Growing and Destroying Classes of Plane Trees

Benjamin Hackl

joint work with Helmut Prodinger

June 23, 2017
(Rooted) Plane trees

Characterization:
- unlabeled
(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters
(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters
(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

\[C_n = \frac{1}{n+1} \binom{2n}{n} \text{ plane trees of size } n + 1 \]
(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

\[C_n = \frac{1}{n+1} \binom{2n}{n} \text{ plane trees of size } n + 1 \]

- combinatorial class \(\mathcal{T} \), g.f. \(T(z) = \frac{1 - \sqrt{1 - 4z}}{2} \)
Growing plane trees

- How can we grow trees?
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

Growing trees:
Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

Growing trees:
- grow new leaves out of current leaves and inner nodes
“What?” and “How?”

▶ **Aim:** analysis of tree structure under iterated reduction
“What?” and “How?”

- **Aim:** analysis of tree structure under iterated reduction
“What?” and “How?”

- **Aim:** analysis of tree structure under iterated reduction

 ![Tree Structure Diagram]

- Algorithmic description
“What?” and “How?”

- **Aim:** analysis of tree structure under iterated reduction

- Algorithmic description
- Investigation of “tree expansion” \leadsto g.f.
“What?” and “How?”

- **Aim:** analysis of tree structure under iterated reduction

![Tree structure diagram]

- Algorithmic description
- Investigation of “tree expansion” \leadsto g.f.
- Coefficient extraction; Parameter distribution
“What?” and “How?”

- **Aim**: analysis of tree structure under iterated reduction

- Algorithmic description
- Investigation of “tree expansion” \rightsquigarrow g.f.
- Coefficient extraction; Parameter distribution
- Parameters: **Age** and **Ancestor size**
Summary: Age

Definition

- $\tau \ldots$ some plane tree
Summary: Age

Definition

- $\tau \ldots$ some plane tree
- **Age** of τ: # of generations required to grow τ from \bigcirc
Summary: Age

Definition

- \(\tau \ldots \) some plane tree
- **Age** of \(\tau \): \# of generations required to grow \(\tau \) from \(\bigcirc \)

Leaves

\(\leadsto \) height (Knuth, de Bruijn, Rice)

\[\mathbb{E} \sim \sqrt{\pi n} \]
Summary: Age

Definition

- τ... *some plane tree*
- **Age of τ: # of generations required to grow τ from \circ**

Leaves

\sim height (Knuth, de Bruijn, Rice)

$E \sim \sqrt{\pi n}$

Paths

\sim Pruning number (Zeilberger)

$E \sim \log_4 n$
Summary: Size of \(r \)th Ancestor

Leaves

\[
E \sim \frac{n}{r+1} \\
V \sim \frac{r(r+2)}{6(r+1)^2} n
\]

limit law: ✓
Summary: Size of rth Ancestor

Leaves

\[E \sim \frac{n}{r+1} \]
\[V \sim \frac{r(r+2)}{6(r+1)^2} n \]

Limit law: ✓

Paths

\[E \sim \frac{n}{2^{r+1} - 1} \]
\[V \sim \frac{2^{r+1} (2^r - 1)}{3(2^{r+1} - 1)^2} n \]

Limit law: ✓
Summary: Size of rth Ancestor

Leaves

$E \sim \frac{n}{r+1}$

$V \sim \frac{r(r+2)}{6(r+1)^2} n$

limit law: ✓

Paths

$E \sim \frac{n}{2^{r+1}-1}$

$V \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n$

limit law: ✓

Old leaves

$E \sim (2 - B_r(1/4)) n$

$V = \Theta(n)$

limit law: ✓
Summary: Size of rth Ancestor

Leaves

- Expected size of leaves: $E \sim \frac{n}{r+1}$
- Variance of leaves: $\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$
- Limit law: ✓

Paths

- Expected size of paths: $E \sim \frac{n}{2^{r+1}-1}$
- Variance of paths: $\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$
- Limit law: ✓

Old leaves

- Expected size of old leaves: $E \sim (2 - B_r(1/4))n$
- Variance of old leaves: $\mathbb{V} = \Theta(n)$
- Limit law: ✓

Old paths

- Expected size of old paths: $E \sim \frac{2n}{r+2}$
- Variance of old paths: $\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$
- Limit law: ???

Something New

- **Want:** not too artificial reduction with different parameter behavior
Something New

- **Want**: not too artificial reduction with different parameter behavior

Stanley, Catalan bijection #26

Dyck paths from \((0, 0)\) to \((2n + 2, 0)\) such that every maximal sequence of consecutive steps \((1, -1)\) ending on the \(x\)-axis has odd length.
Something New

- **Want**: not too artificial reduction with different parameter behavior

Stanley, Catalan bijection #26

Dyck paths from \((0, 0)\) to \((2n + 2, 0)\) such that every maximal sequence of consecutive steps \((1, -1)\) ending on the \(x\)-axis has odd length.
Something New

- **Want:** not too artificial reduction with different parameter behavior

Stanley, Catalan bijection #26

Dyck paths from \((0, 0)\) to \((2n + 2, 0)\) such that every maximal sequence of consecutive steps \((1, -1)\) ending on the \(x\)-axis has odd length.
Catalan–Stanley Trees

Catalan–Stanley Tree:

A Catalan–Stanley tree is a binary tree where the rightmost leaves in all branches of the root have odd distance. The generating function for the class of Catalan–Stanley trees, denoted by $S(z, t)$, is given by:

$$S(z, t) = z + zt(1 - t - T_2),$$

and for $n \geq 2$, there are C_{n-2} Catalan–Stanley trees with n nodes.
Catalan–Stanley Trees

Catalan–Stanley Tree:
- ... plane tree
Catalan–Stanley Trees

Catalan–Stanley Tree:
- ... plane tree
- ... rightmost leaves in all branches of root have odd distance
Catalan–Stanley Trees

Catalan–Stanley Tree:

- … plane tree
- … rightmost leaves in all branches of root have odd distance

Proposition

- S … class of Catalan–Stanley trees, g.f. $S(z, t)$
Catalan–Stanley Trees

Catalan–Stanley Tree:
- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition
- S... class of Catalan–Stanley trees, g.f. $S(z, t)$
- $z \equiv \bigcirc, \ t \equiv \blacksquare$
Catalan–Stanley Trees

Catalan–Stanley Tree:
- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition
- S ... class of Catalan–Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc$, $t \triangleq \blacksquare$
- $T = T(z)$... g.f. of plane trees
Catalan–Stanley Trees

Catalan–Stanley Tree:

- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition

- S ... class of Catalan–Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc$, $t \triangleq \blacksquare$
- $T = T(z)$... g.f. of plane trees

\[
S(z, t) = z + \frac{zt}{1 - t - T^2},
\]
Catalan–Stanley Trees

Catalan–Stanley Tree:
- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition

- S... class of Catalan–Stanley trees, g.f. $S(z, t)$
- $z \equiv \bigcirc$, $t \equiv \blacksquare$
- $T = T(z)$... g.f. of plane trees

\[
S(z, t) = z + \frac{zt}{1 - t - T^2},
\]

and for $n \geq 2$ there are C_{n-2} Catalan–Stanley trees with n nodes.
Catalan–Stanley Trees (Proof)

- T... class of plane trees
Catalan–Stanley Trees (Proof)

- \mathcal{T}… class of plane trees
- Symbolic description:

$$S = \bigcirc + \text{SEQ}\left(\frac{\mathcal{T}}{\mathcal{T}}\right) \quad \text{SEQ}\left(\frac{\mathcal{T}}{\mathcal{T}}\right) \quad \ldots \quad \text{SEQ}\left(\frac{\mathcal{T}}{\mathcal{T}}\right)$$
Catalan–Stanley Trees (Proof)

- \mathcal{T}... class of plane trees
- Symbolic description:

$$S = \bigcirc + \text{SEQ} \left(\frac{T}{T} \right) \quad \text{SEQ} \left(\frac{T}{T} \right) \quad \ldots \quad \text{SEQ} \left(\frac{T}{T} \right)$$

$$\Rightarrow S(z, t) = z + \frac{zt}{1 - t - T^2} = z + \frac{zt}{1 - T^2}$$
Catalan–Stanley Trees (Proof)

- 🌳 class of plane trees
- Symbolic description:

\[
S = \bigcirc + \text{SEQ}
\left(\frac{T}{T}\right)
\text{SEQ}
\left(\frac{T}{T}\right)
\ldots
\text{SEQ}
\left(\frac{T}{T}\right)
\]

\[
\Rightarrow S(z, t) = z + \frac{zt}{1 - T^2} = z + \frac{zt}{1 - t - T^2}
\]

- Count w.r.t. size: set \(t = z \), use \(T = \frac{z}{1-T} \)
Catalan–Stanley Trees (Proof)

- \mathcal{T}... class of plane trees
- Symbolic description:

\[
S = \bigcirc + \text{SEQ} \left(\frac{\mathcal{T}}{\mathcal{T}} \right) \text{SEQ} \left(\frac{\mathcal{T}}{\mathcal{T}} \right) \cdots \text{SEQ} \left(\frac{\mathcal{T}}{\mathcal{T}} \right)
\]

\[
\Rightarrow S(z, t) = z + \frac{zt}{1 - t - T^2}
\]

- Count w.r.t. size: set $t = z$, use $T = \frac{z}{1 - T}$

\[
\Rightarrow S(z, z) = z + \frac{z^2}{1 - (z + T^2)} = z + \frac{z^2}{1 - T} = z + zT
\]
Catalan–Stanley Trees (Proof)

- \(\mathcal{T} \) ... class of plane trees
- Symbolic description:

\[
S(\mathcal{T}) = \bigcirc + \text{SEQ} \left(\frac{\mathcal{T}}{T} \right) + \text{SEQ} \left(\frac{\mathcal{T}}{T} \right) + \ldots
\]

\[
\Rightarrow S(z, t) = z + \frac{zt}{1 - \frac{t}{1 - T^2}} = z + \frac{zt}{1 - t - T^2}
\]

- Count w.r.t. size: set \(t = z \), use \(T = \frac{z}{1 - T} \)

\[
\Rightarrow S(z, z) = z + \frac{z^2}{1 - (z + T^2)} = z + \frac{z^2}{1 - T} = z + zT
\]

- \(T(z) = \sum_{n \geq 1} C_{n-1} z^n \)
Catalan–Stanley Trees (Proof)

- Class of plane trees
- Symbolic description:

\[S = \bigcirc + \text{SEQ} \left(\frac{T}{T} \right) \quad \text{SEQ} \left(\frac{T}{T} \right) \quad \ldots \quad \text{SEQ} \left(\frac{T}{T} \right) \]

\[\Rightarrow S(z, t) = z + \frac{zt}{1 - t - T^2} \]

- Count w.r.t. size: set \(t = z \), use \(T = \frac{z}{1-T} \)

\[\Rightarrow S(z, z) = z + \frac{z^2}{1 - (z + T^2)} = z + \frac{z^2}{1 - T} = z + zT \]

- \(T(z) = \sum_{n \geq 1} C_{n-1} z^n \Rightarrow S(z, z) = z + \sum_{n \geq 2} C_{n-2} z^n \)
Growing Catalan–Stanley Trees

- **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied
Growing Catalan–Stanley Trees

- **Idea:** grow tree at □ and ensure that odd-distance property is satisfied
- **Strategy:** insert a sequence of two plane trees before every □
Growing Catalan–Stanley Trees

- **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied
- **Strategy:** insert a sequence of two plane trees before every ■
- Optionally: add branches to root
Growing Catalan–Stanley Trees

- **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied
- **Strategy:** insert a sequence of two plane trees before every ■
- Optionally: add branches to root
Growing Catalan–Stanley Trees

- **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied
- **Strategy:** insert a sequence of two plane trees before every ■
- Optionally: add branches to root
Growing Catalan–Stanley Trees

- **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied
- **Strategy:** insert a sequence of two plane trees before every ■
- Optionally: add branches to root
Growing Catalan–Stanley Trees

▸ **Idea:** grow tree at ■ and ensure that odd-distance property is satisfied

▸ **Strategy:** insert a sequence of two plane trees before every ■

▸ Optionally: add branches to root
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:

\[
\Phi(f(z,t)) = 1 - t f(z, 1 - t T_2)
\]
A Generating Function Approach

- **Q:** Describe tree growth via linear operator Φ:
 - \mathcal{F}...some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:

- \mathcal{F}...some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$...counts trees grown from those in \mathcal{F}
A Generating Function Approach

- **Q:** Describe tree growth via linear operator Φ:
 - $\mathcal{F} \ldots$ some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
 - $\Phi(f(z, t)) \ldots$ counts trees grown from those in \mathcal{F}

- **Facts:** Φ is linear, Image of $z^n t^k$:

\[\Phi(z^n t^k) = \]
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:
 - \mathcal{F}...some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
 - $\Phi(f(z, t))$...counts trees grown from those in \mathcal{F}

Facts: Φ is linear, Image of z^nt^k:
 - \bigcirc stay as they are: $z \mapsto z$

$$\Phi(z^nt^k) = z^n$$
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:
- \(\mathcal{F} \) ... some subclass of Catalan–Stanley trees, \(f(z, t) \) g.f.
- \(\Phi(f(z, t)) \) ... counts trees grown from those in \(\mathcal{F} \)

Facts: Φ is linear, Image of \(z^n t^k \):
- \(\bigcirc \) stay as they are: \(z \mapsto z \)
- \(\blacksquare \) get two trees attached: \(t \mapsto t T^2 \)

\[
\Phi(z^n t^k) = z^n (t T^2)^k
\]
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:

- \mathcal{F}... some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$... counts trees grown from those in \mathcal{F}

Facts: Φ is linear, Image of z^nt^k:

- stay as they are: $z \mapsto z$
- get two trees attached: $t \mapsto tT^2$
- add sequences of \blacksquare to the root ($k + 1$ positions): $(\frac{1}{1-t})^{k+1}$

$$\Phi(z^nt^k) = z^n(tT^2)^k(\frac{1}{1-t})^{k+1}$$
A Generating Function Approach

- **Q:** Describe tree growth via linear operator Φ:
 - \mathcal{F}... some subclass of Catalan–Stanley trees, $f(z,t)$ g.f.
 - $\Phi(f(z,t))$... counts trees grown from those in \mathcal{F}

- **Facts:** Φ is linear, Image of $z^n t^k$:
 - \bigcirc stay as they are: $z \mapsto z$
 - \blacksquare get two trees attached: $t \mapsto t T^2$
 - add sequences of \blacksquare to the root ($k + 1$ positions): $(\frac{1}{1-t})^{k+1}$

\[
\Phi(z^n t^k) = z^n (t T^2)^k \left(\frac{1}{1-t}\right)^{k+1}
\]

- **A:** This proves

\[
\Phi(f(z,t)) = \frac{1}{1-t} f(z, \frac{t}{1-t} T^2)
\]
A Generating Function Approach

- **Q:** Describe tree growth via linear operator Φ:
 - \mathcal{F}... some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
 - $\Phi(f(z, t))$... counts trees grown from those in \mathcal{F}

- **Facts:** Φ is linear, Image of $z^n t^k$:
 - \bigcirc stay as they are: $z \mapsto z$
 - \blacksquare get two trees attached: $t \mapsto tT^2$
 - add sequences of \blacksquare to the root ($k + 1$ positions): $(\frac{1}{1-t})^{k+1}$

\[
\Phi(z^n t^k) = z^n (tT^2)^k \left(\frac{1}{1-t}\right)^{k+1}
\]

- **A:** This proves

\[
\Phi(f(z, t)) = \frac{1}{1-t} f\left(z, \frac{t}{1-t} T^2\right)
\]

- **Note:** $\Phi(z) = \frac{z}{1-t} = z + zt + zt^2 + \cdots$
A Generating Function Approach

Q: Describe tree growth via linear operator Φ:
- \mathcal{F}...some subclass of Catalan–Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$...counts trees grown from those in \mathcal{F}

Facts: Φ is linear, Image of $z^n t^k$:
- \bigcirc stay as they are: $z \mapsto z$
- \blacksquare get two trees attached: $t \mapsto t T^2$
- add sequences of \blacksquare to the root ($k + 1$ positions): $(\frac{1}{1-t})^{k+1}$

$$\Phi(z^n t^k) = z^n (t T^2)^k \left(\frac{1}{1-t}\right)^{k+1}$$

A: This proves
$$\Phi(f(z, t)) = \frac{1}{1-t} f(z, \frac{t}{1-t} T^2)$$

Note: $\Phi(z) = \frac{z}{1-t} = z + zt + zt^2 + \cdots$
- \bigcirc may not grow!
r-fold Iterated Growth

Proposition

- $\mathcal{F} \ldots$ *family of Catalan–Stanley trees*
Proposition

- \(\mathcal{F} \ldots \text{family of Catalan–Stanley trees} \)
- \(\text{Generating function } f(z, t) \)
Proposition

- \(\mathcal{F}\ldots\text{family of Catalan–Stanley trees}\)
- \(\text{Generating function } f(z, t)\)
- \(r \in \mathbb{Z}_{\geq 0}\)
Proposition

- \mathcal{F}...family of Catalan–Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

$$\Phi^r(f(z, t)) = \frac{1}{1 - t \frac{1 - T^{2r}}{1 - T^2}} f\left(z, \frac{t T^{2r}}{1 - t \frac{1 - T^{2r}}{1 - T^2}}\right)$$

counts trees grown from \mathcal{F} after r generations.
r-fold Iterated Growth

Proposition

- \mathcal{F} ... family of Catalan–Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

\[
\Phi^r(f(z, t)) = \frac{1}{1 - t^{1-T^2} f(z, \frac{tT^{2r}}{1 - t^{1-T^2}})}
\]

counts trees grown from \mathcal{F} after r generations.

For some Catalan–Stanley tree τ:

- **Age of τ**: min. # of generations to grow τ from \bigcirc
Proposition

- \(\mathcal{F} \) ... family of Catalan–Stanley trees
- Generating function \(f(z, t) \)
- \(r \in \mathbb{Z}_{\geq 0} \)

\[
\Phi^r(f(z, t)) = \frac{1}{1 - t \frac{1 - T^{2r}}{1 - T^2}} f\left(z, \frac{t T^{2r}}{1 - t \frac{1 - T^{2r}}{1 - T^2}} \right)
\]

counts trees grown from \(\mathcal{F} \) after \(r \) generations.

For some Catalan–Stanley tree \(\tau \):

- **Age of** \(\tau \): min. \(\# \) of generations to grow \(\tau \) from \(\bigcirc \)
- **Size of** \(r \)-th ancestor: size of \(r \)-fold reduced \(\tau \)
Trees of Given Age

Corollary

\[F_r^\leq(z, t) = \Phi^r(z) = \frac{z}{1 - t \frac{1 - T^{2r}}{1 - T^2}} \]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \equiv \bigcirc, \ t \equiv \blacksquare \).
Trees of Given Age

Corollary

\[
F_r^\leq(z, t) = \Phi^r(z) = \frac{z}{1 - t \frac{1-T^{2r}}{1-T^2}}
\]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \triangleq \bigcirc \), \(t \triangleq \blacksquare \).

Proof: \(\bigcirc \) may not grow \(\Rightarrow \) \(\Phi^r(z) \) counts trees of age \(\leq r \). \(\square \)
Trees of Given Age

Corollary

\[F_{r}^{\leq}(z,t) = \Phi^{r}(z) = \frac{z}{1 - t \frac{1 - T^{2r}}{1 - T}} \]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \triangleq \bigcirc, t \triangleq \blacksquare \).

Proof: \(\bigcirc \) may not grow \(\Rightarrow \Phi^{r}(z) \) counts trees of age \(\leq r \).

- \(D_{n} \ldots \) age of random Catalan–Stanley tree of size \(n \)
Trees of Given Age

Corollary

\[F_{r}^{\leq}(z, t) = \Phi^{r}(z) = \frac{z}{1 - t^{\frac{1-T^{2r}}{1-T^{2}}}} \]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \triangleq \bigcirc, t \triangleq \blacksquare \).

Proof: \(\bigcirc \) may not grow \(\Rightarrow \) \(\Phi^{r}(z) \) counts trees of age \(\leq r \). \(\square \)

- \(D_{n} \ldots \) age of random Catalan–Stanley tree of size \(n \)
- Facts: \(\mathbb{E}D_{n} = \sum_{r \geq 1} \mathbb{P}(D_{n} \geq r), \forall D_{n} = \mathbb{E}(D_{n}^{2}) - (\mathbb{E}D_{n})^{2}, \)
 \(\mathbb{E}(D_{n}^{2}) = \sum_{r \geq 1}(2r - 1)\mathbb{P}(D_{n} \geq r) \)
Trees of Given Age

Corollary

\[
F_r^\leq(z, t) = \Phi^r(z) = \frac{z}{1 - t \frac{1 - T^{2r}}{1 - T^2}}
\]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \triangleq \bigcirc, t \triangleq \blacksquare \).

Proof: \(\bigcirc \) may not grow \(\Rightarrow \) \(\Phi^r(z) \) counts trees of age \(\leq r \). \(\square \)

- \(D_n \)... age of random Catalan–Stanley tree of size \(n \)
- **Facts:** \(\mathbb{E}D_n = \sum_{r \geq 1} \mathbb{P}(D_n \geq r) \), \(\forall D_n = \mathbb{E}(D_n^2) - (\mathbb{E}D_n)^2 \), \(\mathbb{E}(D_n^2) = \sum_{r \geq 1} (2r - 1) \mathbb{P}(D_n \geq r) \)
- **Want:** \(F_r^\geq(z) \)... g.f. for trees of age \(\geq r \)
Trees of Given Age

Corollary

\[F_r^\leq (z, t) = \Phi^r (z) = \frac{z}{1 - t^{1 - T^r}} \]

counts Catalan–Stanley trees of age \(\leq r \) w.r.t. \(z \triangleq \bigcirc, t \triangleq \blacksquare \).

Proof:
\(\bigcirc \) may not grow \(\Rightarrow \) \(\Phi^r (z) \) counts trees of age \(\leq r \).

- \(D_n \ldots \) age of random Catalan–Stanley tree of size \(n \)
- Facts: \(\mathbb{E}D_n = \sum_{r \geq 1} \mathbb{P}(D_n \geq r) \), \(\forall D_n = \mathbb{E}(D_n^2) - (\mathbb{E}D_n)^2 \),
 \(\mathbb{E}(D_n^2) = \sum_{r \geq 1} (2r - 1)\mathbb{P}(D_n \geq r) \)
- Want: \(F_r^\geq (z) \ldots \) g.f. for trees of age \(\geq r \)

\[
F_r^\geq (z) = S(z, z) - F_{r-1}^\leq (z, z) = z(1 + T)^{\frac{T^{2r-1}}{1 + T^{2r-1}}}
\]

\[
= \sum_{n \geq 0} f_{n,r} z^n
\]
Singular Expansion

- Recall: \[T = \frac{1 - \sqrt{1 - 4z}}{2} \]
Singular Expansion

- Recall: \(T = \frac{1-\sqrt{1-4z}}{2} \)
Singular Expansion

- Recall: \(T = \frac{1-\sqrt{1-4z}}{2} \)

\[
\frac{T^{2r-1}}{1 + T^{2r-1}} = \frac{1}{1 + T^{1-2r}} = \frac{1}{1 + 2^{2r-1}(1 - \sqrt{1 - 4z})^{1-2r}}
\]
Singular Expansion

Recall: \(T = \frac{1 - \sqrt{1 - 4z}}{2} \)

\[
\frac{T^{2r-1}}{1 + T^{2r-1}} = \frac{1}{1 + T^{1-2r}} = \frac{1}{1 + 2^{2r-1}(1 - \sqrt{1 - 4z})^{1-2r}}
\]

\[
= \frac{1}{(1 + 2^{2r-1})(1 + \frac{2^{2r-1}}{1+2^{2r-1}} \sum_{j \geq 1} \binom{2r+j-2}{j} (1 - 4z)^{j/2})}
\]
Recall: $T = \frac{1 - \sqrt{1 - 4z}}{2}$

\[
\frac{T^{2r-1}}{1 + T^{2r-1}} = \frac{1}{1 + T^{1-2r}} = \frac{1}{1 + 2^{2r-1}(1 - \sqrt{1 - 4z})^{1-2r}}
\]

\[
= \frac{1}{(1 + 2^{2r-1})(1 + \frac{2^{2r-1}}{1+2^{2r-1}} \sum_{j \geq 1} \binom{2r+j-2}{j} (1 - 4z)^{j/2})}
\]

Inversion,
Singular Expansion

- Recall: \(T = \frac{1 - \sqrt{1 - 4z}}{2} \)

\[
\frac{T^{2r-1}}{1 + T^{2r-1}} = \frac{1}{1 + T^{1-2r}} = \frac{1}{1 + 2^{2r-1}(1 - \sqrt{1 - 4z})^{1-2r}}
\]

\[
= \frac{1}{(1 + 2^{2r-1})(1 + \frac{2^{2r-1}}{1+2^{2r-1}} \sum_{j \geq 1} \binom{2r+j-2}{j} (1 - 4z)^{j/2})}
\]

- Inversion,
- Multiplication by expansion of \(z(1 + T) \),
Singular Expansion

- Recall: \(T = \frac{1 - \sqrt{1 - 4z}}{2} \)

\[
\begin{align*}
\frac{T^{2r-1}}{1 + T^{2r-1}} &= \frac{1}{1 + T^{1-2r}} = \frac{1}{1 + 2^{2r-1}(1 - \sqrt{1 - 4z})^{1-2r}} \\
&= \frac{1}{(1 + 2^{2r-1})(1 + \sum_{j \geq 1} \binom{2r + j - 2}{j} (1 - 4z)^{j/2})}
\end{align*}
\]

- Inversion,
- Multiplication by expansion of \(z(1 + T) \),
- Coefficient extraction
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

$$P(D_n = r) = \frac{1}{C_{n-2}}(f_{n,r} - f_{n,r+1}),$$

where
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

$$P(D_n = r) = \frac{1}{C_{n-2}}(f_{n,r} - f_{n,r+1}),$$

where

$$\frac{f_{n,r}}{C_{n-2}} = \frac{4(4^r(3r - 1) + 1)}{(4^r + 2)^2}.$$
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

$$P(D_n = r) = \frac{1}{C_{n-2}}(f_{n,r} - f_{n,r+1}),$$

where

$$f_{n,r} = \frac{4(4^r(3r - 1) + 1)}{(4^r + 2)^2} - \frac{6 \cdot 64^r(2r^3 - 5r^2 + 4r - 1) - 6 \cdot 16^r(16r^3 - 24r^2 + 10r - 1) + 24 \cdot 4^r(2r^3 - r^2)}{(4^r + 2)^4} n - 1$$
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

$$P(D_n = r) = \frac{1}{C_{n-2}}(f_{n,r} - f_{n,r+1}),$$

where

$$f_{n,r} = \frac{4(4^r(3r - 1) + 1)}{(4^r + 2)^2} \cdot \frac{6 \cdot 64^r(2r^3 - 5r^2 + 4r - 1) - 6 \cdot 16^r(16r^3 - 24r^2 + 10r - 1) + 24 \cdot 4^r(2r^3 - r^2)}{(4^r + 2)^4} - n^{-1} + O(r^5 3^{-r} n^{-2}).$$
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

$$P(D_n = r) = \frac{1}{C_{n-2}}(f_{n,r} - f_{n,r+1}),$$

where

$$f_{n,r} = \frac{4(4^r(3r - 1) + 1)}{(4^r + 2)^2} - \frac{6.64^r(2r^3 - 5r^2 + 4r - 1) - 6.16^r(16r^3 - 24r^2 + 10r - 1) + 24.4^r(2r^3 - r^2)}{(4^r + 2)^4}n^{-1} + O(r^53^{-r}n^{-2}),$$

$$E_D n = 2.71825 \ldots - 4.22209 \ldots n^{-1} + O(n^{-2}),$$
Result – Age

Theorem (H–Prodinger, 2017)

The age of a (uniformly random) Catalan–Stanley tree of size n follows a discrete limiting distribution with

\[P(D_n = r) = \frac{1}{C_{n-2}} (f_{n,r} - f_{n,r+1}), \]

where

\[f_{n,r} = \frac{4(4^r (3r - 1) + 1)}{(4^r + 2)^2} - 6.64^r (2r^3 - 5r^2 + 4r - 1) - 6.16^r (16r^3 - 24r^2 + 10r - 1) + 24.4^r (2r^3 - r^2) n^{-1} \]

\[+ O(r^5 3^{-r} n^{-2}), \]

\[\mathbb{E} D_n = 2.71825 \ldots - 4.22209 \ldots n^{-1} + O(n^{-2}), \]

\[\nabla D_n = 0.91845 \ldots - 9.16217 \ldots n^{-1} + O(n^{-2}). \]
Generating Function for Ancestors

Corollary

\[
G_r(z, v) = \Phi^r(S(zv, tv))|_{t=z} = \frac{1}{1 - z \frac{1 - T^{2r}}{1 - T^2}} S \left(zv, \frac{zT^{2r}}{1 - z \frac{1 - T^{2r}}{1 - T^2}} v \right)
\]
Generating Function for Ancestors

Corollary

\[G_r(z, v) = \Phi^r(S(zv, tv))|_{t=z} = \frac{1}{1 - z \frac{1-T^2 r}{1-T^2}} S\left(zv, \frac{zT^{2r}}{1 - z \frac{1-T^2 r}{1-T^2}} v\right) \]

is the bivariate generating function enumerating Catalan–Stanley trees w.r.t. size \((\triangleq z)\) and the size of the \(r\)th ancestor \((\triangleq v)\).
Generating Function for Ancestors

Corollary

\[
G_r(z, v) = \Phi^r(S(zv, tv))|_{t=z} = \frac{1}{1 - z \frac{1 - T^{2r}}{1 - T^2}} S\left(zv, \frac{zT^{2r}}{1 - z \frac{1 - T^{2r}}{1 - T^2}} v \right)
\]

is the bivariate generating function enumerating Catalan–Stanley trees w.r.t. size (\(\triangleq z\)) and the size of the rth ancestor (\(\triangleq v\)).

Proof: mark original tree size with \(v\), expand \(r\) times. \(\square\)
Generating Function for Ancestors

Corollary

\[
G_r(z, v) = \Phi^r(S(zv, tv))|_{t=z} = \frac{1}{1 - z} \frac{1 - T^{2r}}{1 - T^2} S\left(zv, \frac{zT^{2r}}{1 - z} \frac{1 - T^{2r}}{1 - T^2} \right)
\]

is the bivariate generating function enumerating Catalan–Stanley trees w.r.t. size (≜ z) and the size of the rth ancestor (≜ v).

Proof: mark original tree size with \(v \), expand \(r \) times. □

- \(X_{n,r} \ldots \) size of \(r \)th ancestor of (unif. random) Catalan–Stanley tree of size \(n \)
Newtonian Function for Ancestors

Corollary

\[G_r(z, v) = \Phi^r(S(zv, tv))|_{t=z} = \frac{1}{1 - z \frac{1 - T^{2r}}{1 - T^2}} S\left(zv, \frac{z T^{2r}}{1 - z \frac{1 - T^{2r}}{1 - T^2}} v\right) \]

is the bivariate generating function enumerating Catalan–Stanley trees w.r.t. size (≜ z) and the size of the rth ancestor (≜ v).

Proof: mark original tree size with v, expand r times. □

- \(X_{n,r} \ldots \) size of rth ancestor of (unif. random) Catalan–Stanley tree of size n

\[\mathbb{E} X_{n,r}^d = \frac{1}{C_{n-2}} \frac{\partial^d}{\partial v^d} G_r(z, v)|_{v=1} \]
Generating Function for Ancestors

Corollary

\[G_r(z, v) = \Phi^r(S(zv, tv)) \bigg|_{t=z} = \frac{1}{1 - z \frac{1 - T^{2r}}{1 - T^2}} \left(zv, \frac{zT^{2r}}{1 - z \frac{1 - T^{2r}}{1 - T^2}} v \right) \]

is the bivariate generating function enumerating Catalan–Stanley trees w.r.t. size (\(\triangleq z\)) and the size of the \(r\)th ancestor (\(\triangleq v\)).

Proof: mark original tree size with \(v\), expand \(r\) times.

▶ \(X_{n,r} \ldots\) size of \(r\)th ancestor of (unif. random) Catalan–Stanley tree of size \(n\)

▶ \(\mathbb{E}X_{n,r}^d = \frac{1}{C_{n-2}} \frac{\partial^d}{\partial v^d} G_r(z, v) \big|_{v=1}\)

▶ Singular expansion \(z \rightarrow 1/4\), Singularity Analysis
Result – Size of \(r \)th Ancestor

Theorem (H–Prodinger, 2017)

\[X_{n,r}, \text{ the size of the } r \text{th ancestor of a (uniformly random) Catalan–Stanley tree of size } n \text{ satisfies} \]

\[
E[X_{n,r}] = 1 + \frac{1}{C_n} - 2 \left(2^n - 2r - 4n - 2 \right)
\]

\[
V[X_{n,r}] = \frac{(2^r + 1)(2^r - 1)}{16r^2} - \frac{\sqrt{\pi}}{16} \left(4r(3r + 1) - 1 \right) - \frac{1}{3} \cdot \frac{1}{16r^3} + O\left(4^{-r} r^2 n \right)
\]
Result – Size of rth Ancestor

Theorem (H–Prodinger, 2017)

\[X_{n,r}, \text{ the size of the rth ancestor of a (uniformly random) Catalan–Stanley tree of size } n \text{ satisfies} \]

\[
\mathbb{E}X_{n,r} = \frac{1}{4r} n + \frac{2 \cdot 4^r - 2r^2 + r - 2}{2 \cdot 4^r} + O(n^{-1}),
\]
Result – Size of rth Ancestor

Theorem (H–Prodinger, 2017)

$X_{n,r}$, the size of the rth ancestor of a (uniformly random) Catalan–Stanley tree of size n satisfies

$$
\mathbb{E}X_{n,r} = \frac{1}{4r} n + \frac{2 \cdot 4^r - 2r^2 + r - 2}{2 \cdot 4^r} + O(n^{-1}),
$$

$$
\mathbb{V}X_{n,r} = \frac{(2^r + 1)(2^r - 1)}{16^r} n^2 - \frac{\sqrt{\pi}(4^r(3r + 1) - 1)}{3 \cdot 16^r} n^{3/2} + O(4^{-r}r^2 n).
$$
Result – Size of rth Ancestor

Theorem (H–Prodinger, 2017)

Let $X_{n,r}$ be the size of the rth ancestor of a (uniformly random) Catalan–Stanley tree of size n. Then,

\[
\mathbb{E}X_{n,r} = \frac{1}{4r} n + \frac{2 \cdot 4^r - 2r^2 + r - 2}{2 \cdot 4^r} + O(n^{-1}),
\]

\[
\mathbb{V}X_{n,r} = \frac{(2^r + 1)(2^r - 1)}{16^r} n^2 - \frac{\sqrt{\pi}(4^r(3r + 1) - 1)}{3 \cdot 16^r} n^{3/2}
\]

\[+ O(4^{-r} r^2 n).\]

In particular, we have

\[
\mathbb{E}X_{n,r} = 1 + \frac{1}{C_n} \binom{2n - 2r - 4}{n - 2}.
\]
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

<table>
<thead>
<tr>
<th>Age</th>
<th>Size of rth Ancestor</th>
</tr>
</thead>
</table>

$E \sim O(1)$

$V \sim (2^r + 1)(2^r - 1) / 16^r$
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

Age

Size of rth Ancestor

$E = O(1)$

$V = O(1)$

LLT: ✓

$\#\text{Generations} = \text{Age}$
Summary: Age and Ancestors of Catalan–Stanley trees

▶ “nice”, not too artificial growth process with different parameter behavior ✓

Age

▶ \(E = O(1) \)

Size of \(r \)th Ancestor

\[
E \sim \frac{1}{4^r} \\
V \sim \frac{(2r+1)(2r-1)}{16^r}
\]

Generations = Age
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

Age

- $E = O(1)$
- $V = O(1)$

Size of rth Ancestor

Generations = Age
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

Age

- $E = O(1)$
- $V = O(1)$
- LLT: ✓

Size of rth Ancestor

Generations = Age
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

Age

- \(E = O(1) \)
- \(V = O(1) \)
- LLT: ✓

\[\#	ext{Generations} = \text{Age} \]

Size of \(r \)th Ancestor

\[E \sim 1^{4r^n} \]
\[V \sim (2r+1)(2r-1)^{16r^n/2} \]

\[\leftarrow \]

\(\text{Ancestor size} \)
Summary: Age and Ancestors of Catalan–Stanley trees

- “nice”, not too artificial growth process with different parameter behavior ✓

Age
- $E = O(1)$
- $V = O(1)$
- LLT: ✓

```
# Generations = Age
```

Size of rth Ancestor
- $E \sim \frac{1}{4^r} n$
Summary: Age and Ancestors of Catalan–Stanley trees

▶ “nice”, not too artificial growth process with different parameter behavior ✓

Age

- \(E = O(1) \)
- \(V = O(1) \)
- LLT: ✓

\[# Generations = Age\]

Size of \(r \)th Ancestor

- \(E \sim \frac{1}{4^r} n \)
- \(V \sim \frac{(2^r+1)(2^r-1)}{16^r} n^2 \)