Counting Ascents in Generalized Dyck Paths

Benjamin Hackl

joint work with Clemens Heuberger and Helmut Prodinger

June 29, 2018 @ AofA18, Uppsala

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Łukasiewicz Paths

Dyck Meanders:

- Sequences of $\{-1,1\} \triangleq \{\searrow,\nearrow\}$,
- Never below axis.

Łukasiewicz Paths

Dyck Meanders:

- Sequences of $\{-1,1\} \triangleq \{\searrow,\nearrow\}$,
- Never below axis.

Łukasiewicz Paths:

▶ Sequences of
$$S = \{-1\} \cup N$$
, $N \subseteq \mathbb{N}_0$,

Never below axis.

Extracting Coefficients

The Number of *r*-Ascents 0000000

Łukasiewicz Paths

Dyck Meanders:

- Sequences of $\{-1,1\} \triangleq \{\searrow,\nearrow\}$,
- Never below axis.

Łukasiewicz Paths:

▶ Sequences of
$$S = \{-1\} \cup N$$
, $N \subseteq \mathbb{N}_0$,

Never below axis.

Notation. $S(u) \dots$ GF of S, $S_+(u) = S(u) - u^{-1}$.

$$\mathcal{S} = \{-1, 0, 2\} \iff \mathcal{S}(u) = u^{-1} + 1 + u^2, \ \mathcal{S}_+(u) = 1 + u^2$$

The Path to an OGF	Extracting Coefficients	The Number of <i>r</i> -Ascents
000000		

Ascents

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Ascents in Lattice Paths

The Path to an OGF ⊙●○○○○○	Extracting Coefficients 000	The Number of <i>r</i> -Ascents

Ascents

Ascent: maximal sequence of non-negative steps,

The Path to an OGF 000000	Extracting Coefficients 000	The Number of <i>r</i> -Ascents

Ascents

Ascent: maximal sequence of non-negative steps,

▶ *r*-Ascent: ascent of length *r*.

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Background: Banderier-Flajolet, Basic AC of dir. lattice paths

Background: Banderier-Flajolet, Basic AC of dir. lattice paths

Excursions: end on axis

Excursion

Background: Banderier-Flajolet, Basic AC of dir. lattice paths

- Excursions: end on axis
- ► Dispersed Excursions: additional step (→) only on axis (Kangro–Pourmoradnasseri–Theis '16)

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Background: Banderier-Flajolet, Basic AC of dir. lattice paths

- Excursions: end on axis
- ► Dispersed Excursions: additional step (→) only on axis (Kangro–Pourmoradnasseri–Theis '16)
- Meanders: unrestricted

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Proposition

▶ $V(z, t) \dots OGF$ of V: plane trees, # of children $\in S + 1$

Then:

Proposition

V(z, t) ... OGF of V: plane trees, # of children ∈ S + 1 z ... size of tree

Then:

▶ $V(z, t) \dots OGF$ of V: plane trees, # of children $\in S + 1$

z . . . size of tree

t ... *r*-ascents in corresponding Łukasiewicz excursion **Then:**

Proposition

V(z, t) ... OGF of V: plane trees, # of children ∈ S + 1
 z ... size of tree

t ... *r*-ascents in corresponding Łukasiewicz excursion **Then:**

1 V(z,t)/z ... Łukasiewicz excursions w.r.t. S

Proposition

► t ... r-ascents in corresponding Łukasiewicz excursion **Then:**

- 1 V(z,t)/z ... Łukasiewicz excursions w.r.t. S
- 2 V(0,t) = 0 and V(z,t) = z L(z,t,V(z,t)) with

$$L(z, t, v) = \frac{1}{1 - zS_{+}(v)} + (t - 1)(zS_{+}(v))^{r},$$

which enumerates seq. of non-negative steps. v ... height

Proposition

t ... *r*-ascents in corresponding Łukasiewicz excursion **Then:**

- 1 V(z,t)/z ... Łukasiewicz excursions w.r.t. S
- 2 V(0,t) = 0 and V(z,t) = z L(z,t,V(z,t)) with

$$L(z, t, v) = \frac{1}{1 - zS_{+}(v)} + (t - 1)(zS_{+}(v))^{r},$$

which enumerates seq. of non-negative steps. v ... height

Consequence of bijection.

Proposition

t ... *r*-ascents in corresponding Łukasiewicz excursion **Then:**

- 1 V(z,t)/z ... Łukasiewicz excursions w.r.t. S
- 2 V(0,t) = 0 and V(z,t) = z L(z,t,V(z,t)) with

$$L(z, t, v) = \frac{1}{1 - zS_{+}(v)} + (t - 1)(zS_{+}(v))^{r},$$

which enumerates seq. of non-negative steps. v ... height

Consequence of bijection.
 Decompose w.r.t. leftmost path:

$$\mathcal{V} = \circ \times \mathsf{SEQ}(\circ \times \sum_{s \in \mathcal{S}, s \ge 0} \mathcal{V}^s)$$

▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow

- $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- ▶ $\frac{1}{1-L(z,t,v)z/v}$ \rightsquigarrow all paths (also crossing axis) ending on \searrow

- ▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- $\frac{1}{1-L(z,t,v)z/v} \rightsquigarrow$ all paths (also crossing axis) ending on \searrow
- ▶ subtract "bad paths": excursion $\times \searrow \times$ arbitrary, i.e.,

$$\frac{V(z,t)}{z}\frac{z}{v}\frac{1}{1-L(z,t,v)z/v}$$

- ▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- $\frac{1}{1-L(z,t,v)z/v} \rightsquigarrow$ all paths (also crossing axis) ending on \searrow
- ▶ subtract "bad paths": excursion $\times \searrow \times$ arbitrary, i.e.,

$$\frac{V(z,t)}{z}\frac{z}{v}\frac{1}{1-L(z,t,v)z/v}$$

Proposition

▶ F(z, t, v) ... OGF counting Łukasiewicz paths w.r.t. S

Then:

- ▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- $\frac{1}{1-L(z,t,v)z/v} \rightsquigarrow$ all paths (also crossing axis) ending on \searrow
- ▶ subtract "bad paths": excursion $\times \searrow \times$ arbitrary, i.e.,

$$\frac{V(z,t)}{z}\frac{z}{v}\frac{1}{1-L(z,t,v)z/v}$$

Proposition

F(z, t, v) ... OGF counting Łukasiewicz paths w.r.t. S
 z... length, t...r-ascents, v... ending altitude

Then:

- ▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- $\frac{1}{1-L(z,t,v)z/v} \rightsquigarrow$ all paths (also crossing axis) ending on \searrow
- ▶ subtract "bad paths": excursion $\times \searrow \times$ arbitrary, i.e.,

$$\frac{V(z,t)}{z}\frac{z}{v}\frac{1}{1-L(z,t,v)z/v}$$

Proposition

Then:

$$F(z,t,v)=\frac{v-V(z,t)}{v-z\,L(z,t,v)}L(z,t,v).$$

- ▶ $L(z, t, v)z/v \rightsquigarrow$ sequence of non-negative steps followed by \searrow
- ▶ $\frac{1}{1-L(z,t,v)z/v}$ \rightsquigarrow all paths (also crossing axis) ending on \searrow
- ▶ subtract "bad paths": excursion $\times \searrow \times$ arbitrary, i.e.,

$$\frac{V(z,t)}{z}\frac{z}{v}\frac{1}{1-L(z,t,v)z/v}$$

Proposition

Then:

$$F(z,t,v)=\frac{v-V(z,t)}{v-z\,L(z,t,v)}L(z,t,v).$$

$$\blacktriangleright$$
 $v = 0 \rightsquigarrow$ excursions, $v = 1 \rightsquigarrow$ meanders

Proposition

• $D(z, t) \dots OGF$ for dispersed excursions

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Proposition

$$D(z,t) = \frac{1}{z} \frac{V(z,t)}{1 - V(z,t)}$$

Proposition

$$D(z,t) = \frac{1}{z} \frac{V(z,t)}{1 - V(z,t)}$$

Proof. Decomposition: SEQ(excursion $\times \rightarrow$) \times excursion.

Proposition

$$D(z,t) = \frac{1}{z} \frac{V(z,t)}{1 - V(z,t)}$$

Proof. Decomposition: SEQ(excursion $\times \rightarrow$) \times excursion.

$$\Rightarrow D(z,t) = \frac{1}{1-z V(z,t)/z} \frac{V(z,t)}{z}.$$

Expressing Partial Derivatives

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Ascents in Lattice Paths

Expressing Partial Derivatives

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2}S'(V(z,1))}.$$

Expressing Partial Derivatives

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2} S'(V(z,1))}.$$

Sketch of Proof. Implicit differentiation of defining equation

$$V(z,t) = z L(z,t,V(z,t)).$$

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2}S'(V(z,1))}.$$

Sketch of Proof. Implicit differentiation of defining equation

$$V(z,t) = z L(z,t,V(z,t)).$$

Remark.

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2} S'(V(z,1))}.$$

Sketch of Proof. Implicit differentiation of defining equation

$$V(z,t) = z L(z,t,V(z,t)).$$

Remark.

•
$$V(z,1)$$
 satisfies $V(z,1) = zV(z,1)S(V(z,1))$,

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2} S'(V(z,1))}.$$

Sketch of Proof. Implicit differentiation of defining equation

$$V(z,t) = z L(z,t,V(z,t)).$$

Remark.

Proposition

Partial derivatives of the form $\partial_t^j V(z,t)|_{t=1}$ can be expressed in terms of V(z,1), e.g.,

$$\partial_t V(z,t)|_{t=1} = -z \frac{(V(z,1)-z)^r}{V(z,1)^{r+2} S'(V(z,1))}.$$

Sketch of Proof. Implicit differentiation of defining equation

$$V(z,t) = z L(z,t,V(z,t)).$$

Remark.

• V(z,1) satisfies V(z,1) = zV(z,1)S(V(z,1)),

•
$$\rightsquigarrow$$
 i.e., it has type $y = z\varphi(y)$

> analytic approach via singular inversion!

Dyck excursions (S = {−1,1}) only touch axis after even number of steps → S is 2-periodic

Dyck excursions (S = {−1, 1}) only touch axis after even number of steps → S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Dyck excursions (S = {−1,1}) only touch axis after even number of steps ~→ S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Proof. $S(u)^n \dots$ GF of unrestricted paths of length *n*. *u* ... height.

Dyck excursions (S = {−1,1}) only touch axis after even number of steps ~→ S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Proof. $S(u)^n \dots$ GF of unrestricted paths of length *n*. *u* ... height.

$$[u^0]S(u)^n =$$

Dyck excursions (S = {−1,1}) only touch axis after even number of steps ~→ S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Proof. $S(u)^n \dots$ GF of unrestricted paths of length *n*. *u* ... height.

$$[u^0]S(u)^n = [u^n](uS(u))^n =$$

Dyck excursions (S = {−1,1}) only touch axis after even number of steps ~→ S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Proof. $S(u)^n \dots$ GF of unrestricted paths of length *n*. *u* ... height.

$$[u^{0}]S(u)^{n} = [u^{n}](uS(u))^{n} = [u^{n}]Q(u^{p})^{n},$$

with $Q(u^p) = uS(u)$.

Dyck excursions (S = {−1,1}) only touch axis after even number of steps ~→ S is 2-periodic

Observation

$$p = \gcd_{s \in \mathcal{S}}(s+1) \implies \mathcal{S} \text{ is } p \text{-periodic}$$

Proof. $S(u)^n \dots$ GF of unrestricted paths of length *n*. *u* ... height.

$$[u^{0}]S(u)^{n} = [u^{n}](uS(u))^{n} = [u^{n}]Q(u^{p})^{n},$$

with $Q(u^p) = uS(u)$.

 V(z,1) has p square root singularities on its radius of convergence

Proposition

► S has period p,

Proposition

► S has period p,

• $\tau > 0$... "structural constant", unique $\tau > 0$: $S'(\tau) = 0$.

Proposition

- S has period p,
- $\tau > 0$... "structural constant", unique $\tau > 0$: $S'(\tau) = 0$.

Then:

(1) V(z,1) has radius of convergence $\rho = 1/S(\tau)$,

Proposition

- S has period p,
- $\tau > 0$... "structural constant", unique $\tau > 0$: $S'(\tau) = 0$.

- 1 V(z,1) has radius of convergence $\rho = 1/S(\tau)$,
- 2 dominant singularities: square-root singularities at $\zeta \rho$

Proposition

- S has period p,
- $\tau > 0$... "structural constant", unique $\tau > 0$: $S'(\tau) = 0$.

- 1 V(z,1) has radius of convergence $\rho = 1/S(\tau)$,
- 2 dominant singularities: square-root singularities at $\zeta \rho$
 - $\blacktriangleright \zeta \dots pth$ root of unity

Proposition

- S has period p,
- $\tau > 0$... "structural constant", unique $\tau > 0$: $S'(\tau) = 0$.

- 1 V(z,1) has radius of convergence ho = 1/S(au),
- 2 dominant singularities: square-root singularities at $\zeta \rho$
 - $\blacktriangleright \zeta \dots$ pth root of unity
- **3** Singular expansion $z \to \zeta \rho$:

$$V(z,1) = \zeta au - \zeta \sqrt{rac{2S(au)}{S''(au)}} \Big(1 - rac{z}{\zeta
ho}\Big)^{1/2} + O\Big(1 - rac{z}{\zeta
ho}\Big)^{1/2}$$

Theorem (H–Heuberger–Prodinger '18+)

▶ p ... period of S, τ ... structural constant, c := $\tau S(\tau)$,

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

- ▶ p ... period of S, τ ... structural constant, $c := \tau S(\tau)$,
- E_{n,r}...RV counting r-ascents in (unif. random) Łukasiewicz excursions of length n.

- ▶ p ... period of S, τ ... structural constant, $c := \tau S(\tau)$,
- E_{n,r}...RV counting r-ascents in (unif. random) Łukasiewicz excursions of length n.
- **1** $E_{n,r} = 0$ if $n \not\equiv 0 \pmod{p}$,

- ▶ p ... period of S, τ ... structural constant, $c := \tau S(\tau)$,
- E_{n,r}...RV counting r-ascents in (unif. random) Łukasiewicz excursions of length n.
- **1** $E_{n,r} = 0$ if $n \not\equiv 0 \pmod{p}$,

2 For
$$n \equiv 0 \pmod{p}$$
 and $n \to \infty$:

- ▶ $p \dots period of S, \tau \dots structural constant, c := \tau S(\tau),$
- E_{n,r}...RV counting r-ascents in (unif. random) Łukasiewicz excursions of length n.
- **1** $E_{n,r} = 0$ if $n \not\equiv 0 \pmod{p}$,
- **2** For $n \equiv 0 \pmod{p}$ and $n \to \infty$:

$$\mathbb{E} E_{n,r} = \frac{(c-1)^r}{c^{r+2}}n + O(1),$$

Theorem (H–Heuberger–Prodinger '18+)

- ▶ p ... period of S, τ ... structural constant, $c := \tau S(\tau)$,
- E_{n,r}...RV counting r-ascents in (unif. random) Łukasiewicz excursions of length n.

1
$$E_{n,r} = 0$$
 if $n \not\equiv 0 \pmod{p}$,

2 For
$$n \equiv 0 \pmod{p}$$
 and $n \to \infty$:

$$\mathbb{E} E_{n,r} = \frac{(c-1)^r}{c^{r+2}}n + O(1),$$

$$\mathbb{V}E_{n,r} = \left(\frac{(c-1)^r}{c^{r+2}} + \frac{(2c-2r-3)(c-1)^{2r}}{c^{2r+4}} - \frac{(c-1)^{2r-2}(2c-r-2)^2}{c^{2r+3}\tau^3 S''(\tau)}\right)n + O(n^{1/2}).$$

UNIVERSITAT KLAGENFURT I WIEN GRAZ

Example (*r*-Ascents in Dyck paths)

•
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

Example (*r*-Ascents in Dyck paths)

•
$$S = \{-1, 1\}, p = 2, \tau = 1$$

• Explicit
$$V(z,1) = \frac{1-\sqrt{1-4z^2}}{2z} \Rightarrow$$
 higher precision!

Example (*r*-Ascents in Dyck paths)

•
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

• Explicit $V(z,1) = \frac{1-\sqrt{1-4z^2}}{2z} \Rightarrow$ higher precision!

$$\mathbb{E}D_{2n,r} = \frac{n}{2^{r+1}} - \frac{(r+1)(r-4)}{2^{r+3}} + \frac{(r^2 - 11r + 22)(r+1)r}{2^{r+6}}n^{-1} + O(n^{-2})$$

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Example (*r*-Ascents in Dyck paths)

•
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

• Explicit $V(z,1) = \frac{1-\sqrt{1-4z^2}}{2z} \Rightarrow$ higher precision!

$$\mathbb{E}D_{2n,r} = \frac{n}{2^{r+1}} - \frac{(r+1)(r-4)}{2^{r+3}} + \frac{(r^2 - 11r + 22)(r+1)r}{2^{r+6}}n^{-1} + O(n^{-2})$$

$$\mathbb{V}D_{2n,r} = \left(\frac{1}{2^{r+1}} - \frac{r^2 - 2r + 3}{2^{2r+3}}\right)n + O(1)$$

Example (June 29, 2018)

►
$$S = \{-1, 6, 29, 2018\}, S(u) = u^{-1} + u^6 + u^{29} + u^{2018}, p = 1,$$

Example (June 29, 2018)

►
$$S = \{-1, 6, 29, 2018\}, S(u) = u^{-1} + u^6 + u^{29} + u^{2018}, p = 1,$$

► $\tau > 0: S'(\tau) = 0 \rightarrow \tau = 0.77275...$

Example (June 29, 2018)

►
$$S = \{-1, 6, 29, 2018\}, S(u) = u^{-1} + u^6 + u^{29} + u^{2018}, p = 1,$$

► $\tau > 0 : S'(\tau) = 0 \to \tau = 0.77275...$

Then:

$$\mathbb{E}E_{n,r}\sim 0.73681\ldots\cdot(0.14162\ldots)^r n$$

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

Example (June 29, 2018)

$$\mathbb{E}E_{n,r} \sim 0.73681 \dots (0.14162 \dots)^r n$$

$$\mathbb{V}E_{n,r} \sim \left(0.73681 \dots (0.14162 \dots)^r - 0.54289 \dots (0.67002 \dots + 2r)(0.14162 \dots)^{2r} - 3.18625 \dots (0.32997 \dots - r)^2 (0.14162 \dots)^{2r}\right) n$$

r-Ascents in Dispersed Excursions, $au \neq 1$

Theorem (H–Heuberger–Prodinger '18+)

▶ $p \dots period of S, \tau \dots structural constant, \tau \neq 1$,

Benjamin Hackl (Alpen-Adria-Universität Klagenfurt / Austria)

r-Ascents in Dispersed Excursions, au eq 1

- ▶ $p \dots period of S, \tau \dots structural constant, \tau \neq 1$,
- ▶ *d_n* . . . number of dispersed excursions of length *n*,

r-Ascents in Dispersed Excursions, au eq 1

- p ... period of S, τ ... structural constant, $\tau \neq 1$,
- ▶ *d_n* . . . number of dispersed excursions of length *n*,
- D_{n,r}...RV counting r-ascents in dispersed excursions of length n

r-Ascents in Dispersed Excursions, $au \neq 1$

- p ... period of S, τ ... structural constant, $\tau \neq 1$,
- ▶ *d_n* . . . number of dispersed excursions of length *n*,
- D_{n,r}...RV counting r-ascents in dispersed excursions of length n
- 1 For $n \to \infty$ and $n \equiv k \pmod{p}$, $0 \le k < p$

r-Ascents in Dispersed Excursions, $au \neq 1$

- $p \dots period of S, \tau \dots structural constant, \tau \neq 1$,
- ▶ *d_n* . . . number of dispersed excursions of length *n*,
- D_{n,r}...RV counting r-ascents in dispersed excursions of length n

1 For
$$n \to \infty$$
 and $n \equiv k \pmod{p}$, $0 \le k < p$

$$d_n = \frac{1}{\sqrt{2\pi}} \frac{p\tau^k (\tau^p (p-k-1)+k+1)}{(1-\tau^p)^2} \sqrt{\frac{S(\tau)^3}{S''(\tau)}} S(\tau)^n n^{-3/2} + O(S(\tau)^n n^{-5/2}).$$
2 $\mathbb{E} D_{n,r} = \frac{(\tau S(\tau) - 1)^r}{(\tau S(\tau))^{r+2}} n + O(1).$

Proposition

•
$$S = \{-1, 1\}$$
, $p = 2$, $\tau = 1$.

Proposition

►
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

 $d_n = {n \choose \lfloor n/2 \rfloor} = \sqrt{\frac{2}{\pi}} 2^n n^{-1/2} - \frac{2 - (-1)^n}{2\sqrt{2\pi}} 2^n n^{-3/2} + O(2^n n^{-5/2}),$

Proposition

►
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

$$d_{n} = \binom{n}{\lfloor n/2 \rfloor} = \sqrt{\frac{2}{\pi}} 2^{n} n^{-1/2} - \frac{2 - (-1)^{n}}{2\sqrt{2\pi}} 2^{n} n^{-3/2} + O(2^{n} n^{-5/2}),$$
$$\mathbb{E}D_{n,r} = \frac{n}{2^{r+2}} - \sqrt{\frac{\pi}{2}} \frac{r-2}{2^{r+2}} n^{1/2} + \frac{(r-1)(r-4)}{2^{r+3}} + O(n^{-1/2}).$$

 2^{r+3}

Proposition

►
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

$$d_{n} = \binom{n}{\lfloor n/2 \rfloor} = \sqrt{\frac{2}{\pi}} 2^{n} n^{-1/2} - \frac{2 - (-1)^{n}}{2\sqrt{2\pi}} 2^{n} n^{-3/2} + O(2^{n} n^{-5/2}),$$
$$\mathbb{E}D_{n,r} = \frac{n}{2^{r+2}} - \sqrt{\frac{\pi}{2}} \frac{r-2}{2^{r+2}} n^{1/2} + \frac{(r-1)(r-4)}{2^{r+3}} + O(n^{-1/2}).$$

▶ $r = 1 \rightsquigarrow$ known result recovered

Theorem (H–Heuberger–Prodinger '18+)

• $\tau > 0$... structural constant, $\tau \neq 1$,

Then:

Theorem (H–Heuberger–Prodinger '18+)

- $\tau > 0$. . . structural constant, $\tau \neq 1$,
- M_{n,r} ... RV counting r-ascents in meanders of length n

Then:

Theorem (H–Heuberger–Prodinger '18+)

- ▶ $\tau > 0$. . . structural constant, $\tau \neq 1$,
- ▶ *M_{n,r}* ... *RV* counting *r*-ascents in meanders of length *n*

Then:

$$\mathbb{E}M_{n,r} = \mu n + c_{\mathcal{S}} + O\left(\left(\frac{S(\tau)}{S(1)}\right)^n n^{5/2}\right), \quad \mathbb{V}M_{n,r} = \sigma^2 n + O(1),$$

Theorem (H–Heuberger–Prodinger '18+)

- ▶ $\tau > 0$. . . structural constant, $\tau \neq 1$,
- ▶ *M_{n,r}* ... *RV* counting *r*-ascents in meanders of length *n*

Then:

$$\mathbb{E}M_{n,r} = \mu n + c_{\mathcal{S}} + O\left(\left(\frac{S(\tau)}{S(1)}\right)^n n^{5/2}\right), \quad \mathbb{V}M_{n,r} = \sigma^2 n + O(1),$$

with $\mu = \frac{(S(1)-1)^r}{S(1)^{r+2}}, \qquad \sigma^2 = \mu + \frac{(S(1)-1)^{2r}(2S(1)-3-2r)}{S(1)^{2r+4}}.$

Theorem (H–Heuberger–Prodinger '18+)

- ▶ $\tau > 0$. . . structural constant, $\tau \neq 1$,
- ▶ *M_{n,r}* ... *RV* counting *r*-ascents in meanders of length *n*

Then:

$$\mathbb{E}M_{n,r} = \mu n + c_{\mathcal{S}} + O\left(\left(\frac{S(\tau)}{S(1)}\right)^n n^{5/2}\right), \quad \mathbb{V}M_{n,r} = \sigma^2 n + O(1),$$

with $\mu = \frac{(S(1)-1)^r}{S(1)^{r+2}}, \qquad \sigma^2 = \mu + \frac{(S(1)-1)^{2r}(2S(1)-3-2r)}{S(1)^{2r+4}}.$

Also, $M_{n,r}$ is asymptotically normally distributed for $n \to \infty$.

Meanders – Special Cases

Proposition (Dyck Meanders)

•
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

$$\mathbb{E}M_{n,r} = \frac{n}{2^{r+2}} + \frac{\sqrt{2\pi}(r-2)}{2^{r+3}}n^{1/2} - \frac{r^2 - r - 8}{2^{r+3}} + O(n^{-1/2}),$$
$$\mathbb{V}M_{n,r} = \frac{2^{r+3} - r^2(\pi - 2) + 4r(\pi - 3) - 4\pi + 10}{2^{2r+5}}n + O(n^{1/2}).$$

Meanders – Special Cases

Proposition (Dyck Meanders)

•
$$S = \{-1, 1\}, p = 2, \tau = 1.$$

$$\mathbb{E}M_{n,r} = \frac{n}{2^{r+2}} + \frac{\sqrt{2\pi}(r-2)}{2^{r+3}}n^{1/2} - \frac{r^2 - r - 8}{2^{r+3}} + O(n^{-1/2}),$$

$$\mathbb{V}M_{n,r} = \frac{2^{r+3} - r^2(\pi - 2) + 4r(\pi - 3) - 4\pi + 10}{2^{2r+5}}n + O(n^{1/2}).$$

Proposition (Motzkin Meanders)

$$S = \{-1, 0, 1\}, \ p = 1, \ \tau = 1.$$

$$\mathbb{E}M_{n,r} = \frac{2^{r}}{3^{r+2}}n + \frac{\sqrt{3\pi}(r-4)2^{r-2}}{3^{r+2}}n^{1/2} + O(1),$$

$$\mathbb{V}M_{n,r} = \frac{3^{r+2}2^{r+4} - 2^{2r}(3r^{2}(\pi-2) - 8r(3\pi - 10) + 48\pi - 144)}{16 \cdot 3^{2r+4}}n + O(n^{1/2}).$$

