

On d-ary trees with restricted colorings
joint work with Helmut Prodinger

Hong \& Park 2014: Hybrid d-ary Trees

Hybrid d-ary trees

- colored inner nodes:
- (blue - "bad")
- (green - "good")
- Forbidden:

$$
\text { A hybrid ternary tree of size } 8 .
$$

- Hybrid (binary) trees: J. Pallo, '94

Their Generalization and A Potpourri of Results

(p, q)-hybrid d-ary tree

- p bad, q good colors
- Forbidden: "consecutive" same bad color.

Their Generalization and A Potpourri of Results

(p, q)-hybrid d-ary tree

- p bad, q good colors
- Forbidden: "consecutive" same bad color.

Some Results [Hong/Park '14]

Fibonacci Words

Blocks of (p, q)-hybrid d-ary trees \rightarrow generalized Fibonacci words.

Their Generalization and A Potpourri of Results

(p, q)-hybrid d-ary tree

- p bad, q good colors
- Forbidden: "consecutive" same bad color.

Some Results [Hong/Park '14]

Fibonacci Words

Blocks of (p, q)-hybrid d-ary trees \rightarrow generalized Fibonacci words.
Number of Trees of size n

$$
\frac{1}{(d-1) n+1} \sum_{k=0}^{n} \sum_{i=\left\lceil\frac{k}{2}\right\rceil}^{k}\binom{(d-1) n+1}{n-k}\binom{(d-1) n+i}{i}\binom{i}{k-i}(p+q-1)^{2 i-k} q^{k-i}
$$

Our Take on the Problem

Question: What impact do different color restrictions have?

Bad \rightarrow Leaf

Bad \rightarrow Not Bad

Bad \rightarrow Different \triangleq Hybrid

Our Take on the Problem

Question: What impact do different color restrictions have?

Bad \rightarrow Leaf

Bad \rightarrow Not Bad

Bad \rightarrow Different \triangleq Hybrid

All colored d-ary trees

- Number of size n :
$\frac{(p+q)^{n}}{n(d-1)+1}\binom{d n}{n}$
- Exponential growth:
$(p+q) \frac{d^{d}}{(d-1)^{d-1}}$

Our Take on the Problem

Question: What impact do different color restrictions have?

Bad \rightarrow Leaf

Bad \rightarrow Different \triangleq Hybrid

Bad \rightarrow Not Bad

All colored d-ary trees

- Number of size n :

$$
\frac{(p+q)^{n}}{n(d-1)+1}\binom{d n}{n}
$$

- Exponential growth:

$$
(p+q) \frac{d^{d}}{(d-1)^{d-1}}
$$

- In this talk: focus on "Bad \rightarrow Not Bad"

Generating Function Model

- \quad... inner nodes, $t \ldots$ "good" nodes
- $\alpha=p / q \ldots$ color ratio
- $\mathcal{H} \ldots d$-ary trees, first child of bad node is not bad
- $\mathcal{P} \ldots$ trees in \mathcal{H} with bad root
- $\mathcal{Q} \ldots$ trees in \mathcal{H} with good root

Generating Function Model

- z... inner nodes, $t \ldots$ "good" nodes
- $\alpha=p / q \ldots$ color ratio
- $\mathcal{H} \ldots d$-ary trees, first child of bad node is not bad
- $\mathcal{P} \ldots$ trees in \mathcal{H} with bad root
- $\mathcal{Q} \ldots$ trees in \mathcal{H} with good root

Proposition

Generating functions $P=P(z, t), Q=Q(z, t)$ satisfy

$$
\begin{aligned}
& P=\frac{-(1+Q) t+\sqrt{t(1+Q)(t+(t+4 \alpha) Q)}}{2 t} \\
& Q=q z t\left(\frac{(1+Q) t+\sqrt{t(1+Q)(t+(t+4 \alpha) Q)}}{2 t}\right)^{d}
\end{aligned}
$$

Generating Function Model - Proof

$$
\begin{aligned}
& P=p z(1+Q)(1+P+Q)^{d-1} \\
& Q=q z t(1+P+Q)^{d}
\end{aligned}
$$

Generating Function Model - Proof

$$
\begin{aligned}
& P=p z(1+Q)(1+P+Q)^{d-1} \quad \mid \cdot(1+P+Q) t \\
& Q=q z t(1+P+Q)^{d}
\end{aligned}
$$

$$
P(1+P+Q) t=\frac{p}{q}(1+Q) Q=\alpha(1+Q) Q .
$$

Generating Function Model - Proof

$$
\begin{aligned}
& \underbrace{\mathcal{P}}_{d \text { children }}=\underbrace{\mathcal{Q}}_{d \text { children }}= \\
& \left.\quad \begin{array}{l}
\square=p z(1+\mathcal{Q}+\mathcal{P})(1+P+\mathcal{Q}+\mathcal{Q})^{d-1} \\
Q=q z t(1+P+Q)^{d}
\end{array} \quad \right\rvert\, \cdot(1+P+Q) t
\end{aligned}
$$

$$
P(1+P+Q) t=\frac{p}{q}(1+Q) Q=\alpha(1+Q) Q .
$$

Solve for P :

$$
P=\frac{-(1+Q) t \pm \sqrt{t(1+Q)(t+(t+4 \alpha) Q)}}{2 t}
$$

It's a Kind of Magic: A Special Substitution

Assume $v=v(z)$ satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$.

It's a Kind of Magic: A Special Substitution

Assume $v=v(z)$ satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$.

- Observation: $Q(z, 1)=q z\left(\frac{(1+Q)+\sqrt{(1+Q)(1+(1+4 \alpha) Q)}}{2}\right)^{d}$

It's a Kind of Magic: A Special Substitution

Assume $v=v(z)$ satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$.

- Observation: $Q(z, 1)=q z\left(\frac{(1+Q)+\frac{\sqrt{(1+Q)(1+(1+4 \alpha) Q)}}{2}}{}\right)^{d}$

$$
(1+Q)(1+(1+4 \alpha) Q)=\frac{(1+2 \alpha v)^{2}}{\left(1-v-\alpha v^{2}\right)^{2}}
$$

It's a Kind of Magic: A Special Substitution

Assume $v=v(z)$ satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$.

- Observation: $Q(z, 1)=q z\left(\frac{(1+Q)+\frac{\sqrt{(1+Q)(1+(1+4 \alpha) Q)}}{2}}{2} d\right.$

$$
(1+Q)(1+(1+4 \alpha) Q)=\frac{(1+2 \alpha v)^{2}}{\left(1-v-\alpha v^{2}\right)^{2}}
$$

- Consequence: $\sqrt{\cdots}$ "disappears"!

It's a Kind of Magic: A Special Substitution

Assume $v=v(z)$ satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$.

- Observation: $Q(z, 1)=q z\left(\frac{(1+Q)+\frac{\sqrt{(1+Q)(1+(1+4 \alpha) Q)}}{2}}{2} d\right.$

$$
(1+Q)(1+(1+4 \alpha) Q)=\frac{(1+2 \alpha v)^{2}}{\left(1-v-\alpha v^{2}\right)^{2}}
$$

- Consequence: $\sqrt{\cdots}$ "disappears"!

Proposition: Existence of $v(z)$

A function $v=v(z)$ that is analytic near $z=0$ and satisfies $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$ exists and is unique.

Magic Substitution: Proof and Ramifications

- Plug relation $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$ in functional equation of Q :

$$
\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}=q z\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d}
$$

Magic Substitution: Proof and Ramifications

- Plug relation $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$ in functional equation of Q :

$$
\begin{gathered}
\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}=q z\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d} \\
v=z \cdot q\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d-1}=z \Phi(v) .
\end{gathered}
$$

Magic Substitution: Proof and Ramifications

- Plug relation $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$ in functional equation of Q :

$$
\begin{gathered}
\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}=q z\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d} \\
v=z \cdot q\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d-1}=z \Phi(v) .
\end{gathered}
$$

- Φ is analytic at $0, \Phi(0) \neq 0$, and has positive coefficients
$\Rightarrow v(z)$ exists and is unique!

Magic Substitution: Proof and Ramifications

- Plug relation $Q(z, 1)=\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}$ in functional equation of Q :

$$
\begin{gathered}
\frac{v(1+\alpha v)}{1-v-\alpha v^{2}}=q z\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d} \\
v=z \cdot q\left(\frac{1+\alpha v}{1-v-\alpha v^{2}}\right)^{d-1}=z \Phi(v) .
\end{gathered}
$$

- Φ is analytic at $0, \Phi(0) \neq 0$, and has positive coefficients $\Rightarrow v(z)$ exists and is unique!
New Representations:

$$
\begin{aligned}
& Q(z, 1)=\frac{v(1+\alpha v)}{1-v(1+\alpha v)}, \quad P(z, 1)=\frac{\alpha v}{1-v(1+\alpha v)} \\
& H(z, 1)=P(z, 1)+Q(z, 1)=-1+\frac{1+\alpha v}{1-v(1+\alpha v)}
\end{aligned}
$$

Result: Exact Growth

Theorem (H.-Prodinger '19+): Exact formulas

Number of "Bad \rightarrow Not Bad"-trees with bad root:

$$
\frac{q^{n}}{n} \sum_{k=0}^{n-1} \alpha^{k}\binom{d n-k}{n-k-1}\left(\alpha\binom{d n-k-1}{k}+\binom{d n-k-1}{k-2}\right),
$$

with good root:

$$
q^{n} d \sum_{k=0}^{n-1} \frac{\alpha^{k}}{d n-k}\binom{d n-k}{n-k-1}\binom{d n-k}{k}
$$

and overall

$$
\frac{q^{n}}{n} \sum_{k=0}^{n-1} \alpha^{k}\binom{d n-k}{n-k-1}\left(\binom{d n-k+1}{k}+\alpha\binom{d n-k-1}{k}\right) .
$$

Proof: Lagrange inversion.

Playing with Counting Sequences: "Bad \rightarrow Not Bad"

$$
\begin{array}{l|ll}
d=2 & q=1 & q=2 \\
\hline p=1 & \text { A007863 } & \text { A216314 } \\
p=2 & \text { A215661 } &
\end{array}
$$

Playing with Counting Sequences: "Bad \rightarrow Not Bad"

$$
\begin{array}{l|lll|l}
d=2 & q=1 & q=2 \\
p=1 & \text { A007863 } & \text { A216314 } \\
p=2 & \text { A215661 } & & d=3 & q=1 \\
\hline p=1 & \text { A215654 } \\
\hline p
\end{array}
$$

Playing with Counting Sequences: "Bad \rightarrow Not Bad"

$$
\left.\begin{array}{l|lll|l}
d=2 & q=1 & q=2 & & \begin{array}{ll}
d=3 & q=1 \\
\hline p=1 & \mathrm{~A} 007863 \\
\mathrm{~A} 216314 \\
p=2 & \mathrm{~A} 215661
\end{array}
\end{array} \begin{array}{ll|l}
p=1 & \mathrm{~A} 215654 \\
& & d=4
\end{array}\right) q=1 .
$$

Playing with Counting Sequences: "Bad \rightarrow Not Bad"

$$
\begin{array}{l|lll|l}
d=2 & q=1 & q=2 & & \begin{array}{l}
d=3 \\
\hline
\end{array} \\
\hline p=1 & \mathrm{~A} 007863 & \mathrm{~A} 216314 \\
p=2 & \mathrm{~A} 215661 & & \begin{array}{l}
\text { A } 215654 \\
\end{array} &
\end{array}
$$

- Sequence description for (d, p, q) :
- $(2,1,1)$: hybrid binary trees
- (2,1,2), $(2,2,1),(3,1,1)$: generating function satisfies equation
- (4,1,1): hybrid 4-ary trees

Playing with Counting Sequences: "Bad \rightarrow Leaf"

$$
\begin{array}{l|lllll}
d=2 & q=1 & q=2 & q=3 & q=4 & q=5 \\
\hline p=1 & \mathrm{~A} 006318 & \mathrm{~A} 103210 & \mathrm{~A} 103211 & \mathrm{~A} 133305 & \mathrm{~A} 133306 \\
p=2 & \mathrm{~A} 047891 & \mathrm{~A} 156017 & & & \\
p=3 & \mathrm{~A} 082298 & & & & \\
p=4 & \mathrm{~A} 082301 & & & &
\end{array}
$$

Playing with Counting Sequences: "Bad \rightarrow Leaf"

$$
\begin{array}{l|lllll}
d=2 & q=1 & q=2 & q=3 & q=4 & q=5 \\
\hline p=1 & \mathrm{~A} 006318 & \mathrm{~A} 103210 & \mathrm{~A} 103211 & \mathrm{~A} 133305 & \mathrm{~A} 133306 \\
p=2 & \mathrm{~A} 047891 & \mathrm{~A} 156017 & & & \\
p=3 & \mathrm{~A} 082298 & & & & \\
p=4 & \mathrm{~A} 082301 & & & &
\end{array}
$$

$$
\begin{array}{l|ll}
d=3 & q=1 & q=2 \\
\hline p=1 & \mathrm{~A} 027307 & \mathrm{~A} 219536 \\
p=2 & \mathrm{~A} 219535 &
\end{array}
$$

Playing with Counting Sequences: "Bad \rightarrow Leaf"

$$
\begin{array}{r|lllll}
d=2 & q=1 & q=2 & q=3 & q=4 & q=5 \\
\hline p=1 & \text { A006318 } & \text { A103210 } & \text { A103211 } & \text { A133305 } & \text { A133306 } \\
p=2 & \text { A047891 } & \text { A156017 } & & & \\
p=3 & \text { A082298 } & & & \\
p=4 & \text { A082301 } & & & \\
& & d=3 & q=1 & q=2 & \\
& p=1 & \text { A027307 } & \text { A219536 } & \\
& & p=2 & \text { A219535 } & &
\end{array}
$$

- Sequence description for (d, p, q) :
- (2,1,1): large Schröder numbers
- (2,1,2-5): recurrence
- $(2,2,1)$: plane trees with tricolored leaves
- $(2,2,2)$: special Schroeder paths
- $(2,3-4,1)$ explicit generating function
- (3,1,1): special lattice paths in first quadrant
- (3,1,2), $(3,2,1)$: generating function satisfies equation

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:
$H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$
(2) singular expansion of $v(z)$ via singular inversion

- Positive τ satisfying $\tau \Phi^{\prime}(\tau)-\Phi(\tau)=0 \rightsquigarrow 3$ 3rd degree equation

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$
(2) singular expansion of $v(z)$ via singular inversion

- Positive τ satisfying $\tau \Phi^{\prime}(\tau)-\Phi(\tau)=0 \rightsquigarrow 3$ 3rd degree equation
- Radius of convergence $=$ location of singularity $\rho=\tau / \Phi(\tau)$

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$
(2) singular expansion of $v(z)$ via singular inversion

- Positive τ satisfying $\tau \Phi^{\prime}(\tau)-\Phi(\tau)=0 \rightsquigarrow 3$ 3rd degree equation
- Radius of convergence $=$ location of singularity $\rho=\tau / \Phi(\tau)$
(3) Plug expansion of $v(z)$ in expression above \rightarrow expansion of H

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$
(2) singular expansion of $v(z)$ via singular inversion

- Positive τ satisfying $\tau \Phi^{\prime}(\tau)-\Phi(\tau)=0 \rightsquigarrow 3$ 3rd degree equation
- Radius of convergence $=$ location of singularity $\rho=\tau / \Phi(\tau)$
(3) Plug expansion of $v(z)$ in expression above \rightarrow expansion of H
(4) Singularity Analysis \rightarrow Profit!

Analyzing Asymptotic Growth

- Goal: growth of $H(z, 1) \ldots$ \# of "Bad \rightarrow Not Bad"-trees
- Known:

$$
H=-1+\frac{1+\alpha v}{1-v-\alpha v^{2}}, \quad v=z \Phi(v), \quad \Phi(u)=q\left(\frac{(1+\alpha u)}{1-u-\alpha u^{2}}\right)^{d-1}
$$

Strategy:

(1) singular structure of $H(z, 1)$ comes from $v(z)$
(2) singular expansion of $v(z)$ via singular inversion

- Positive τ satisfying $\tau \Phi^{\prime}(\tau)-\Phi(\tau)=0 \rightsquigarrow 3$ 3rd degree equation
- Radius of convergence $=$ location of singularity $\rho=\tau / \Phi(\tau)$
(3) Plug expansion of $v(z)$ in expression above \rightarrow expansion of H
(4) Singularity Analysis \rightarrow Profit!

If only there were software to carry this out for us...

Intermission: SageMath to the Rescue! Asymptotic Expansions in SageMath (H.-Heuberger-Krenn '15)

Intermission: SageMath to the Rescue!
Asymptotic Expansions in SageMath

(H.-Heuberger-Krenn '15)
def phi(u):
return q * ((1 + alpha*u)

$$
/(1-u-a l p h a * u \wedge 2))^{\wedge}(d-1)
$$

asymptotic_expansions.ImplicitExpansion (Z,

$$
\begin{aligned}
& \text { phi=phi, tau=tau, } \\
& \text { precision=5) }
\end{aligned}
$$

Intermission: SageMath to the Rescue!
Asymptotic Expansions in SageMath

(H.-Heuberger-Krenn '15)
def phi(u):
return q * ((1 + alpha*u)

$$
\left./\left(1-u-\operatorname{alpha} * u^{\wedge} 2\right)\right)^{\wedge}(d-1)
$$

asymptotic_expansions.ImplicitExpansion (Z, phi=phi, tau=tau, precision=5)

$$
\operatorname{tau}+(-\operatorname{sqrt}(2) * \ldots) * \mathrm{Z}^{\wedge}(-1 / 2)+\ldots+\mathrm{O}\left(\mathrm{Z}^{\wedge}(-2)\right)
$$

Intermission: SageMath to the Rescue!

Asymptotic Expansions in SageMath

(H.-Heuberger-Krenn '15)
def phi(u):
return q * ((1 + alpha*u)

$$
\left./\left(1-\mathbf{u}-\operatorname{alpha} * \mathbf{u}^{\wedge} 2\right)\right)^{\wedge}(\mathrm{d}-1)
$$

asymptotic_expansions.ImplicitExpansion (Z, phi=phi, tau=tau, precision=5)

$$
\operatorname{tau}+(-\operatorname{sqrt}(2) * \ldots) * \mathrm{Z}^{\wedge}(-1 / 2)+\ldots+0\left(\mathrm{Z}^{\wedge}(-2)\right)
$$

This translates to

$$
\tau+c_{1} \sqrt{1-\frac{z}{\rho}}+c_{2}\left(1-\frac{z}{\rho}\right)+c_{3}\left(1-\frac{z}{\rho}\right)^{3 / 2}+O\left(\left(1-\frac{z}{\rho}\right)^{2}\right)
$$

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!
- Remember:

$$
\Phi(u)=q\left(\frac{1+\alpha u}{1-u-\alpha u^{2}}\right)^{d-1}
$$

$\rightarrow 3$ (symbolic) parameters q, α, d

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!
- Remember:

$$
\Phi(u)=q\left(\frac{1+\alpha u}{1-u-\alpha u^{2}}\right)^{d-1}
$$

$\rightarrow 3$ (symbolic) parameters q, α, d

- Constants in expansions get really, really messy!

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!
- Remember:

$$
\Phi(u)=q\left(\frac{1+\alpha u}{1-u-\alpha u^{2}}\right)^{d-1}
$$

$\rightarrow 3$ (symbolic) parameters q, α, d

- Constants in expansions get really, really messy!

In [160]: print v_expansion

 $\left.u^{\wedge} 4+\left(a l p h a^{\wedge} 2-6 \star a l p h a+1\right) * \operatorname{tau}^{\wedge} 3+2 *(a l p h a-1) * \tan ^{\wedge} 2+\operatorname{tau}\right) /\left(\left(\right.\right.$ alpha^ $\left.4 \star d^{\wedge} 2-a l p h a^{\wedge} 4 * d\right) * \operatorname{tau} u^{\wedge} 5+4 *\left(a l p h a^{\wedge} 3 * d^{\wedge} 2\right.$ - alpha^ $3 \star d) \star \tan \wedge 4+2 \star\left(3 \star a l p h a^{\wedge} 3+\left(a l p h a^{\wedge} 3+3 \star a l p h a^{\wedge} 2\right) \star d^{\wedge} 2-\left(4 \star a l p h a^{\wedge} 3+3 \star a l p h a^{\wedge} 2\right) \star d\right) \star$ tau^3 $+4 \star\left(\left(a l p h a^{\wedge} 2+a l\right.\right.$ pha) $* d^{\wedge} 2+3 * a l$ pha^ $\left.2-\left(4 * a l p h a^{\wedge} 2+a l p h a\right) * d\right) * \tan ^{\wedge} 2-2 *(a l p h a+1) * d+\left(\left(a l p h a^{\wedge} 2+2 * a l\right.\right.$ pha +1$) * d^{\wedge} 2+2 * a l$ pha^ 2 $\left.\left.\left.\left(3 \star a l p h a^{\wedge} 2+10 * a l p h a+1\right) * d+8 * a l p h a\right) * t a u+2 * a l p h a+2\right)\right)$) * n $^{\wedge}(-1 / 2)+\left(1 / 3 *\left(\left(a l p h a^{\wedge} 8 * d^{\wedge} 2-2 * a l p h a^{\wedge} 8 * d\right) * t a u^{\wedge} 11+\right.\right.$ $8 *\left(a l p h a^{\wedge} 7 \star d^{\wedge} 2-2 * a l p h a^{\wedge} 7 * d\right) * \operatorname{tau}^{\wedge} 10+2 \star\left(12 * a l p h a^{\wedge} 7+\left(a l p h a^{\wedge} 7+14 * a l p h a^{\wedge} 6\right) * d^{\wedge} 2-4 *\left(2 * a l p h a^{\wedge} 7+7 * a l p h a^{\wedge} 6\right) * d\right) * t a$ $\mathbf{u}^{\wedge} 9+\left(132 \star a l p h a^{\wedge} 6+\left(11 * a l p h a^{\wedge} 6+56 \star a l p h a^{\wedge} 5\right) * d^{\wedge} 2-7 \star\left(13 * a l p h a^{\wedge} 6+16 * a l p h a^{\wedge} 5\right) * d\right)$ *tau^ $8+2 \star(156 * a l p h a \wedge 5+(12 * a l$ pha^5 $\left.\left.+35 * a l p h a^{\wedge} 4\right) * d^{\wedge} 2-2 *(54 * a l p h a \wedge 5+35 * a l p h a \wedge 4) * d\right) * t a u^{\wedge} 7+\left(414 * a l p h a^{\wedge} 4-\left(3 * a l p h a \wedge 5-25 * a l p h a^{\wedge} 4-56 * a l p h a^{\wedge}\right.\right.$ $\left.3) \star d^{\wedge} 2+\left(15 \star a l p h a^{\wedge} 5-275 * a l p h a^{\wedge} 4-112 \star a l p h a^{\wedge} 3\right) \star d\right) \star t a u^{\wedge} 6-\left(24 * a l p h a^{\wedge} 5+12 * a l p h a^{\wedge} 4-336 \star a l p h a^{\wedge} 3+2 *\left(a l p h a^{\wedge} 5+\right.\right.$ $\left.\left.6 * a^{2 l p h a \wedge} 4-5 * a l p h a^{\wedge} 3-14 * a l p h a^{\wedge} 2\right) * d^{\wedge} 2-\left(16 * a l p h a^{\wedge} 5+57 * a l p h a^{\wedge} 4-200 * a l p h a^{\wedge} 3-56 * a l p h a^{\wedge} 2\right) * d\right) * t a u^{\wedge} 5-(84 * a l$ pha ${ }^{\wedge} 4+42 \star$ alpha^ $3+\left(7 \star a l p h a^{\wedge} 4+18 * a l p h a^{\wedge} 3+3 * a l p h a^{\wedge} 2-8 * a l p h a\right) * d^{\wedge} 2-168 * a l$ phan $2-\left(47 \star a l p h a^{\wedge} 4+84 * a l\right.$ pha^ $3-81 \star$
 $\star\left(\right.$ alpha^ $4+26 * a l p h a^{\wedge} 3+30 * a l p h a^{\wedge} 2-8 * a l$ pha -1$\left.) * d-48 * a l p h a\right) * t a u^{\wedge} 3-\left(\left(a l p h a^{\wedge} 3+3 * a l p h a^{\wedge} 2+3 * a l p h a+1\right) * d^{\wedge} 2+\right.$ $\left.60 * a l p h a^{\wedge} 2-\left(5 * a l p h a^{\wedge} 3+27 * a l p h a^{\wedge} 2+2 l * a l p h a-1\right) * d+30 * a l p h a-6\right) * t a u^{\wedge} 2+3 *\left(\left(a l p h a^{\wedge} 2+2 * a l p h a+1\right) * d-4 * a l p\right.$ ha -2$) \star t a u) /\left(\left(a l p h a^{\wedge} 8 * d^{\wedge} 3-a l p h a^{\wedge} 8 * d^{\wedge} 2\right) * \operatorname{tau^{\wedge }} 10+8 *\left(a l p h a^{\wedge} 7 * d^{\wedge} 3-a l p h a^{\wedge} 7 * d^{\wedge} 2\right) * t a u^{\wedge} 9+4 *\left(3 * a l p h a^{\wedge} 7 * d+\left(a l p h a^{\wedge} 7\right.\right.\right.$ $\left.\left.+7 \star a l p h a^{\wedge} 6\right) * d^{\wedge} 3-\left(4 \star a l p h a^{\wedge} 7+7 * a l p h a^{\wedge} 6\right) * d^{\wedge} 2\right) \star \tan ^{\wedge} 8+8 \star\left(9 \star a l p h a^{\wedge} 6 \star d+\left(3 \star a l p h a^{\wedge} 6+7 \star a l p h a^{\wedge} 5\right) * d^{\wedge} 3-\left(12 \star a l p h a^{\wedge} 6\right.\right.$ $\left.\left.+7 \star a l p h a^{\wedge} 5\right) \star d^{\wedge} 2\right) \star \operatorname{tau}^{\wedge} 7-2 \star\left(18 * a l p h a^{\wedge} 6-\left(3 * a l p h a^{\wedge} 6+30 * a l p h a^{\wedge} 5+35 * a l p h a^{\wedge} 4\right) * d^{\wedge} 3+\left(17 \star a l p h a^{\wedge} 6+122 * a l p h a^{\wedge} 5+3\right.\right.$ $\left.\left.5 \star a l p h a^{\wedge} 4\right) \star d^{\wedge} 2-4 \star\left(8 * a l p h a^{\wedge} 6+23 \star a l p h a^{\wedge} 5\right) * d\right) \star \operatorname{tau}^{\wedge} 6-4 *\left(36 \star a l p h a^{\wedge} 5-2 *\left(3 * a l p h a^{\wedge} 5+10 * a l p h a^{\wedge} 4+7 \star a l p h a^{\wedge} 3\right) \star d^{\wedge} 3+\right.$

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!
- Remember:

$$
\Phi(u)=q\left(\frac{1+\alpha u}{1-u-\alpha u^{2}}\right)^{d-1}
$$

$\rightarrow 3$ (symbolic) parameters q, α, d

- Constants in expansions get really, really messy!

In [160]: print v_expansion

tau $+\left(-5 q r t(2) * s q r t\left(-\left(a l p h a^{\wedge} 4 * \operatorname{tau}^{\wedge} 7+4 * a l p h a^{\wedge} 3 * t a u^{\wedge} 6-2 *\left(a l p h a^{\wedge} 3-3 * a l p h a^{\wedge} 2\right) * t a u^{\wedge} 5-2 *\left(3 * a l p h a^{\wedge} 2-2 * a l p h a\right) *\right.\right.\right.$

 $\left.\left.\left.\left.\left(3 * a l p h a^{\wedge} 2+10 * a l p h a+1\right) * d+8 * a l p h a\right) * t a u+2 * a l p h a+2\right)\right)\right) * Z^{\wedge}(-1 / 2)+\left(1 / 3 *\left(\left(a^{2} p h a^{\wedge} 8 * d^{\wedge} 2-2 * a l p h a^{\wedge} 8 * d\right) * t a u^{\wedge} 11+\right.\right.$ $8 *\left(a l p h a^{\wedge} 7 \star d^{\wedge} 2-2 \star a l p h a^{\wedge} 7 \star d\right) * \operatorname{tau} u^{\wedge} 10+2 \star\left(12 \star a l p h a^{\wedge} 7+\left(a l p h a^{\wedge} 7+14 * a l p h a^{\wedge} 6\right) * d^{\wedge} 2-4 *\left(2 * a l p h a^{\wedge} 7+7 * a l p h a^{\wedge} 6\right) * d\right) * t a$
 pha^ $\left.\left.5+35 * a l p h a^{\wedge} 4\right) * d^{\wedge} 2-2 *(54 * a l p h a \wedge 5+35 * a l p h a \wedge 4) * d\right) * t a u^{\wedge} 7+\left(414 * a l p h a^{\wedge} 4-\left(3 * a l p h a \wedge 5-25 * a l p h a^{\wedge} 4-56 * a l p h a^{\wedge}\right.\right.$ $\left.3) \star d^{\wedge} 2+\left(15 \star a l p h a^{\wedge} 5-275 * a l p h a^{\wedge} 4-112 \star a l p h a^{\wedge} 3\right) \star d\right) \star t a u^{\wedge} 6-\left(24 * a l p h a^{\wedge} 5+12 * a l p h a^{\wedge} 4-336 \star a l p h a^{\wedge} 3+2 *\left(a l p h a^{\wedge} 5+\right.\right.$ $\left.\left.6 * a^{2 l p h a \wedge} 4-5 * a l p h a^{\wedge} 3-14 * a l p h a^{\wedge} 2\right) * d^{\wedge} 2-\left(16 * a l p h a^{\wedge} 5+57 * a l p h a^{\wedge} 4-200 * a l p h a^{\wedge} 3-56 * a l p h a^{\wedge} 2\right) * d\right) * t a u^{\wedge} 5-(84 * a l$ pha ${ }^{\wedge} 4+42 \star$ alpha^ $3+\left(7 \star a l p h a^{\wedge} 4+18 * a l p h a^{\wedge} 3+3 * a l p h a^{\wedge} 2-8 * a l p h a\right) * d^{\wedge} 2-168 * a l$ phan $2-\left(47 \star a l p h a^{\wedge} 4+84 * a l\right.$ pha^ $3-81 \star$
 $\star\left(\right.$ alpha^ $4+26 * a l p h a^{\wedge} 3+30 * a l p h a^{\wedge} 2-8 * a l$ pha -1$\left.) * d-48 * a l p h a\right) * t a u^{\wedge} 3-\left(\left(a l p h a^{\wedge} 3+3 * a l p h a^{\wedge} 2+3 * a l p h a+1\right) * d^{\wedge} 2+\right.$ $\left.60 * a l p h a^{\wedge} 2-\left(5 * a l p h a^{\wedge} 3+27 * a l p h a^{\wedge} 2+2 l * a l p h a-1\right) * d+30 * a l p h a-6\right) * t a \wedge^{\wedge} 2+3 *\left(\left(a l p h a^{\wedge} 2+2 * a l p h a+1\right) * d-4 * a l p\right.$ ha -2$) \star t a u) /\left(\left(a l p h a^{\wedge} 8 * d^{\wedge} 3-a l p h a^{\wedge} 8 * d^{\wedge} 2\right) * \operatorname{tau^{\wedge }} 10+8 *\left(a l p h a^{\wedge} 7 * d^{\wedge} 3-a l p h a^{\wedge} 7 * d^{\wedge} 2\right) * t a u^{\wedge} 9+4 *\left(3 * a l p h a^{\wedge} 7 * d+\left(a l p h a^{\wedge} 7\right.\right.\right.$ $\left.\left.+7 \star a l p h a^{\wedge} 6\right) * d^{\wedge} 3-\left(4 \star a l p h a^{\wedge} 7+7 \star a l p h a^{\wedge} 6\right) * d^{\wedge} 2\right) \star \tan ^{\wedge} 8+8 \star\left(9 \star a l p h a^{\wedge} 6 * d+\left(3 \star a l p h a^{\wedge} 6+7 \star a l p h a^{\wedge} 5\right) * d^{\wedge} 3-\left(12 \star a l p h a^{\wedge} 6\right.\right.$ $\left.\left.+7 \star a l p h a^{\wedge} 5\right) \star d^{\wedge} 2\right) \star \operatorname{tau}^{\wedge} 7-2 \star\left(18 * a l p h a^{\wedge} 6-\left(3 * a l p h a^{\wedge} 6+30 * a l p h a^{\wedge} 5+35 * a l p h a^{\wedge} 4\right) * d^{\wedge} 3+\left(17 \star a l p h a^{\wedge} 6+122 * a l p h a^{\wedge} 5+3\right.\right.$ $\left.\left.5 * a l p h a^{\wedge} 4\right) \star d^{\wedge} 2-4 *\left(8 * a l p h a^{\wedge} 6+23 \star a l p h a^{\wedge} 5\right) * d\right) \star \tan ^{\wedge} 6-4 *\left(36 \star a l p h a^{\wedge} 5-2 *\left(3 * a l p h a^{\wedge} 5+10 * a l p h a^{\wedge} 4+7 \star a l p h a^{\wedge} 3\right) * d^{\wedge} 3+\right.$

Is Everything Straightforward Now?

- Mathematically: "yes". Computationally: no, actually!
- Remember:

$$
\Phi(u)=q\left(\frac{1+\alpha u}{1-u-\alpha u^{2}}\right)^{d-1}
$$

$\rightarrow 3$ (symbolic) parameters q, α, d

- Constants in expansions get really, really messy!

In [160]: print v_expansion

 $\left.\left.\left.\left(3 * a l p h a^{\wedge} 2+10 * a l p h a+1\right) * d+8 * a l p h a\right) * t a u+2 * a l p h a+2\right)\right)$) * $Z^{\wedge}(-1 / 2)+\left(1 / 3 *\left(\left(a l p h a^{\wedge} 8 * d^{\wedge} 2-2\right.\right.\right.$ *alpha^ $\left.8 * d\right) * t a u^{\wedge} 11+$ $8 *\left(a l p h a^{\wedge} 7 \star d^{\wedge} 2-2 \star a l p h a^{\wedge} 7 \star d\right) * \operatorname{tau^{\wedge }} 10+2 *\left(12 \star a l p h a^{\wedge} 7+\left(a l p h a^{\wedge} 7+14 * a l p h a^{\wedge} 6\right) * d^{\wedge} 2-4 *\left(2 * a l p h a^{\wedge} 7+7 * a l p h a^{\wedge} 6\right) * d\right) * t a$
 pha^5 $+35 * a l$ pha^ 4$) * d^{\wedge} 2-2 *(54 * a l$ pha^ $\left.5+35 * a l p h a \wedge 4) * d\right) * t a u^{\wedge} 7+\left(414 * a l p h a^{\wedge} 4-\left(3 * a l p h a \wedge 5-25 * a l p h a^{\wedge} 4-56 * a l p h a^{\wedge}\right.\right.$ $\left.3) \star d^{\wedge} 2+\left(15 \star a l p h a^{\wedge} 5-275 * a l p h a^{\wedge} 4-112 \star a l p h a^{\wedge} 3\right) \star d\right) \star t a u^{\wedge} 6-\left(24 * a l p h a^{\wedge} 5+12 * a l p h a^{\wedge} 4-336 \star a l p h a^{\wedge} 3+2 *\left(a l p h a^{\wedge} 5+\right.\right.$ $\left.\left.6 * a^{2 l p h a \wedge} 4-5 * a l p h a^{\wedge} 3-14 * a l p h a^{\wedge} 2\right) * d^{\wedge} 2-\left(16 * a l p h a^{\wedge} 5+57 * a l p h a^{\wedge} 4-200 * a l p h a^{\wedge} 3-56 * a l p h a^{\wedge} 2\right) * d\right) * t a u^{\wedge} 5-(84 * a l$ pha ${ }^{\wedge} 4+42 \star$ alpha^ $3+\left(7 \star a l p h a^{\wedge} 4+18 * a l p h a^{\wedge} 3+3 * a l p h a^{\wedge} 2-8 * a l p h a\right) * d^{\wedge} 2-168 * a l$ phan $2-\left(47 \star a l p h a^{\wedge} 4+84 * a l\right.$ pha^ $3-81 \star$

 $\left.60 * a l p h a^{\wedge} 2-\left(5 * a l p h a^{\wedge} 3+27 \star a l p h a^{\wedge} 2+21 * a l p h a-1\right) * d+30 * a l p h a-6\right) * t a \wedge^{\wedge} 2+3 *((a l p h a \wedge 2+2 * a l p h a+1) * d-4 * a l p$ ha -2$) \star t a u) /\left(\left(a l p h a^{\wedge} 8 * d^{\wedge} 3-a l p h a^{\wedge} 8 * d^{\wedge} 2\right) * \operatorname{tau^{\wedge }} 10+8 *\left(a l p h a^{\wedge} 7 * d^{\wedge} 3-a l p h a^{\wedge} 7 * d^{\wedge} 2\right) * t a u^{\wedge} 9+4 *\left(3 * a l p h a^{\wedge} 7 * d+\left(a l p h a^{\wedge} 7\right.\right.\right.$ $\left.\left.+7 \star a l p h a^{\wedge} 6\right) * d^{\wedge} 3-\left(4 * a l p h a^{\wedge} 7+7 * a l p h a^{\wedge} 6\right) * d^{\wedge} 2\right) * t a u^{\wedge} 8+8 *\left(9 * a l p h a^{\wedge} 6 * d+\left(3 * a l p h a^{\wedge} 6+7 * a l p h a^{\wedge} 5\right) * d^{\wedge} 3-(12\right.$ *alpha^6 $\left.\left.+7 \star a l p h a^{\wedge} 5\right) \star d^{\wedge} 2\right) \star \operatorname{tau}^{\wedge} 7-2 \star\left(18 * a l p h a^{\wedge} 6-\left(3 \star a l p h a^{\wedge} 6+30 \star\right.\right.$ alpha^ $5+35 *$ alpha^ 4$) \star d^{\wedge} 3+\left(17 \star a l p h a^{\wedge} 6+122 * a l p h a^{\wedge} 5+3\right.$ $\left.\left.5 * a l p h a^{\wedge} 4\right) \star d^{\wedge} 2-4 \star\left(8 * a l p h a^{\wedge} 6+23 \star a l p h a^{\wedge} 5\right) \star d\right) \star \tan ^{\wedge} 6-4 \star\left(36 \star a l p h a^{\wedge} 5-2 *\left(3 * a l p h a^{\wedge} 5+10 * a l p h a^{\wedge} 4+7 \star a l p h a^{\wedge} 3\right) \star \mathrm{d}^{\wedge} 3+\right.$

- String length of expansion of v up to $O\left((1-z / \rho)^{2}\right): 23225$

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)
Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Expansion string size: 8924.

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Expansion string size: 8924.

- $\tau>0$ satisfies $\alpha^{2} d \tau^{3}+2 \alpha d \tau^{2}+\alpha d \tau-2 \alpha \tau+d \tau-1=0$,

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Expansion string size: 8924.

- $\tau>0$ satisfies $\alpha^{2} d \tau^{3}+2 \alpha d \tau^{2}+\alpha d \tau-2 \alpha \tau+d \tau-1=0$, and for $d \rightarrow \infty: \tau=\frac{1}{1+\alpha} d^{-1}+\frac{2 \alpha^{2}}{(1+\alpha)^{3}} d^{-2}+O\left(d^{-3}\right)$

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Expansion string size: 8924.

- $\tau>0$ satisfies $\alpha^{2} d \tau^{3}+2 \alpha d \tau^{2}+\alpha d \tau-2 \alpha \tau+d \tau-1=0$, and for $d \rightarrow \infty: \tau=\frac{1}{1+\alpha} d^{-1}+\frac{2 \alpha^{2}}{(1+\alpha)^{3}} d^{-2}+O\left(d^{-3}\right)$
$\triangleright \rho=\tau / \Phi(\tau)$, for $d \rightarrow \infty: \rho=\frac{1}{(p+q) e} d^{-1}+O\left(d^{-2}\right)$

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

Expansion string size: 8924.

- $\tau>0$ satisfies $\alpha^{2} d \tau^{3}+2 \alpha d \tau^{2}+\alpha d \tau-2 \alpha \tau+d \tau-1=0$, and for $d \rightarrow \infty: \tau=\frac{1}{1+\alpha} d^{-1}+\frac{2 \alpha^{2}}{(1+\alpha)^{3}} d^{-2}+O\left(d^{-3}\right)$
$\triangleright \rho=\tau / \Phi(\tau)$, for $d \rightarrow \infty: \rho=\frac{1}{(p+q) e} d^{-1}+O\left(d^{-2}\right)$
Proof. Expansion for τ via bootstrapping, for ρ as a consequence.
Rest: Singularity Analysis.

Result: Asymptotic Growth

Theorem: Asymptotic Growth (H.-Prodinger '19+)

Number of "Bad \rightarrow Not Bad"-trees of size n grows like

$$
C_{1} \cdot \rho^{-n} n^{-3 / 2}+C_{2} \cdot \rho^{-n} n^{-5 / 2}+O\left(\rho^{-n} n^{-7 / 2}\right)
$$

The Constant C_{1}

$$
\begin{aligned}
& \frac{\sqrt{2}\left(\alpha^{2} \tau^{2}+2 \alpha \tau+\alpha+1\right)(1+\alpha \tau)}{2 \sqrt{\pi}\left(1-\tau-\alpha \tau^{2}\right)} \\
& \times \sqrt{\left(\alpha^{2} d \sigma^{2}+4 \alpha^{3} d \tau^{4}+2 \alpha^{3} d \tau^{3}-6 \alpha^{3} \tau^{3}+6 \alpha^{2} d \tau^{3}+4 \alpha^{2} d \tau^{2}+\alpha^{-2} d \tau-12 \alpha^{2} \tau^{2}+4 \alpha d \tau^{2}-2 \alpha^{2} \tau+2 \alpha d \tau-8 \alpha \tau+d \tau-2 \alpha-2\right)(d-1)} \\
&
\end{aligned} \rho=\tau / \Phi(\tau), \text { for } d \rightarrow \infty: \rho=\frac{-}{(p+q) e} d^{-1}+O\left(d^{-<}\right),
$$

Proof. Expansion for τ via bootstrapping, for ρ as a consequence.
Rest: Singularity Analysis.

Result: Asymptotic Growth

Thenrem• Asvmntntir Growth (H -Prodinoer '19+) The Constant C_{2}

Abstract

$\sqrt{2}\left(2 \alpha^{14} d^{4} \tau^{16}+19 \alpha^{14} d^{3} \tau^{16}+28 \alpha^{13} d^{4} \tau^{15}+26 \alpha^{14} d^{2} \tau^{16}+14 \alpha^{13} d^{4} \tau^{14}+266 \alpha^{13} d^{3} \tau^{15}+115 \alpha^{13} d^{3} \tau^{14}+182 \alpha^{12} d^{4} \tau^{14}+364 \alpha^{13} d^{2} \tau^{15}+168\right.$ $\alpha^{12} d^{4} \tau^{13}+8 \alpha^{13} d^{2} \tau^{14}+1729 \alpha^{12} d^{3} \tau^{14}+42 \alpha^{12} d^{4} \tau^{12}+1362 \alpha^{12} d^{3} \tau^{13}+728 \alpha^{11} d^{4} \tau^{13}-12 \alpha^{13} d \tau^{14}+2366 \alpha^{12} d^{2} \tau^{14}+279 \alpha^{12} d^{3} \tau^{12}+924$ $\alpha^{11} d^{4} \tau^{12}-60 \alpha^{12} d^{2} \tau^{13}+6916 \alpha^{11} d^{3} \tau^{13}+420 \alpha^{11} d^{4} \tau^{11}-762 \alpha^{12} d^{2} \tau^{12}+7380 \alpha^{11} d^{3} \tau^{12}+2002 \alpha^{10} d^{4} \tau^{12}-552 \alpha^{12} d \tau^{13}+9464 \alpha^{11} d^{2} \tau^{13}+7$ $\alpha^{11} d^{4} \tau^{10}+2688 \alpha^{11} d^{3} \tau^{11}+3080 \alpha^{10} d^{4} \tau^{11}-1296 \alpha^{12} d \tau^{12}-1218 \alpha^{11} d^{2} \tau^{12}+19019 \alpha^{10} d^{3} \tau^{12}+335 \alpha^{11} d^{3} \tau^{10}+1890 \alpha^{10} d^{4} \tau^{10}-7878$ $\alpha^{11} d^{2} \tau^{11}+24178 \alpha^{10} d^{3} \tau^{11}+4004 \alpha^{9} d^{4} \tau^{11}-144 \alpha^{12} \tau^{12}-5028 \alpha^{11} d \tau^{12}+26026 \alpha^{10} d^{2} \tau^{12}+560 \alpha^{10} d^{4} \tau^{9}-2108 \alpha^{11} d^{2} \tau^{10}+11565 \alpha^{10} d^{3} \tau^{10}$ $+6930 \alpha^{9} d^{4} \tau^{10}-11460 \alpha^{11} d \tau^{11}-7210 \alpha^{10} d^{2} \tau^{11}+38038 \alpha^{9} d^{3} \tau^{11}+70 \alpha^{10} d^{4} \tau^{8}+2440 \alpha^{10} d^{3} \tau^{9}+5040 \alpha^{9} d^{4} \tau^{9}+1020 \alpha^{11} d \tau^{10}-36927$ $\alpha^{10} d^{2} \tau^{10}+53295 \alpha^{9} d^{3} \tau^{10}+6006 \alpha^{8} d^{4} \tau^{10}-432 \alpha^{11} \tau^{11}-22692 \alpha^{10} d \tau^{11}+52052 \alpha^{9} d^{2} \tau^{11}+185 \alpha^{10} d^{3} \tau^{8}+1960 \alpha^{9} d^{4} \tau^{8}-16774 \alpha^{10} d^{2} \tau^{9}$ $+29160 \alpha^{9} d^{3} \tau^{9}+11088 \alpha^{8} d^{4} \tau^{9}+3744 \alpha^{11} \tau^{10}-45396 \alpha^{10} d \tau^{10}-24030 \alpha^{9} d^{2} \tau^{10}+57057 \alpha^{8} d^{3} \tau^{10}+420 \alpha^{9} d^{4} \tau^{7}-2042 \alpha^{10} d^{2} \tau^{8}+7520$ $\alpha^{9} d^{3} \tau^{8}+8820 \alpha^{8} d^{4} \tau^{8}+9156 \alpha^{10} d \tau^{9}-103662 \alpha^{9} d^{2} \tau^{9}+83160 \alpha^{8} d^{3} \tau^{9}+6864 \alpha^{7} d^{4} \tau^{9}+2160 \alpha^{10} \tau^{10}-63168 \alpha^{9} d \tau^{10}+78078 \alpha^{8} d^{2} \tau^{10}+42$ $\alpha^{9} d^{4} \tau^{6}+810 \alpha^{9} d^{3} \tau^{7}+3920 \alpha^{8} d^{4} \tau^{7}+2928 \alpha^{10} d \tau^{8}-59171 \alpha^{9} d^{2} \tau^{8}+47430 \alpha^{8} d^{3} \tau^{8}+12936 \alpha^{7} d^{4} \tau^{8}+26928 \alpha^{10} \tau^{9}-105840 \alpha^{9} d \tau^{9}-52794$ $\alpha^{8} d^{2} \tau^{9}+65208 \alpha^{7} d^{3} \tau^{9}+9 \alpha^{9} d^{3} \tau^{6}+1050 \alpha^{8} d^{4} \tau^{6}-11952 \alpha^{9} d^{2} \tau^{7}+12460 \alpha^{8} d^{3} \tau^{7}+10584 \alpha^{7} d^{4} \tau^{7}+36672 \alpha^{9} d \tau^{8}-193803 \alpha^{8} d^{2} \tau^{8}+93984$ $\alpha^{7} d^{3} \tau^{8}+6006 \alpha^{6} d^{4} \tau^{8}+15840 \alpha^{9} \tau^{9}-119196 \alpha^{8} d \tau^{9}+89232 \alpha^{7} d^{2} \tau^{9}+168 \alpha^{8} d^{4} \tau^{5}-672 \alpha^{9} d^{2} \tau^{6}+1035 \alpha^{8} d^{3} \tau^{6}+4900 \alpha^{7} d^{4} \tau^{6}+17808 \alpha^{9} d \tau$ $-121492 \alpha^{8} d^{2} \tau^{7}+51408 \alpha^{7} d^{3} \tau^{7}+11088 \alpha^{6} d^{4} \tau^{7}+86112 \alpha^{9} \tau^{8}-160044 \alpha^{8} d \tau^{8}-81780 \alpha^{7} d^{2} \tau^{8}+57057 \alpha^{6} d^{3} \tau^{8}+14 a^{8} d^{4} \tau^{4}-174 \alpha^{8} d^{3} \tau^{5}$ $+1400 a^{7} d^{4} \tau^{5}+540 a^{9} d \tau^{6}-29808 a^{8} d^{2} \tau^{6}+11270 \alpha^{7} d^{3} \tau^{6}+8820 \alpha^{6} d^{4} \tau^{6}+1008 \alpha^{9} \tau^{7}+86688 \alpha^{8} d \tau^{7}-253596 \alpha^{7} d^{2} \tau^{7}+77220 \alpha^{6} d^{3} \tau^{7}$ $+4004 \alpha^{5} d^{4} \tau^{7}+44640 \alpha^{8} \tau^{8}-159912 \alpha^{7} d \tau^{8}+78078 \alpha^{6} d^{2} \tau^{8}-35 \alpha^{8} d^{3} \tau^{4}+252 \alpha^{7} d^{4} \tau^{4}-2568 \alpha^{8} d^{2} \tau^{5}-500 \alpha^{7} d^{3} \tau^{5}+3920 \alpha^{6} d^{4} \tau^{5}+864$ $\alpha^{9} \tau^{6}+48192 \alpha^{8} d \tau^{6}-159992 \alpha^{7} d^{2} \tau^{6}+36666 \alpha^{6} d^{3} \tau^{6}+6930 \alpha^{5} d^{4} \tau^{6}+161712 \alpha^{8} \tau^{7}-162120 \alpha^{7} d \tau^{7}-92196 \alpha^{6} d^{2} \tau^{7}+38038 \alpha^{5} d^{3} \tau^{7}+28$ $\alpha^{7} d^{4} \tau^{3}+26 \alpha^{8} d^{2} \tau^{4}-756 \alpha^{7} d^{3} \tau^{4}+1050 \alpha^{6} d^{4} \tau^{4}+3336 \alpha^{8} d \tau^{5}-40900 \alpha^{7} d^{2} \tau^{5}+4060 \alpha^{6} d^{3} \tau^{5}+5040 \alpha^{5} d^{4} \tau^{5}+6192 \alpha^{8} \tau^{6}+134508 \alpha^{7} d \tau^{6}$ $-237174 \alpha^{6} d^{2} \tau^{6}+45441 \alpha^{5} d^{3} \tau^{6}+2002 \alpha^{4} d^{4} \tau^{6}+74592 \alpha^{7} \tau^{7}-156168 \alpha^{6} d \tau^{7}+52052 \alpha^{5} d^{2} \tau^{7}+2 \alpha^{7} d^{4} \tau^{2}-148 \alpha^{7} d^{3} \tau^{3}+168 \alpha^{6} d^{4} \tau^{3}-96$ $\alpha^{8} d \tau^{4}-3744 \alpha^{7} d^{2} \tau^{4}-2625 \alpha^{6} d^{3} \tau^{4}+1960 \alpha^{5} d^{4} \tau^{4}+4176 \alpha^{8} \tau^{5}+76200 \alpha^{7} d \tau^{5}-139888 \alpha^{6} d^{2} \tau^{5}+15840 \alpha^{5} d^{3} \tau^{5}+3080 \alpha^{4} d^{4} \tau^{5}+198576$ $\alpha^{7} \tau^{6}-108024 \alpha^{6} d \tau^{6}-76500 \alpha^{5} d^{2} \tau^{6}+19019 \alpha^{4} d^{3} \tau^{6}-11 \alpha^{7} d^{3} \tau^{2}+14 \alpha^{6} d^{4} \tau^{2}+106 \alpha^{7} d^{2} \tau^{3}-1134 \alpha^{6} d^{3} \tau^{3}+420 \alpha^{5} d^{4} \tau^{3}+144 \alpha^{8} \tau^{4}+802 \varepsilon$ $\alpha^{7} d \tau^{4}-32880 \alpha^{6} d^{2} \tau^{4}-1960 \alpha^{5} d^{3} \tau^{4}+1890 \alpha^{4} d^{4} \tau^{4}+15984 \alpha^{7} \tau^{5}+143760 \alpha^{6} d \tau^{5}-158556 \alpha^{5} d^{2} \tau^{5}+18370 \alpha^{4} d^{3} \tau^{5}+728 \alpha^{3} d^{4} \tau^{5}+82692$ $\alpha^{6} \tau^{6}-111852 \alpha^{5} d \tau^{6}+26026 \alpha^{4} d^{2} \tau^{6}+20 \alpha^{7} d^{2} \tau^{2}-185 \alpha^{6} d^{3} \tau^{2}+42 \alpha^{5} d^{4} \tau^{2}-204 \alpha^{7} d \tau^{3}-2274 \alpha^{6} d^{2} \tau^{3}-2790 \alpha^{5} d^{3} \tau^{3}+560 \alpha^{4} d^{4} \tau^{3}+835 \tau^{2}$

Result: Asymptotic Growth

Thenrem• Asvmntntir Growth (H -Prodinoer '10+) (A part of) The Constant C_{2}

$\sqrt{2}\left(2 \alpha^{14} d^{4} \tau^{16}+19 \alpha^{14} d^{3} \tau^{16}+28 \alpha^{13} d^{4} \tau^{15}+26 \alpha^{14} d^{2} \tau^{16}+14 \alpha^{13} d^{4} \tau^{14}+266 \alpha^{13} d^{3} \tau^{15}+115 \alpha^{13} d^{3} \tau^{14}+182 \alpha^{12} d^{4} \tau^{14}+364 \alpha^{13} d^{2} \tau^{15}+168\right.$ $\alpha^{12} d^{4} \tau^{13}+8 \alpha^{13} d^{2} \tau^{14}+1729 \alpha^{12} d^{3} \tau^{14}+42 \alpha^{12} d^{4} \tau^{12}+1362 \alpha^{12} d^{3} \tau^{13}+728 \alpha^{11} d^{4} \tau^{13}-12 \alpha^{13} d \tau^{14}+2366 \alpha^{12} d^{2} \tau^{14}+279 a^{12} d^{3} \tau^{12}+924$ $\alpha^{11} d^{4} \tau^{12}-60 \alpha^{12} d^{2} \tau^{13}+6916 \alpha^{11} d^{3} \tau^{13}+420 \alpha^{11} d^{4} \tau^{11}-762 \alpha^{12} d^{2} \tau^{12}+7380 \alpha^{11} d^{3} \tau^{12}+2002 \alpha^{10} d^{4} \tau^{12}-552 \alpha^{12} d \tau^{13}+9464 \alpha^{11} d^{2} \tau^{13}+7$ $\alpha^{11} d^{4} \tau^{10}+2688 \alpha^{11} d^{3} \tau^{11}+3080 \alpha^{10} d^{4} \tau^{11}-1296 \alpha^{12} d \tau^{12}-1218 \alpha^{11} d^{2} \tau^{12}+19019 \alpha^{10} d^{3} \tau^{12}+335 \alpha^{11} d^{3} \tau^{10}+1890 \alpha^{10} d^{4} \tau^{10}-7878$ $\alpha^{11} d^{2} \tau^{11}+24178 \alpha^{10} d^{3} \tau^{11}+4004 \alpha^{9} d^{4} \tau^{11}-144 \alpha^{12} \tau^{12}-5028 \alpha^{11} d \tau^{12}+26026 \alpha^{10} d^{2} \tau^{12}+560 \alpha^{10} d^{4} \tau^{9}-2108 \alpha^{11} d^{2} \tau^{10}+11565 \alpha^{10} d^{3} \tau^{10}$ $+6930 \alpha^{9} d^{4} \tau^{10}-11460 a^{11} d \tau^{11}-7210 \alpha^{10} d^{2} \tau^{11}+38038 \alpha^{9} d^{3} \tau^{11}+70 a^{10} d^{4} \tau^{8}+2440 \alpha^{10} d^{3} \tau^{9}+5040 \alpha^{9} d^{4} \tau^{9}+1020 \alpha^{11} d \tau^{10}-36927$ $\alpha^{10} d^{2} \tau^{10}+53295 \alpha^{9} d^{3} \tau^{10}+6006 \alpha^{8} d^{4} \tau^{10}-432 \alpha^{11} \tau^{11}-22692 \alpha^{10} d \tau^{11}+52052 \alpha^{9} d^{2} \tau^{11}+185 \alpha^{10} d^{3} \tau^{8}+1960 \alpha^{9} d^{4} \tau^{8}-16774 \alpha^{10} d^{2} \tau^{9}$ $+29160 \alpha^{9} d^{3} \tau^{9}+11088 \alpha^{8} d^{4} \tau^{9}+3744 \alpha^{11} \tau^{10}-45396 \alpha^{10} d \tau^{10}-24030 \alpha^{9} d^{2} \tau^{10}+57057 \alpha^{8} d^{3} \tau^{10}+420 \alpha^{9} d^{4} \tau^{7}-2042 \alpha^{10} d^{2} \tau^{8}+7520$ $\alpha^{9} d^{3} \tau^{8}+8820 \alpha^{8} d^{4} \tau^{8}+9156 \alpha^{10} d \tau^{9}-103662 \alpha^{9} d^{2} \tau^{9}+83160 \alpha^{8} d^{3} \tau^{9}+6864 \alpha^{7} d^{4} \tau^{9}+2160 \alpha^{10} \tau^{10}-63168 \alpha^{9} d \tau^{10}+78078 \alpha^{8} d^{2} \tau^{10}+42$ $\alpha^{9} d^{4} \tau^{6}+810 \alpha^{9} d^{3} \tau^{7}+3920 \alpha^{8} d^{4} \tau^{7}+2928 \alpha^{10} d \tau^{8}-59171 \alpha^{9} d^{2} \tau^{8}+47430 \alpha^{8} d^{3} \tau^{8}+12936 \alpha^{7} d^{4} \tau^{8}+26928 \alpha^{10} \tau^{9}-105840 \alpha^{9} d \tau^{9}-52794$ $\alpha^{8} d^{2} \tau^{9}+65208 \alpha^{7} d^{3} \tau^{9}+9 \alpha^{9} d^{3} \tau^{6}+1050 \alpha^{8} d^{4} \tau^{6}-11952 \alpha^{9} d^{2} \tau^{7}+12460 \alpha^{8} d^{3} \tau^{7}+10584 \alpha^{7} d^{4} \tau^{7}+36672 \alpha^{9} d \tau^{8}-193803 \alpha^{8} d^{2} \tau^{8}+93984$ $\alpha^{7} d^{3} \tau^{8}+6006 \alpha^{5} d^{4} \tau^{8}+15840 \alpha^{9} \tau^{9}-119196 \alpha^{8} d \tau^{9}+89232 \alpha^{7} d^{2} \tau^{9}+168 \alpha^{8} d^{4} \tau^{5}-672 \alpha^{9} d^{2} \tau^{6}+1035 \alpha^{8} d^{3} \tau^{6}+4900 \alpha^{7} d^{4} \tau^{6}+17808 \alpha^{9} d \tau$ $-121492 \alpha^{8} d^{2} \tau^{7}+51408 \alpha^{7} d^{3} \tau^{7}+11088 \alpha^{6} d^{4} \tau^{7}+86112 \alpha^{9} \tau^{8}-160044 \alpha^{8} d \tau^{8}-81780 \alpha^{7} d^{2} \tau^{8}+57057 \alpha^{6} d^{3} \tau^{8}+14 a^{8} d^{4} \tau^{4}-174 \alpha^{8} d^{3} \tau^{5}$ $+1400 \alpha^{7} d^{4} \tau^{5}+540 a^{9} d \tau^{6}-29808 \alpha^{8} d^{2} \tau^{6}+11270 \alpha^{7} d^{3} \tau^{6}+8820 \alpha^{6} d^{4} \tau^{6}+1008 \alpha^{9} \tau^{7}+86688 \alpha^{8} d \tau^{7}-253596 \alpha^{7} d^{2} \tau^{7}+77220 \alpha^{6} d^{3} \tau^{7}$ $+4004 \alpha^{5} d^{4} \tau^{7}+44640 \alpha^{8} \tau^{8}-159912 \alpha^{7} d \tau^{8}+78078 \alpha^{6} d^{2} \tau^{8}-35 \alpha^{8} d^{3} \tau^{4}+252 \alpha^{7} d^{4} \tau^{4}-2568 \alpha^{8} d^{2} \tau^{5}-500 \alpha^{7} d^{3} \tau^{5}+3920 \alpha^{6} d^{4} \tau^{5}+864$ $\alpha^{9} \tau^{6}+48192 \alpha^{8} d \tau^{6}-159992 \alpha^{7} d^{2} \tau^{6}+36666 \alpha^{6} d^{3} \tau^{6}+6930 \alpha^{5} d^{4} \tau^{6}+161712 \alpha^{8} \tau^{7}-162120 \alpha^{7} d \tau^{7}-92196 \alpha^{6} d^{2} \tau^{7}+38038 \alpha^{5} d^{3} \tau^{7}+28$ $\alpha^{7} d^{4} \tau^{3}+26 \alpha^{8} d^{2} \tau^{4}-756 \alpha^{7} d^{3} \tau^{4}+1050 \alpha^{6} d^{4} \tau^{4}+3336 \alpha^{8} d \tau^{5}-40900 \alpha^{7} d^{2} \tau^{5}+4060 \alpha^{6} d^{3} \tau^{5}+5040 \alpha^{5} d^{4} \tau^{5}+6192 \alpha^{8} \tau^{6}+134508 \alpha^{7} d \tau^{6}$ $-237174 \alpha^{6} d^{2} \tau^{6}+45441 \alpha^{5} d^{3} \tau^{6}+2002 \alpha^{4} d^{4} \tau^{6}+74592 \alpha^{7} \tau^{7}-156168 \alpha^{6} d \tau^{7}+52052 \alpha^{5} d^{2} \tau^{7}+2 \alpha^{7} d^{4} \tau^{2}-148 \alpha^{7} d^{3} \tau^{3}+168 \alpha^{6} d^{4} \tau^{3}-96$ $\alpha^{8} d \tau^{4}-3744 \alpha^{7} d^{2} \tau^{4}-2625 \alpha^{6} d^{3} \tau^{4}+1960 \alpha^{5} d^{4} \tau^{4}+4176 \alpha^{8} \tau^{5}+76200 \alpha^{7} d \tau^{5}-139888 \alpha^{6} d^{2} \tau^{5}+15840 \alpha^{5} d^{3} \tau^{5}+3080 \alpha^{4} d^{4} \tau^{5}+198576$ $\alpha^{7} \tau^{6}-108024 \alpha^{6} d \tau^{6}-76500 \alpha^{5} d^{2} \tau^{6}+19019 \alpha^{4} d^{3} \tau^{6}-11 \alpha^{7} d^{3} \tau^{2}+14 \alpha^{6} d^{4} \tau^{2}+106 \alpha^{7} d^{2} \tau^{3}-1134 \alpha^{6} d^{3} \tau^{3}+420 \alpha^{5} d^{4} \tau^{3}+144 \alpha^{8} \tau^{4}+802 \varepsilon$ $\alpha^{7} d \tau^{4}-32880 \alpha^{6} d^{2} \tau^{4}-1960 \alpha^{5} d^{3} \tau^{4}+1890 \alpha^{4} d^{4} \tau^{4}+15984 a^{7} \tau^{5}+143760 \alpha^{6} d \tau^{5}-158556 \alpha^{5} d^{2} \tau^{5}+18370 \alpha^{4} d^{3} \tau^{5}+728 \alpha^{3} d^{4} \tau^{5}+82692$ $\alpha^{6} \tau^{6}-111852 \alpha^{5} d \tau^{6}+26026 \alpha^{4} d^{2} \tau^{6}+20 \alpha^{7} d^{2} \tau^{2}-185 \alpha^{6} d^{3} \tau^{2}+42 \alpha^{5} d^{4} \tau^{2}-204 \alpha^{7} d \tau^{3}-2274 \alpha^{6} d^{2} \tau^{3}-2790 \alpha^{5} d^{3} \tau^{3}+560 \alpha^{4} d^{4} \tau^{3}+835 \tau^{2}$

Result: Asymptotic Growth

Thenrem• Asvmntntir Growth (H -Prodinoer '10+) (A part of (the numerator of)) The Constant C_{2}

$\sqrt{2}\left(2 \alpha^{14} d^{4} \tau^{16}+19 \alpha^{14} d^{3} \tau^{16}+28 \alpha^{13} d^{4} \tau^{15}+26 \alpha^{14} d^{2} \tau^{16}+14 \alpha^{13} d^{4} \tau^{14}+266 \alpha^{13} d^{3} \tau^{15}+115 \alpha^{13} d^{3} \tau^{14}+182 \alpha^{12} d^{4} \tau^{14}+364 \alpha^{13} d^{2} \tau^{15}+168\right.$ $\alpha^{12} d^{4} \tau^{13}+8 \alpha^{13} d^{2} \tau^{14}+1729 \alpha^{12} d^{3} \tau^{14}+42 \alpha^{12} d^{4} \tau^{12}+1362 \alpha^{12} d^{3} \tau^{13}+728 \alpha^{11} d^{4} \tau^{13}-12 \alpha^{13} d \tau^{14}+2366 \alpha^{12} d^{2} \tau^{14}+279 a^{12} d^{3} \tau^{12}+924$ $\alpha^{11} d^{4} \tau^{12}-60 \alpha^{12} d^{2} \tau^{13}+6916 \alpha^{11} d^{3} \tau^{13}+420 \alpha^{11} d^{4} \tau^{11}-762 \alpha^{12} d^{2} \tau^{12}+7380 \alpha^{11} d^{3} \tau^{12}+2002 \alpha^{10} d^{4} \tau^{12}-552 \alpha^{12} d \tau^{13}+9464 \alpha^{11} d^{2} \tau^{13}+7$ $\alpha^{11} d^{4} \tau^{10}+2688 \alpha^{11} d^{3} \tau^{11}+3080 \alpha^{10} d^{4} \tau^{11}-1296 \alpha^{12} d \tau^{12}-1218 \alpha^{11} d^{2} \tau^{12}+19019 \alpha^{10} d^{3} \tau^{12}+335 \alpha^{11} d^{3} \tau^{10}+1890 \alpha^{10} d^{4} \tau^{10}-7878$ $\alpha^{11} d^{2} \tau^{11}+24178 \alpha^{10} d^{3} \tau^{11}+4004 \alpha^{9} d^{4} \tau^{11}-144 \alpha^{12} \tau^{12}-5028 \alpha^{11} d \tau^{12}+26026 \alpha^{10} d^{2} \tau^{12}+560 \alpha^{10} d^{4} \tau^{9}-2108 \alpha^{11} d^{2} \tau^{10}+11565 \alpha^{10} d^{3} \tau^{10}$ $+6930 \alpha^{9} d^{4} \tau^{10}-11460 \alpha^{11} d \tau^{11}-7210 \alpha^{10} d^{2} \tau^{11}+38038 \alpha^{9} d^{3} \tau^{11}+70 \alpha^{10} d^{4} \tau^{8}+2440 \alpha^{10} d^{3} \tau^{9}+5040 \alpha^{9} d^{4} \tau^{9}+1020 \alpha^{11} d \tau^{10}-36927$ $\alpha^{10} d^{2} \tau^{10}+53295 \alpha^{9} d^{3} \tau^{10}+6006 \alpha^{8} d^{4} \tau^{10}-432 \alpha^{11} \tau^{11}-22692 \alpha^{10} d \tau^{11}+52052 \alpha^{9} d^{2} \tau^{11}+185 \alpha^{10} d^{3} \tau^{8}+1960 \alpha^{9} d^{4} \tau^{8}-16774 \alpha^{10} d^{2} \tau^{9}$ $+29160 \alpha^{9} d^{3} \tau^{9}+11088 \alpha^{8} d^{4} \tau^{9}+3744 \alpha^{11} \tau^{10}-45396 \alpha^{10} d \tau^{10}-24030 \alpha^{9} d^{2} \tau^{10}+57057 \alpha^{8} d^{3} \tau^{10}+420 \alpha^{9} d^{4} \tau^{7}-2042 \alpha^{10} d^{2} \tau^{8}+7520$ $\alpha^{9} d^{3} \tau^{8}+8820 \alpha^{8} d^{4} \tau^{8}+9156 \alpha^{10} d \tau^{9}-103662 \alpha^{9} d^{2} \tau^{9}+83160 \alpha^{8} d^{3} \tau^{9}+6864 \alpha^{7} d^{4} \tau^{9}+2160 \alpha^{10} \tau^{10}-63168 \alpha^{9} d \tau^{10}+78078 \alpha^{8} d^{2} \tau^{10}+42$ $\alpha^{9} d^{4} \tau^{6}+810 \alpha^{9} d^{3} \tau^{7}+3920 \alpha^{8} d^{4} \tau^{7}+2928 \alpha^{10} d \tau^{8}-59171 \alpha^{9} d^{2} \tau^{8}+47430 \alpha^{8} d^{3} \tau^{8}+12936 \alpha^{7} d^{4} \tau^{8}+26928 \alpha^{10} \tau^{9}-105840 \alpha^{9} d \tau^{9}-52794$ $\alpha^{8} d^{2} \tau^{9}+65208 \alpha^{7} d^{3} \tau^{9}+9 \alpha^{9} d^{3} \tau^{6}+1050 \alpha^{8} d^{4} \tau^{6}-11952 \alpha^{9} d^{2} \tau^{7}+12460 \alpha^{8} d^{3} \tau^{7}+10584 \alpha^{7} d^{4} \tau^{7}+36672 \alpha^{9} d \tau^{8}-193803 \alpha^{8} d^{2} \tau^{8}+93984$ $\alpha^{7} d^{3} \tau^{8}+6006 \alpha^{5} d^{4} \tau^{8}+15840 \alpha^{9} \tau^{9}-119196 \alpha^{8} d \tau^{9}+89232 \alpha^{7} d^{2} \tau^{9}+168 \alpha^{8} d^{4} \tau^{5}-672 \alpha^{9} d^{2} \tau^{6}+1035 \alpha^{8} d^{3} \tau^{6}+4900 \alpha^{7} d^{4} \tau^{6}+17808 \alpha^{9} d \tau$ $-121492 \alpha^{8} d^{2} \tau^{7}+51408 \alpha^{7} d^{3} \tau^{7}+11088 \alpha^{6} d^{4} \tau^{7}+86112 \alpha^{9} \tau^{8}-160044 \alpha^{8} d \tau^{8}-81780 \alpha^{7} d^{2} \tau^{8}+57057 \alpha^{6} d^{3} \tau^{8}+14 a^{8} d^{4} \tau^{4}-174 \alpha^{8} d^{3} \tau^{5}$ $+1400 \alpha^{7} d^{4} \tau^{5}+540 a^{9} d \tau^{6}-29808 \alpha^{8} d^{2} \tau^{6}+11270 \alpha^{7} d^{3} \tau^{6}+8820 \alpha^{6} d^{4} \tau^{6}+1008 \alpha^{9} \tau^{7}+86688 \alpha^{8} d \tau^{7}-253596 \alpha^{7} d^{2} \tau^{7}+77220 \alpha^{6} d^{3} \tau^{7}$ $+4004 \alpha^{5} d^{4} \tau^{7}+44640 \alpha^{8} \tau^{8}-159912 \alpha^{7} d \tau^{8}+78078 \alpha^{6} d^{2} \tau^{8}-35 \alpha^{8} d^{3} \tau^{4}+252 \alpha^{7} d^{4} \tau^{4}-2568 \alpha^{8} d^{2} \tau^{5}-500 \alpha^{7} d^{3} \tau^{5}+3920 \alpha^{6} d^{4} \tau^{5}+864$ $\alpha^{9} \tau^{6}+48192 \alpha^{8} d \tau^{6}-159992 \alpha^{7} d^{2} \tau^{6}+36666 \alpha^{6} d^{3} \tau^{6}+6930 \alpha^{5} d^{4} \tau^{6}+161712 \alpha^{8} \tau^{7}-162120 \alpha^{7} d \tau^{7}-92196 \alpha^{6} d^{2} \tau^{7}+38038 \alpha^{5} d^{3} \tau^{7}+28$ $\alpha^{7} d^{4} \tau^{3}+26 \alpha^{8} d^{2} \tau^{4}-756 \alpha^{7} d^{3} \tau^{4}+1050 \alpha^{6} d^{4} \tau^{4}+3336 \alpha^{8} d \tau^{5}-40900 \alpha^{7} d^{2} \tau^{5}+4060 \alpha^{6} d^{3} \tau^{5}+5040 \alpha^{5} d^{4} \tau^{5}+6192 \alpha^{8} \tau^{6}+134508 \alpha^{7} d \tau^{6}$ $-237174 \alpha^{6} d^{2} \tau^{6}+45441 \alpha^{5} d^{3} \tau^{6}+2002 \alpha^{4} d^{4} \tau^{6}+74592 \alpha^{7} \tau^{7}-156168 \alpha^{6} d \tau^{7}+52052 \alpha^{5} d^{2} \tau^{7}+2 \alpha^{7} d^{4} \tau^{2}-148 \alpha^{7} d^{3} \tau^{3}+168 \alpha^{6} d^{4} \tau^{3}-96$ $\alpha^{8} d \tau^{4}-3744 \alpha^{7} d^{2} \tau^{4}-2625 \alpha^{6} d^{3} \tau^{4}+1960 \alpha^{5} d^{4} \tau^{4}+4176 \alpha^{8} \tau^{5}+76200 \alpha^{7} d \tau^{5}-139888 \alpha^{6} d^{2} \tau^{5}+15840 \alpha^{5} d^{3} \tau^{5}+3080 \alpha^{4} d^{4} \tau^{5}+198576$ $\alpha^{7} \tau^{6}-108024 \alpha^{6} d \tau^{6}-76500 \alpha^{5} d^{2} \tau^{6}+19019 \alpha^{4} d^{3} \tau^{6}-11 \alpha^{7} d^{3} \tau^{2}+14 \alpha^{6} d^{4} \tau^{2}+106 \alpha^{7} d^{2} \tau^{3}-1134 \alpha^{6} d^{3} \tau^{3}+420 \alpha^{5} d^{4} \tau^{3}+144 \alpha^{8} \tau^{4}+802 \varepsilon$ $\alpha^{7} d \tau^{4}-32880 \alpha^{6} d^{2} \tau^{4}-1960 \alpha^{5} d^{3} \tau^{4}+1890 \alpha^{4} d^{4} \tau^{4}+15984 \alpha^{7} \tau^{5}+143760 \alpha^{6} d \tau^{5}-158556 \alpha^{5} d^{2} \tau^{5}+18370 \alpha^{4} d^{3} \tau^{5}+728 \alpha^{3} d^{4} \tau^{5}+82692$ $\alpha^{6} \tau^{6}-111852 \alpha^{5} d \tau^{6}+26026 \alpha^{4} d^{2} \tau^{6}+20 \alpha^{7} d^{2} \tau^{2}-185 \alpha^{6} d^{3} \tau^{2}+42 \alpha^{5} d^{4} \tau^{2}-204 \alpha^{7} d \tau^{3}-2274 \alpha^{6} d^{2} \tau^{3}-2790 \alpha^{5} d^{3} \tau^{3}+560 \alpha^{4} d^{4} \tau^{3}+835 \tau^{2}$

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,
(3) use substitution, add: $\partial_{t} H(z, 1)=\partial_{t} P(z, 1)+\partial_{t} Q(z, 1)$, find

$$
\partial_{t} H=\frac{\alpha^{3} v^{4}+3 \alpha^{2} v^{3}+3 \alpha v^{2}+v}{\alpha^{3} d v^{5}+3 \alpha^{2} d v^{4}-\left(2 \alpha^{2}-3 \alpha d\right) v^{3}-((\alpha-1) d+3 \alpha) v^{2}-((\alpha+1) d-2 \alpha+1) v+1}
$$

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,
(3) use substitution, add: $\partial_{t} H(z, 1)=\partial_{t} P(z, 1)+\partial_{t} Q(z, 1)$, find

$$
\partial_{t} H=\frac{\alpha^{3} v^{4}+3 \alpha^{2} v^{3}+3 \alpha v^{2}+v}{\alpha^{3} d v^{5}+3 \alpha^{2} d v^{4}-\left(2 \alpha^{2}-3 \alpha d\right) v^{3}-((\alpha-1) d+3 \alpha) v^{2}-((\alpha+1) d-2 \alpha+1) v+1}
$$

(4) Plug in expansion for $v \rightarrow$ expansion for $\partial_{t} H$

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,
(3) use substitution, add: $\partial_{t} H(z, 1)=\partial_{t} P(z, 1)+\partial_{t} Q(z, 1)$, find
$\partial_{t} H=\frac{\alpha^{3} v^{4}+3 \alpha^{2} v^{3}+3 \alpha v^{2}+v}{\alpha^{3} d v^{5}+3 \alpha^{2} d v^{4}-\left(2 \alpha^{2}-3 \alpha d\right) v^{3}-((\alpha-1) d+3 \alpha) v^{2}-((\alpha+1) d-2 \alpha+1) v+1}$
(4) Plug in expansion for $v \rightarrow$ expansion for $\partial_{t} H$ string length: 223391

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,
(3) use substitution, add: $\partial_{t} H(z, 1)=\partial_{t} P(z, 1)+\partial_{t} Q(z, 1)$, find
$\partial_{t} H=\frac{\alpha^{3} v^{4}+3 \alpha^{2} v^{3}+3 \alpha v^{2}+v}{\alpha^{3} d v^{5}+3 \alpha^{2} d v^{4}-\left(2 \alpha^{2}-3 \alpha d\right) v^{3}-((\alpha-1) d+3 \alpha) v^{2}-((\alpha+1) d-2 \alpha+1) v+1}$
(4) Plug in expansion for $v \rightarrow$ expansion for $\partial_{t} H$ string length: 223391
(5) Singularity Analysis; normalize by $\#$ of trees $\rightarrow \mathbb{E} G_{n}$

Counting Good Vertices

- Goal: study $G_{n} \ldots$ \# of good nodes in tree of size n

Strategy:

(1) Take functional equations for $P(z, t), Q(z, t)$, implicit differentiation w.r.t. t; set $t=1$
(2) Solve for $\partial_{t} P(z, 1), \partial_{t} Q(z, 1)$,
(3) use substitution, add: $\partial_{t} H(z, 1)=\partial_{t} P(z, 1)+\partial_{t} Q(z, 1)$, find
$\partial_{t} H=\frac{\alpha^{3} v^{4}+3 \alpha^{2} v^{3}+3 \alpha v^{2}+v}{\alpha^{3} d v^{5}+3 \alpha^{2} d v^{4}-\left(2 \alpha^{2}-3 \alpha d\right) v^{3}-((\alpha-1) d+3 \alpha) v^{2}-((\alpha+1) d-2 \alpha+1) v+1}$
(4) Plug in expansion for $v \rightarrow$ expansion for $\partial_{t} H$
string length: 223391
(5) Singularity Analysis; normalize by $\#$ of trees $\rightarrow \mathbb{E} G_{n}$

Repeat for $\partial_{t}^{2} H$ (string length 60809) $\rightsquigarrow \mathbb{E} G_{n}\left(G_{n}-1\right)$

Counting Good Nodes: Results

Theorem: Good Nodes (H.-Prodinger '19+)

In [155]: good_nodes_expectation = (H_dl_coef_asy / H_coef_asy).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational good_nodes_expectation

Out [155]:

$$
\left(\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}\right) n
$$

$$
\left(8 \alpha^{3} d^{3} \tau^{2}-32 \alpha^{3} d^{2} \tau^{2}+29 \alpha^{2} d^{3} \tau^{2}+6 \alpha^{2} d^{3} \tau+32 \alpha^{3} d \tau^{2}-19 \alpha^{2} d^{2} \tau^{2}+9 \alpha d^{3} \tau^{2}-18 \alpha^{2} d^{2} \tau+44 \alpha d^{3} \tau-7 \alpha d^{2} \tau^{2}+12 \alpha^{2} d \tau-27 \alpha d^{2} \tau+14 \alpha\right.
$$

$$
+\frac{\left.d^{3} \tau-38 \alpha d^{2}-9 \alpha d \tau-12 d^{2} \tau+14 \alpha d-14 d^{2}+16 \alpha+12 d\right)}{(2)}
$$

$$
\left(4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d+4 \alpha d^{2}+4 d^{3}-32 \alpha^{2}-13 \alpha d-4 d^{2}\right)(4 \alpha+1)
$$

$$
+O\left(n^{-\frac{1}{2}}\right)
$$

Counting Good Nodes: Results

Theorem: Good Nodes (H.-Prodinger '19+)

$$
\mathbb{E} G_{n}=\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1} n+O(1)
$$

In [155]: good_nodes_expectation = (H_dl_coef_asy / H_coef_asy).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational good_nodes_expectation

Out [155]:
$\left(\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}\right) n$
$+\frac{\left(8 \alpha^{3} d^{3} \tau^{2}-32 \alpha^{3} d^{2} \tau^{2}+29 \alpha^{2} d^{3} \tau^{2}+6 \alpha^{2} d^{3} \tau+32 \alpha^{3} d \tau^{2}-19 \alpha^{2} d^{2} \tau^{2}+9 \alpha d^{3} \tau^{2}-18 \alpha^{2} d^{2} \tau+44 \alpha d^{3} \tau-7 \alpha d^{2} \tau^{2}+12 \alpha^{2} d \tau-27 \alpha d^{2} \tau+14 \alpha\right.}{\left(4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d+4 \alpha d^{2}+4 d^{3}-32 \alpha^{2}-13 \alpha d-4 d^{2}\right)(4 \alpha+1)}$
$+O\left(n^{-\frac{1}{2}}\right)$

Counting Good Nodes: Results

Theorem: Good Nodes (H.-Prodinger '19+)

$$
\mathbb{E} G_{n}=\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1} n+O(1)
$$

and for $d \rightarrow \infty$,

$$
\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}=\frac{q}{p+q}+\frac{2 \alpha^{2}}{(\alpha+1)^{3}} d^{-1}+O\left(d^{-2}\right)
$$

```
In [155]: good_nodes_expectation = (H_dl_coef_asy / H_coef_asy).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational
good_nodes_expectation
Out [155]:
\[
\left(\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}\right) n
\]
\[
\left(8 \alpha^{3} d^{3} \tau^{2}-32 \alpha^{3} d^{2} \tau^{2}+29 \alpha^{2} d^{3} \tau^{2}+6 \alpha^{2} d^{3} \tau+32 \alpha^{3} d \tau^{2}-19 \alpha^{2} d^{2} \tau^{2}+9 \alpha d^{3} \tau^{2}-18 \alpha^{2} d^{2} \tau+44 \alpha d^{3} \tau-7 \alpha d^{2} \tau^{2}+12 \alpha^{2} d \tau-27 \alpha d^{2} \tau+14 \alpha\right.
\]
\[
+\frac{\left.d^{3} \tau-38 \alpha d^{2}-9 \alpha d \tau-12 d^{2} \tau+14 \alpha d-14 d^{2}+16 \alpha+12 d\right)}{\left(4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d+4 \alpha d^{2}+4 d^{3}-32 \alpha^{2}-13 \alpha d-4 d^{2}\right)(4 \alpha+1)}
\]
\[
+O\left(n^{-\frac{1}{2}}\right)
\]
```


Counting Good Nodes: Results

Theorem: Good Nodes (H.-Prodinger '19+)

$$
\mathbb{E} G_{n}=\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1} n+O(1)
$$

and for $d \rightarrow \infty$,

$$
\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}=\frac{q}{p+q}+\frac{2 \alpha^{2}}{(\alpha+1)^{3}} d^{-1}+O\left(d^{-2}\right)
$$

In [155]: good_nodes_expectation = (H_dl_coef_asy / H_coef_asy).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational good_nodes_expectation

Out [155]:

$$
\left(\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}\right) n
$$

$\left(8 \alpha^{3} d^{3} \tau^{2}-32 \alpha^{3} d^{2} \tau^{2}+29 \alpha^{2} d^{3} \tau^{2}+6 \alpha^{2} d^{3} \tau+32 \alpha^{3} d \tau^{2}-19 \alpha^{2} d^{2} \tau^{2}+9 \alpha d^{3} \tau^{2}-18 \alpha^{2} d^{2} \tau+44 \alpha d^{3} \tau-7 \alpha d^{2} \tau^{2}+12 \alpha^{2} d \tau-27 \alpha d^{2} \tau+14 \alpha\right.$
$+\frac{\left.d^{3} \tau-38 \alpha d^{2}-9 \alpha d \tau-12 d^{2} \tau+14 \alpha d-14 d^{2}+16 \alpha+12 d\right)}{\left(4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d+1\right.}$

$$
\left.4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d+4 \alpha d^{2}+4 d^{3}-32 \alpha^{2}-13 \alpha d-4 d^{2}\right)(4 \alpha+1)
$$

$$
+o\left(n^{-\frac{1}{2}}\right)
$$

In [187]: (factorial_moment_2_asy good_nodes_expectation^2

+ good_nodes_expectation).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational()))

Counting Good Nodes: Results

Theorem: Good Nodes (H.-Prodinger '19+)

$$
\mathbb{E} G_{n}=\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1} n+O(1)
$$

and for $d \rightarrow \infty$,

$$
\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}=\frac{q}{p+q}+\frac{2 \alpha^{2}}{(\alpha+1)^{3}} d^{-1}+O\left(d^{-2}\right)
$$

Furthermore, $\mathbb{V} G_{n}=O\left(n^{3 / 2}\right)$.
© - higher precision needed!

```
In [155]: good_nodes_expectation = (H_dl_coef_asy / H_coef_asy).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational
    good_nodes_expectation
Out[155]:
\[
\left(\frac{2 \alpha^{2} d \tau^{2}+3 \alpha d \tau+1}{4 \alpha+1}\right) n
\]
\[
\left(8 \alpha^{3} d^{3} \tau^{2}-32 \alpha^{3} d^{2} \tau^{2}+29 \alpha^{2} d^{3} \tau^{2}+6 \alpha^{2} d^{3} \tau+32 \alpha^{3} d \tau^{2}-19 \alpha^{2} d^{2} \tau^{2}+9 \alpha d^{3} \tau^{2}-18 \alpha^{2} d^{2} \tau+44 \alpha d^{3} \tau-7 \alpha d^{2} \tau^{2}+12 \alpha^{2} d \tau-27 \alpha d^{2} \tau+14 \alpha\right.
\]
\[
+\frac{\left.d^{3} \tau-38 \alpha d^{2}-9 \alpha d \tau-12 d^{2} \tau+14 \alpha d-14 d^{2}+16 \alpha+12 d\right)}{\left(4 \alpha^{2} d^{3}-24 \alpha^{2} d^{2}+8 \alpha d^{3}+48 \alpha^{2} d\right.}
\]
\[
+O\left(n^{-\frac{1}{2}}\right)
\]
+ good_nodes_expectation).map_coefficients(lambda ex: simplify_by_tau(ex.simplify_rational()))

\section*{Asymptotics: Numerical Example}
- Today: 27-06-2019 \(\rightsquigarrow p=27, q=6, d=2019\)

\section*{Asymptotics: Numerical Example}
- Today: 27-06-2019 \(\rightsquigarrow p=27, q=6, d=2019\)
- \(\tau\) solves
\[
163539 \tau^{3}+72684 \tau^{2}+44382 \tau-4=0
\]
\[
\tau=0.0000901 \ldots
\]

\section*{Asymptotics: Numerical Example}
- Today: 27-06-2019 \(\rightsquigarrow p=27, q=6, d=2019\)
- \(\tau\) solves
\[
163539 \tau^{3}+72684 \tau^{2}+44382 \tau-4=0
\]
\(\tau=0.0000901 \ldots\)
- \(1 / \rho=\Phi(\tau) / \tau \approx 181006.06 \rightarrow\) exponential growth!
- in comparison: \((p+q)\) de \(\approx 181110.96\)

\section*{Asymptotics: Numerical Example}
- Today: 27-06-2019 \(\rightsquigarrow p=27, q=6, d=2019\)
- \(\tau\) solves
\[
163539 \tau^{3}+72684 \tau^{2}+44382 \tau-4=0
\]
\(\tau=0.0000901 \ldots\)
- \(1 / \rho=\Phi(\tau) / \tau \approx 181006.06 \rightarrow\) exponential growth!
- in comparison: \((p+q) d e \approx 181110.96\)
- \(\mathbb{E} G_{n}=0.181938 \ldots \cdot n+O(1)\)
- in comparison: \(\frac{q}{p+q}=\frac{6}{33}=\frac{2}{11} \approx 0.1818181818\)

\section*{Outlook: Why only constrain the first child?}


\section*{Outlook: Why only constrain the first child?}
\[
\mathcal{Q}=\underbrace{\square+\mathcal{P}+\mathcal{Q} \cdots \quad \square+\mathcal{P}+\mathcal{Q}}_{d \text { children }}
\]
\[
\begin{aligned}
& \underbrace{\mathcal{P}}_{j \text { chidren }}=\underbrace{\square+\mathcal{Q}}_{d-j \text { children }} \\
& P=p z(1+Q)^{j}(1+P+Q)^{d-j} \\
& Q=q z t(1+P+Q)^{d}
\end{aligned}
\]

\section*{Outlook: Why only constrain the first child?}

\[
\begin{aligned}
& P=p z(1+Q)^{j}(1+P+Q)^{d-j} \\
& Q=q z t(1+P+Q)^{d}
\end{aligned}
\]
\(P\) cannot be solved explicitly any more:
\[
P(1+P+Q)^{j} t=\alpha Q(1+Q)^{j}
\]

Substitution that simplifies this case? Other Approaches?

\section*{Related Problem: More Systematic Restrictions}

Credit: Stephan Wagner
- Given colors \(\{1, \ldots, k\}\), matrix \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \in\{0,1\}^{k \times k}\)
- Color all nodes of plane trees (alternative: just rooted)

\section*{Related Problem: More Systematic Restrictions}

Credit: Stephan Wagner
- Given colors \(\{1, \ldots, k\}\), matrix \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \in\{0,1\}^{k \times k}\)
- Color all nodes of plane trees (alternative: just rooted)
- Restriction: color \(i\) can only have children of color \(j\) if \(a_{i j}=1\)

\section*{Related Problem: More Systematic Restrictions}

Credit: Stephan Wagner
- Given colors \(\{1, \ldots, k\}\), matrix \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \in\{0,1\}^{k \times k}\)
- Color all nodes of plane trees (alternative: just rooted)
- Restriction: color \(i\) can only have children of color \(j\) if \(a_{i j}=1\)

What are corresponding counting sequences?

\section*{Related Problem: More Systematic Restrictions}

Credit: Stephan Wagner
- Given colors \(\{1, \ldots, k\}\), matrix \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \in\{0,1\}^{k \times k}\)
- Color all nodes of plane trees (alternative: just rooted)
- Restriction: color \(i\) can only have children of color \(j\) if \(a_{i j}=1\)

What are corresponding counting sequences?

Simple Examples
\[
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\]

Counting sequence: \(2 \cdot C_{n-1}\)

\section*{Related Problem: More Systematic Restrictions}

Credit: Stephan Wagner
- Given colors \(\{1, \ldots, k\}\), matrix \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \in\{0,1\}^{k \times k}\)
- Color all nodes of plane trees (alternative: just rooted)
- Restriction: color \(i\) can only have children of color \(j\) if \(a_{i j}=1\)

What are corresponding counting sequences?

\section*{Simple Examples}
\[
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\]

Counting sequence: \(2 \cdot C_{n-1}\)

Another Example
\[
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
\]

Counting seq.: \(3 \cdot 2^{n-1} \cdot C_{n-1}\)

\section*{Related Problem: More Systematic Restrictions (ctd.)}
- \(T_{i}(z) \ldots\) GF of trees with root of color \(i\)
- \(T(z)=\sum_{i=1}^{k} T_{i}(z) \ldots\) overall GF

\section*{Related Problem: More Systematic Restrictions (ctd.)}
- \(T_{i}(z) \ldots\) GF of trees with root of color \(i\)
- \(T(z)=\sum_{i=1}^{k} T_{i}(z) \ldots\) overall GF
- Observe:
\[
T_{i}(z)=\frac{z}{1-\sum_{j=1}^{k} a_{i j} T_{j}(z)}
\]
\(\rightsquigarrow T\) algebraic; \(\sqrt{\cdots}\)-singularity in non-degenerate cases

\section*{Related Problem: More Systematic Restrictions (ctd.)}
- \(T_{i}(z) \ldots\) GF of trees with root of color \(i\)
- \(T(z)=\sum_{i=1}^{k} T_{i}(z) \ldots\) overall GF
- Observe:
\[
T_{i}(z)=\frac{z}{1-\sum_{j=1}^{k} a_{i j} T_{j}(z)}
\]
\(\rightsquigarrow T\) algebraic; \(\sqrt{\cdots}\)-singularity in non-degenerate cases
- Observe: \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \rightsquigarrow\) adjacency matrix!
\[
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
\]


\section*{Related Problem: More Systematic Restrictions (ctd.)}
- \(T_{i}(z) \ldots\) GF of trees with root of color \(i\)
- \(T(z)=\sum_{i=1}^{k} T_{i}(z) \ldots\) overall GF
- Observe:
\[
T_{i}(z)=\frac{z}{1-\sum_{j=1}^{k} a_{i j} T_{j}(z)}
\]
\(\rightsquigarrow T\) algebraic; \(\sqrt{\cdots}\)-singularity in non-degenerate cases
- Observe: \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \rightsquigarrow\) adjacency matrix!
\[
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
\]

- Proposition: Isomorphic graphs \(\rightsquigarrow\) same counting sequence

\section*{Related Problem: More Systematic Restrictions (ctd.)}
- \(T_{i}(z) \ldots\) GF of trees with root of color \(i\)
- \(T(z)=\sum_{i=1}^{k} T_{i}(z) \ldots\) overall GF
- Observe:
\[
T_{i}(z)=\frac{z}{1-\sum_{j=1}^{k} a_{i j} T_{j}(z)}
\]
\(\rightsquigarrow T\) algebraic; \(\sqrt{\cdots}\)-singularity in non-degenerate cases
- Observe: \(\left(a_{i j}\right)_{1 \leq i, j \leq k} \rightsquigarrow\) adjacency matrix!
\[
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
\]

- Proposition: Isomorphic graphs \(\rightsquigarrow\) same counting sequence
- Which matrices lead to the same counting sequence?```

