by Corollary 2.

r =
1

2s(r,1,k) − 3k
2s(r,1,k)

k
∑

i=1

3k−i2−s(r,i,k)

For the next part it will be useful to eliminate fractions from this equation. We can achieve this by
simply multiplying the equation by 2s(r,1,k) − 3k and multiplying 2s(r,1,k) into the sum. This gives us
the equation

(2s(r,1,k) − 3k)r =
k
∑

i=1

3k−i2s(r,1,k)−s(r,i,k).

Since s(r, 1, k) > s(r, i, k) (this follows directly from the definition of s in Theorem 7 as it simply
denotes a sum of 2-adic valuations) we have successfully eliminated all fractions from the equation.
Since this is now an integer equation we can apply modular arithmetic to it. In this particular case
it is most useful to work modulo 6. Taking this whole equation modulo 6 gives

(2s(r,1,k) − 3k)r ≡ 3k−i + 2s(r,1,k)−s(r,k,k) mod 6.

To simplify this further we need the following two observations. First, note that

∀n ∈ N : 3n ≡ 3 mod 6.

This is easy to check as 31 ≡ 3 mod 6 and 32 = 3 · 3 = 9 ≡ 3 mod 6 and so on. The second
observation concerns powers of 2. We have:

∀n ∈ N : 2n ≡

¨

2 mod 6 if n is odd,

4 mod 6 if n is even.

This is again easy to check as 21 ≡ 2 mod 6, 22 ≡ 4 mod 6, 23 = 22 · 2 = 8 ≡ 2 mod 6, and so on.
Using these observations we can simplify our previous equation to find

(2s(r,1,k) − 3k)r ≡ 3k−i + 2s(r,1,k)−s(r,k,k) mod 6,

(2s(r,1,k) − 3)r ≡ 3+ 2s(r,1,k)−s(r,k,k) mod 6.

Since powers of 2 can take 2 distinct values mod 6 we need to tackle this next step using four
different cases, namely

2s(r,1,k) ≡ 2 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 2 mod 6,

2s(r,1,k) ≡ 2 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 4 mod 6,

2s(r,1,k) ≡ 4 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 2 mod 6,

2s(r,1,k) ≡ 4 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 4 mod 6.

We can now obtain some information about r in each of these cases. For the first cases we have

(2s(r,1,k) − 3)r ≡ 3+ 2s(r,1,k)−s(r,k,k) mod 6

(2− 3)r ≡ 3+ 2 mod 6

−r ≡ 5 mod 6

r ≡ 1 mod 6.
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Repeating this procedure for all four cases gives us

2s(r,1,k) ≡ 2 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 2 mod 6 =⇒ r ≡ 1 mod 6,

2s(r,1,k) ≡ 2 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 4 mod 6 =⇒ r ≡ 5 mod 6,

2s(r,1,k) ≡ 4 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 2 mod 6 =⇒ r ≡ 5 mod 6,

2s(r,1,k) ≡ 4 mod 6 ∧ 2s(r,1,k)−s(r,k,k) ≡ 4 mod 6 =⇒ r ≡ 1 mod 6.

Let us take a look at the first case. If we have 2s(r,1,k) ≡ 2 mod 6 and 2s(r,1,k)−s(r,k,k) ≡ 2 then s(r, k, k)
must be an even number by our observation about powers of 2 before. The same logic applies to all
other cases as well. This gives

r ≡ 1 mod 6 =⇒ s(r, k, k) even,

r ≡ 5 mod 6 =⇒ s(r, k, k) odd.

Now we need one last observation. By definition of s we have

s(r, k, k) =
k
∑

j=k

v2(3r j−1 + 1) = v2(3rk−1 + 1).

So s(r, k, k) is exactly the last 2-adic valuation to occur in the cycle. Combining this with our results
from above completes the proof.

This theorem gives us some insight into how cyclic sequences behave under iteration. We can also
extract a test to check if a number may be contained in a cycle from this theorem. For this we take
any odd number q and iterate one step in the reduced sequence to obtain its successor qnext. Now we
check what the 2-adic valuation of 3q+1 is. If it is odd then qnext must be congruent to 5 modulo 6.
If qnext is congruent to 1 modulo 6 then we know that q cannot be contained in a cycle by Theorem
8. We can also do a similar check if the 2-adic valuation of 3q + 1 is even. It is important to note
that if a number passes this test we do not get any result — it could be contained in a cycle, or it
could not.

This result concludes our investigation into 2-adic reductions in cycles. Next we wish to investigate
the existence of cycles for any given length. Our goal will be to obtain a simple test to check if a
cycle can exist for a given length.

3.3 Existence of cycles with given length

Before we begin to work on test to check if a cycle of any given length can exist, it is interesting to
see that we can also devise such a method using some of the results of our previous two sections.
To demonstrate the core idea we will begin by proving no cycles of length 2 can exist.

Theorem 10.
The reduced Collatz sequence can not contain any cycles of length 2.

Proof.
We will again use our identity for elements in cyclic sequences from Theorem 7. So for any odd
number r0 we have

(2s(r0,1,k) − 3k)r0 =
k
∑

i=1

3k−i2s(r0,1,k)−s(r0,i,k).
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If the cycle has length k = 2 this equation takes a much simpler form. If we call the first 2-adic
valuation in the cycle z1 and the second z2 we have

(2z1+z2 − 32)r0 = 3+ 2z1 .

We can now use the fact that r0 ≥ 1 since the reduced Collatz sequence is only defined for positive
starting integers.

3+ 2z1 = (2z1+z2 − 32)r0 ≥ 2z1+z2 − 32

We can now analyze the resulting inequality a little more. Using some basic transformations we
obtain

3+ 2z1 ≥ 2z1+z2 − 32

3+ 32 ≥ 2z1+z2 − 2z1

2z1(2z2 − 1)≤ 12.

Since 2z2 > 1 we get our first condition, 2z1 ≤ 12. Applying the same logic to 2z1 gives 2z2 ≤ 13. So
we have z1 ∈ {1, 2,3}, z2 ∈ {1,2, 3}.
We can also obtain a set of constraints for r0 by using a similar argument. Since 3 + 2z1 > 0, we
have (2z1+z2−32)> 0 and since both are integers and 2n 6= 9 for all positive integers n, we also have
(2z1+z2 − 32)> 1. This gives us

3+ 2z1 = (2z1+z2 − 32)r0 ≥ r0.

Since we already have z1 ∈ {1,2, 3} we get

3+ 23 ≥ 3+ 2z1 ≥ r0,

r0 ≤ 11.

We can now try all possible combinations for z1, z2 and r0. We will find that none satisfy our
condition

(2z1+z2 − 32)r0 = 3+ 2z1 .

We could have also used the same trick for length 3, length 4 and so on. This method will quickly
become very inefficient as an increase in length also causes an increase in both the number of vari-
ables and the corresponding bounds for them. In other words for large cycle lengths this test turns
into a combinatorial nightmare.

We will now take a different approach to obtain a simpler criterion. For this it will be useful to
characterize cycles in a different way. We will now use the observation that if r0 is an integer
starting a Collatz cycle of length k, then

k−1
∏

i=0

ri+1

ri
= 1.

It is important to note that this is equivalent to our previous characterization r0 = rk, since

k−1
∏

i=0

ri+1

ri
=

r1

r0
·

r2

r1
·

r3

r2
· · ·

rk

rk−1
=

rk

r0
,
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which is equal to 1 if and only if r0 = rk.

Next it will be useful to find an explicit form for ri+1
ri

. We can get one by substituting the definition
of the reduced sequence,

ri+1

ri
=

3ri+1
2v2(3ri+1)

ri
1

=
3ri + 1

2v2(3ri+1)ri
.

This characterization allows us to get the following criterion for existence of cycles.

Theorem 11.
The integers r0, r1, . . . , rk−1 form a cycle of length k in the reduced Collatz sequence if and only if

k−1
∑

i=0

log2

�

3+
1
ri

�

=
k−1
∑

i=0

v2 (3ri + 1) .

Proof.
By our considerations above we know a cycle exists if and only if

k−1
∏

i=0

ri+1

ri
= 1.

It is useful to apply the base 2 logarithm to both sides to transform this condition. Doing so yields

log2

�k−1
∏

i=0

ri+1

ri

�

= log2 (1) ⇐⇒
k−1
∑

i=0

log2

�

ri+1

ri

�

= 0.

Next we will substitute our previous identity for ri+1
ri

and use some logarithm rules to get

k−1
∑

i=0

log2

�

3ri + 1

2v2(3ri+1)ri

�

= 0

k−1
∑

i=0

log2

�

3ri + 1
ri

�

− log2

�

2v2(3ri+1)
�

= 0

k−1
∑

i=0

log2

�

3+
1
ri

�

−
k−1
∑

i=0

v2 (3ri + 1) = 0

k−1
∑

i=0

log2

�

3+
1
ri

�

=
k−1
∑

i=0

v2 (3ri + 1) ,

which leaves us with the expression we were looking for.

For the next part we will need to use that the Collatz conjecture has been verified for all starting
integers up to 268 [4]. Using this we want to obtain some bounds for the expression

k−1
∑

i=0

log2

�

3+
1
ri

�

,

which we encountered in our previous theorem. This gives us the following result.
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Lemma 1.
Let r0 be the starting value of a Collatz cycle of length k, then

k log2(3) =
k−1
∑

i=0

log2 (3)<
k−1
∑

i=0

log2

�

3+
1
ri

�

<

k−1
∑

i=0

log2

�

3+
1

268

�

= k log2

�

3+
1

268

�

Proof.
We will start with the lower bound. Since 1

ri
is strictly positive and the logarithm is strictly increasing

on R we have,
k−1
∑

i=0

log2

�

3+
1
ri

�

>

k−1
∑

i=0

log2 (3) .

For the upper bound we will use the fact that 1
ri
< 1

268 , which follows directly from the verification
of the Collatz conjecture. This gives us

k−1
∑

i=0

log2

�

3+
1
ri

�

<

k−1
∑

i=0

log2

�

3+
1

268

�

.

Combining the upper and lower bounds gives us the inequality chain we wanted.

This lemma opens up the possibility to verify whether a cycle of length k is possible for any given
k ∈ N. It is important to note that we always have

k−1
∑

i=0

v2 (3ri + 1) ∈ N

for any given cycle since 2-adic valuations may only take positive integer values. Before we continue,
we rewrite the inequality chain from our previous lemma using intervals. This leaves us with

k−1
∑

i=0

log2

�

3+
1
ri

�

∈

�k−1
∑

i=0

log2 (3) ;
k−1
∑

i=0

log2

�

3+
1

268

�

�

.

This leads us to our next theorem, which gives us a practically computable condition for the existence
of cycles in the reduced sequence.

Theorem 12.
A cycle in the reduced Collatz sequence of length k can exist if and only if

�

k log2 (3) ; k log2

�

3+
1

268

��

∩N 6= ;.

Proof.
We will begin by using our existence condition

k−1
∑

i=0

log2

�

3+
1
ri

�

=
k−1
∑

i=0

v2 (3ri + 1) ,

which we established earlier. Additionally we will use the fact that

k−1
∑

i=0

v2 (3ri + 1) ∈ N,
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which we also established earlier. If we have that
�k−1
∑

i=0

log2 (3) ;
k−1
∑

i=0

log2

�

3+
1

268

�

�

∩Z= ;,

then
k−1
∑

i=0

log2

�

3+
1
ri

�

cannot take any value in N by our previous lemma. So if we want the identitiy

k−1
∑

i=0

log2

�

3+
1
ri

�

=
k−1
∑

i=0

v2 (3ri + 1)

to hold then we must have that
�

k log2 (3) ; k log2

�

3+
1

268

��

∩N 6= ;,

which is exactly the condition we wanted to establish.

This theorem will give us a much easier condition to check than the one we devised at the beginning
of this chapter, if we want to know if a cycle of length k exists for any given k ∈ N. Notice that for
a fixed k ∈ N we have

k−1
∑

i=0

log2 (3) = k log2 (3)

and
k−1
∑

i=0

log2

�

3+
1

268

�

=
k−1
∑

i=0

log2 (3) +
�

log2

�

3+
1

268

�

− log2 (3)
�

.

If we define

ε := log2

�

3+
1

268

�

− log2 (3) ,

we then have that

k−1
∑

i=0

log2

�

3+
1

268

�

=
k−1
∑

i=0

log2 (3) + ε= k
�

log2 (3) + ε
�

.

This gives us this us exactly what we were looking for—an easy test to check if a cycle exists for any
given length.

Corollary 12.1.
A cycle in the reduced Collatz sequence of length k for given k ∈ N can exist if and only if

dk log2 (3)e − k log2 (3)< kε

Proof.
We start with the observation that if we want the open interval

�

k log2 (3) ; k log2

�

3+
1

268

��
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from Theorem 12 to contain an integer we must have that

k
�

log2 (3) + ε
�

> dk log2 (3)e,

otherwise we would have that
�

k log2 (3) ; k log2

�

3+
1

268

��

⊂
�

bk log2 (3)c; dk log2 (3)e
�

,

which means the interval cannot contain any integers. This means a cycle can only exist if we have

dk log2 (3)e − k log2 (3)< kε,

otherwise the interval will not contain any integers which means that
�

k log2 (3) ; k log2

�

3+
1

268

��

∩N= ;.

Using Theorem 12 we get that no cycle of this length can exist.

We now have a condition that we can easily check computationally. However, this test also comes
with it’s own set of limitations. Most importantly the bound kε increases with the cycle length
k. This means for large enough k (k ≥ 1/ε) this test will not provide any useful results. We can
counteract this by verifying more numbers, which would decrease ε and therefore our bound kε.
However, this will never produce a test that will work for arbitrarily large numbers.

Finally, we will put our newfound test in action. In the next chapter we will discuss an implemen-
tation using interval arithmetic and also provide a lower bound for the length cycles in the reduced
sequence can have.

3.4 A bound for cycle length

We will start this section by proposing the following algorithm to numerically check our existence
condition from the previous section.

Algorithm 1.
Remark: The cycle length k should be a positive integer, precisions should be specified in powers of 2.

1 : input cycle length k, starting precision p, maximum precision pmax

2 : output

3 : while p ≤ pmax do

4 : with precision p :

5 : ε := log2(3+
1

268
)− log2(3)

6 : if dk log2(3)e − k log2(3)> kε

7 : return

8 : else

9 : p←− 2p
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This algorithm does not terminate unless the condition dk log2(3)e − k log2(3) > kε is met or the
maximum precision pmax is reached. The second condition is put in place since in practice it is only
useful to check up to a certain precision, as eventually missing precision is unlikely to be the cause
of failure of the condition. As mentioned previously, eventually the bound kε will simply be too
large to obtain proper results. In our case we will check up to a precision of 512 bits. To ensure
the numerical validity, this algorithm was implemented with interval arithmetic using C++ with the
MPFR and MPFI libraries. Using this approach all numbers up to 235 were checked with no failures
found. This gives us the final theorem of this thesis.

Theorem 13.
The reduced Collatz sequence cannot contain any cycles with length k < 235.

Proof.
This proof was done computationally using the implementation discussed above. The source for this
implementation and additional details may be found in the appendix.
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4 Appendix

Below is the source code for the C++ implementation used to verify the cycle existence condition
from Corollary 2 up to a given integer n. Required libraries are GMP, MPFR and MPFI.

1 #include <gmp.h>
2 #include <mpfr.h>
3 #include <mpfi.h>
4 #include <math.h>
5 #include <chrono>
6 #include <iostream>
7 #include <vector>
8
9 using namespace std::chrono;

10
11 int check_bound(const unsigned long &n, const mpfi_t &eps,
12 const mpfi_t &log, mpfi_t &x, mpfi_t &x_eps, mpfi_t &diff,
13 mpfi_t &x_ceil, mpfr_t &max_left, mpfr_t &max_right)
14 {
15
16 mpfi_mul_ui(x, log, n);
17 mpfi_mul_ui(x_eps, eps, n);
18
19 mpfr_rint_ceil(max_left,&(x->left),MPFR_RNDD);
20 mpfr_rint_ceil(max_right,&(x->right),MPFR_RNDU);
21
22 mpfr_set(&(x_ceil->left),max_left,MPFR_RNDD);
23 mpfr_set(&(x_ceil->right),max_right,MPFR_RNDU);
24
25 mpfi_sub(diff,x_ceil,x);
26
27 return (diff < x_eps);
28
29 }
30
31 int main()
32 {
33 /* Start execution timing */
34
35 auto start = high_resolution_clock::now();
36
37 /* Set maximum iterations */
38
39 unsigned long MAX = exp2(35);
40
41 /* Set result variable */
42
43 int result = 0;
44
45 /* Set fail counter */
46
47 unsigned int fails = 0;
48
49 /* Set fail table */
50
51 std::vector<unsigned long> f;
52
53 /* Declare helper variables */
54
55 mpfi_t help_1, help_2;
56
57 /* 64-bit variable set */
58
59 mpfi_t eps_64, log_64, x_64, x_eps_64, x_ceil_64, diff_64;
60 mpfr_t max_left_64, max_right_64;
61
62 mpfi_init2(eps_64, 64);
63 mpfi_init2(log_64, 64);
64 mpfi_init2(x_64, 64);
65 mpfi_init2(x_eps_64, 64);
66 mpfi_init2(x_ceil_64, 64);
67 mpfi_init2(diff_64, 64);
68
69 mpfr_init2(max_left_64, 64);
70 mpfr_init2(max_right_64, 64);
71
72 /* Compute eps and log2(3) in 64-bit */
73
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74 mpfi_init2(help_1,64);
75 mpfi_init2(help_2,64);
76
77 mpfi_set_d(help_1,1.);
78 mpfi_set_d(help_2,68.);
79
80 mpfi_exp2(help_2,help_2);
81 mpfi_div(help_1,help_1,help_2);
82
83 mpfi_set_d(help_2, 3.);
84
85 mpfi_add(help_1, help_2, help_1);
86
87 mpfi_log2(help_1, help_1);
88 mpfi_log2(help_2, help_2);
89
90 mpfi_sub(eps_64,help_1,help_2);
91
92 mpfi_set(log_64, help_2);
93
94 /* 128-bit variable set */
95
96 mpfi_t eps_128, log_128, x_128, x_eps_128, x_ceil_128, diff_128;
97 mpfr_t max_left_128, max_right_128;
98
99 mpfi_init2(eps_128, 128);

100 mpfi_init2(log_128, 128);
101 mpfi_init2(x_128, 128);
102 mpfi_init2(x_eps_128, 128);
103 mpfi_init2(x_ceil_128, 128);
104 mpfi_init2(diff_128, 128);
105
106 mpfr_init2(max_left_128, 128);
107 mpfr_init2(max_right_128, 128);
108
109 /* Compute eps and log2(3) in 128-bit */
110
111 mpfi_init2(help_1,128);
112 mpfi_init2(help_2,128);
113
114 mpfi_set_d(help_1,1.);
115 mpfi_set_d(help_2,68.);
116
117 mpfi_exp2(help_2,help_2);
118 mpfi_div(help_1,help_1,help_2);
119
120 mpfi_set_d(help_2, 3.);
121
122 mpfi_add(help_1, help_2, help_1);
123
124 mpfi_log2(help_1, help_1);
125 mpfi_log2(help_2, help_2);
126
127 mpfi_sub(eps_128,help_1,help_2);
128
129 mpfi_set(log_128, help_2);
130
131 /* 256-bit variable set */
132
133 mpfi_t eps_256, log_256, x_256, x_eps_256, x_ceil_256, diff_256;
134 mpfr_t max_left_256, max_right_256;
135
136 mpfi_init2(eps_256, 256);
137 mpfi_init2(log_256, 256);
138 mpfi_init2(x_256, 256);
139 mpfi_init2(x_eps_256, 256);
140 mpfi_init2(x_ceil_256, 256);
141 mpfi_init2(diff_256, 256);
142
143 mpfr_init2(max_left_256, 256);
144 mpfr_init2(max_right_256, 256);
145
146 /* Compute eps and log2(3) in 256-bit */
147
148 mpfi_init2(help_1,256);
149 mpfi_init2(help_2,256);
150
151 mpfi_set_d(help_1,1.);
152 mpfi_set_d(help_2,68.);
153
154 mpfi_exp2(help_2,help_2);
155 mpfi_div(help_1,help_1,help_2);
156
157 mpfi_set_d(help_2, 3.);
158
159 mpfi_add(help_1, help_2, help_1);
160
161 mpfi_log2(help_1, help_1);
162 mpfi_log2(help_2, help_2);
163
164 mpfi_sub(eps_256,help_1,help_2);
165
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166 mpfi_set(log_256, help_2);
167
168 /* 512-bit variable set */
169
170 mpfi_t eps_512, log_512, x_512, x_eps_512, x_ceil_512, diff_512;
171 mpfr_t max_left_512, max_right_512;
172
173 mpfi_init2(eps_512, 512);
174 mpfi_init2(log_512, 512);
175 mpfi_init2(x_512, 512);
176 mpfi_init2(x_eps_512, 512);
177 mpfi_init2(x_ceil_512, 512);
178 mpfi_init2(diff_512, 512);
179
180 mpfr_init2(max_left_512, 512);
181 mpfr_init2(max_right_512, 512);
182
183 /* Compute eps and log2(3) in 512-bit */
184
185 mpfi_init2(help_1,512);
186 mpfi_init2(help_2,512);
187
188 mpfi_set_d(help_1,1.);
189 mpfi_set_d(help_2,68.);
190
191 mpfi_exp2(help_2,help_2);
192 mpfi_div(help_1,help_1,help_2);
193
194 mpfi_set_d(help_2, 3.);
195
196 mpfi_add(help_1, help_2, help_1);
197
198 mpfi_log2(help_1, help_1);
199 mpfi_log2(help_2, help_2);
200
201 mpfi_sub(eps_512,help_1,help_2);
202
203 mpfi_set(log_512, help_2);
204
205 /* Testing the numbers up to MAX */
206
207 for(unsigned long i = 1; i < MAX; i++)
208 {
209
210 /* Check with 64-bit precision */
211
212 result = check_bound(i, eps_64, log_64, x_64, x_eps_64,
213 diff_64, x_ceil_64, max_left_64,
214 max_right_64);
215
216 /* If it fails check again
217 with 128-bit precision */
218
219 if(result == 1)
220 {
221
222 result = check_bound(i, eps_128, log_128, x_128,
223 x_eps_128, diff_128, x_ceil_128,
224 max_left_128, max_right_128);
225
226 /* If it fails check again
227 with 256-bit precision */
228
229 if(result == 1)
230 {
231
232 result = check_bound(i, eps_256, log_256, x_256,
233 x_eps_256, diff_256, x_ceil_256,
234 max_left_256, max_right_256);
235
236 /* If it fails check again
237 with 512-bit precision */
238
239 if(result == 1)
240 {
241
242 result = check_bound(i, eps_512, log_512, x_512,
243 x_eps_512, diff_512, x_ceil_512,
244 max_left_512, max_right_512);
245
246 /* If it fails again print the index
247 - the result is equal up to 512-bit
248 precision */
249
250 if(result == 1)
251 {
252
253 fails++;
254
255 f.push_back(i);
256
257 }
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258
259 }
260
261 }
262
263 }
264
265 }
266
267 auto stop = high_resolution_clock::now();
268
269 auto duration = duration_cast<seconds>(stop - start);
270
271 std::cout << "All integers tested up to: " << MAX << '\n';
272 std::cout << fails << " have failed with 512-bit precision" << '\n';
273 std::cout << "Execution time: " << duration.count() << 's' << '\n';
274
275 std::cout << "Fails occurred for numbers:" << '\n';
276
277 for(unsigned long n : f)
278 {
279
280 std::cout << n << '\n';
281
282 }
283
284 return 0;
285
286 }
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Below is the source for a proposed C++ implementation using multiprocessing. Required libraries
are GMP, MPFR and MPFI.

1 #include <gmp.h>
2 #include <mpfr.h>
3 #include <mpfi.h>
4 #include <math.h>
5 #include <stdio.h>
6 #include <chrono>
7 #include <iostream>
8 #include <vector>
9

10 using namespace std::chrono;
11
12 int check_bound(unsigned long n, const mpfi_t &eps,
13 const mpfi_t &log, unsigned int p)
14 {
15
16 mpfi_t x, x_eps, x_ceil, diff;
17 mpfr_t max_left, max_right;
18
19
20 mpfi_init2(x, p);
21 mpfi_init2(x_eps, p);
22 mpfi_init2(x_ceil, p);
23 mpfi_init2(diff, p);
24
25 mpfr_init2(max_left, p);
26 mpfr_init2(max_right, p);
27
28 mpfi_mul_ui(x, log, n);
29 mpfi_mul_ui(x_eps, eps, n);
30
31 mpfr_rint_ceil(max_left,&(x->left),MPFR_RNDD);
32 mpfr_rint_ceil(max_right,&(x->right),MPFR_RNDU);
33
34 mpfr_set(&(x_ceil->left),max_left,MPFR_RNDD);
35 mpfr_set(&(x_ceil->right),max_right,MPFR_RNDU);
36
37 mpfi_sub(diff,x_ceil,x);
38
39 int result = (diff < x_eps);
40
41 mpfi_clear(x);
42 mpfi_clear(x_eps);
43 mpfi_clear(x_ceil);
44 mpfi_clear(diff);
45
46 mpfr_clear(max_left);
47 mpfr_clear(max_right);
48
49 return result;
50
51 }
52
53 int main()
54 {
55 /* Start execution timing */
56
57 auto start = high_resolution_clock::now();
58
59 /* Set maximum iterations */
60
61 unsigned long MAX = exp2(35);
62
63 /* Set result variable */
64
65 int result = 0;
66
67 /* Set fail counter */
68
69 unsigned int fails = 0;
70
71 /* Set fail table */
72
73 std::vector<unsigned long> f;
74
75 /* Declare helper variables */
76
77 mpfi_t help_1, help_2;
78
79 /* 64-bit variable set */
80
81 mpfi_t eps_64, log_64;
82
83 mpfi_init2(eps_64, 64);
84 mpfi_init2(log_64, 64);
85
86 /* Compute eps and log2(3) in 64-bit */
87
88 mpfi_init2(help_1,64);
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89 mpfi_init2(help_2,64);
90
91 mpfi_set_d(help_1,1.);
92 mpfi_set_d(help_2,68.);
93
94 mpfi_exp2(help_2,help_2);
95 mpfi_div(help_1,help_1,help_2);
96
97 mpfi_set_d(help_2, 3.);
98
99 mpfi_add(help_1, help_2, help_1);

100
101 mpfi_log2(help_1, help_1);
102 mpfi_log2(help_2, help_2);
103
104 mpfi_sub(eps_64,help_1,help_2);
105
106 mpfi_set(log_64, help_2);
107
108 /* 128-bit variable set */
109
110 mpfi_t eps_128, log_128;
111
112 mpfi_init2(eps_128, 128);
113 mpfi_init2(log_128, 128);
114
115 /* Compute eps and log2(3) in 128-bit */
116
117 mpfi_init2(help_1,128);
118 mpfi_init2(help_2,128);
119
120 mpfi_set_d(help_1,1.);
121 mpfi_set_d(help_2,68.);
122
123 mpfi_exp2(help_2,help_2);
124 mpfi_div(help_1,help_1,help_2);
125
126 mpfi_set_d(help_2, 3.);
127
128 mpfi_add(help_1, help_2, help_1);
129
130 mpfi_log2(help_1, help_1);
131 mpfi_log2(help_2, help_2);
132
133 mpfi_sub(eps_128,help_1,help_2);
134
135 mpfi_set(log_128, help_2);
136
137 /* 256-bit variable set */
138
139 mpfi_t eps_256, log_256, x_256;
140
141 mpfi_init2(eps_256, 256);
142 mpfi_init2(log_256, 256);
143
144 /* Compute eps and log2(3) in 256-bit */
145
146 mpfi_init2(help_1,256);
147 mpfi_init2(help_2,256);
148
149 mpfi_set_d(help_1,1.);
150 mpfi_set_d(help_2,68.);
151
152 mpfi_exp2(help_2,help_2);
153 mpfi_div(help_1,help_1,help_2);
154
155 mpfi_set_d(help_2, 3.);
156
157 mpfi_add(help_1, help_2, help_1);
158
159 mpfi_log2(help_1, help_1);
160 mpfi_log2(help_2, help_2);
161
162 mpfi_sub(eps_256,help_1,help_2);
163
164 mpfi_set(log_256, help_2);
165
166 /* 512-bit variable set */
167
168 mpfi_t eps_512, log_512;
169
170 mpfi_init2(eps_512, 512);
171 mpfi_init2(log_512, 512);
172
173 /* Compute eps and log2(3) in 512-bit */
174
175 mpfi_init2(help_1,512);
176 mpfi_init2(help_2,512);
177
178 mpfi_set_d(help_1,1.);
179 mpfi_set_d(help_2,68.);
180
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181 mpfi_exp2(help_2,help_2);
182 mpfi_div(help_1,help_1,help_2);
183
184 mpfi_set_d(help_2, 3.);
185
186 mpfi_add(help_1, help_2, help_1);
187
188 mpfi_log2(help_1, help_1);
189 mpfi_log2(help_2, help_2);
190
191 mpfi_sub(eps_512,help_1,help_2);
192
193 mpfi_set(log_512, help_2);
194
195 /* Testing the numbers up to MAX */
196
197 #pragma omp parallel for simd
198 for(unsigned long i = 1; i < MAX; i++)
199 {
200
201 /* Check with 64-bit precision */
202
203 result = check_bound(i, eps_64, log_64, 64);
204
205 /* If it fails check again
206 with 128-bit precision */
207
208 if(result == 1)
209 {
210
211 result = check_bound(i, eps_128, log_128, 128);
212
213 /* If it fails check again
214 with 256-bit precision */
215
216 if(result == 1)
217 {
218
219 result = check_bound(i, eps_256, log_256,
220 256);
221
222 /* If it fails check again
223 with 512-bit precision */
224
225 if(result == 1)
226 {
227
228 result = check_bound(i, eps_512, log_512,
229 512);
230
231 /* If it fails again print the index - the
232 result is equal up to 512-bit precision */
233
234 if(result == 1)
235 {
236
237 fails++;
238
239 f.push_back(i);
240
241 }
242
243 }
244
245 }
246
247 }
248
249 }
250
251 auto stop = high_resolution_clock::now();
252
253 auto duration = duration_cast<seconds>(stop - start);
254
255 std::cout << "All integers tested up to: " << MAX << '\n';
256 std::cout << fails << " have failed with 512-bit precision" << '\n';
257 std::cout << "Execution time: " << duration.count() << 's' << '\n';
258
259 std::cout << "Fails occurred for numbers:" << '\n';
260
261 for(unsigned long n : f)
262 {
263
264 std::cout << n << '\n';
265
266 }
267
268 return 0;
269
270 }
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