Growing and Destroying Classes of Plane Trees

Benjamin Hackl
joint work with Helmut Prodinger

June 23, 2017

FШF
Der Wissenschaftsfonds.

(Rooted) Plane trees

Characterization:

- unlabeled

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

110

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

- $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ plane trees of size $n+1$

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

- $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ plane trees of size $n+1$
- combinatorial class \mathcal{T}, g.f. $T(z)=\frac{1-\sqrt{1-4 z}}{2}$

Growing plane trees

- How can we grow trees?

ALPEN-ADRIA UNIVERSITAT KLAGENFURT I WIEN GRAZ

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

- Growing trees:

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

- Growing trees:
- grow new leaves out of current leaves and inner nodes

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

110

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

$$
\xrightarrow{\text { reductions }}
$$

- Algorithmic description

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

$$
\xrightarrow{\text { reductions }}
$$

- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow g.f.

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

$$
\xrightarrow{\text { reductions }}
$$

- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow g.f.
- Coefficient extraction; Parameter distribution

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

reductions

- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow g.f.
- Coefficient extraction; Parameter distribution
- Parameters: Age and Ancestor size

Summary: Age

Definition

- $\tau .$. some plane tree

Summary: Age

Definition

- τ...some plane tree
- Age of τ : \# of generations required to grow τ from \bigcirc

Summary: Age

Definition

- $\tau .$. some plane tree
- Age of τ : \# of generations required to grow τ from \bigcirc

Leaves

\rightsquigarrow height (Knuth, de Brujin, Rice) $\mathbb{E} \sim \sqrt{\pi n}$

Summary: Age

Definition

- τ...some plane tree
- Age of τ : \# of generations required to grow τ from \bigcirc

Leaves

\rightsquigarrow height (Knuth, de Brujin, Rice) $\mathbb{E} \sim \sqrt{\pi n}$

Paths
\rightsquigarrow Pruning number (Zeilberger) $\mathbb{E} \sim \log _{4} n$

Summary: Size of r th Ancestor

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$

limit law: \checkmark

Summary: Size of r th Ancestor

Leaves
$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Size of r th Ancestor

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves

$$
\begin{aligned}
& \mathbb{E} \sim\left(2-B_{r}(1 / 4)\right) n \\
& \mathbb{V}=\Theta(n)
\end{aligned}
$$

limit law: \checkmark

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Size of r th Ancestor

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves

$$
\begin{aligned}
& \mathbb{E} \sim\left(2-B_{r}(1 / 4)\right) n \\
& \mathbb{V}=\Theta(n)
\end{aligned}
$$

limit law: \checkmark

$$
y
$$

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: ???

Something New

- Want: not too artificial reduction with different parameter behavior

Something New

- Want: not too artificial reduction with different parameter behavior

Stanley, Catalan bijection \#26

Dyck paths from $(0,0)$ to $(2 n+2,0)$ such that every maximal sequence of consecutive steps $(1,-1)$ ending on the x-axis has odd length.

Something New

- Want: not too artificial reduction with different parameter behavior

Stanley, Catalan bijection \#26

Dyck paths from $(0,0)$ to $(2 n+2,0)$ such that every maximal sequence of consecutive steps $(1,-1)$ ending on the x-axis has odd length.

Something New

- Want: not too artificial reduction with different parameter behavior

Stanley, Catalan bijection \#26

Dyck paths from $(0,0)$ to $(2 n+2,0)$ such that every maximal sequence of consecutive steps $(1,-1)$ ending on the x-axis has odd length.

Catalan-Stanley Trees

Catalan-Stanley Tree:

Catalan-Stanley Trees

Catalan-Stanley Tree:

- . . plane tree

Catalan-Stanley Trees

Catalan-Stanley Tree:

- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Catalan-Stanley Trees

Catalan-Stanley Tree:

- . . . plane tree
- . . rightmost leaves in all branches of root have odd distance

Proposition

- S... class of Catalan-Stanley trees, g.f. $S(z, t)$

Catalan-Stanley Trees

Catalan-Stanley Tree:

- ... plane tree
- . . rightmost leaves in all branches of root have odd distance

Proposition

- S... class of Catalan-Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc, t \triangleq \square$

Catalan-Stanley Trees

Catalan-Stanley Tree:

- . . . plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition

- S... class of Catalan-Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc, t \triangleq \square$
- $T=T(z) \ldots$ g.f. of plane trees

Catalan-Stanley Trees

Catalan-Stanley Tree:

- ... plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition

- S...class of Catalan-Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc, t \triangleq \square$
- $T=T(z) \ldots$ g.f. of plane trees

$$
S(z, t)=z+\frac{z t}{1-t-T^{2}},
$$

Catalan-Stanley Trees

Catalan-Stanley Tree:

- . . . plane tree
- ... rightmost leaves in all branches of root have odd distance

Proposition

- S... class of Catalan-Stanley trees, g.f. $S(z, t)$
- $z \triangleq \bigcirc, t \triangleq \square$
- $T=T(z) \ldots$ g.f. of plane trees

$$
S(z, t)=z+\frac{z t}{1-t-T^{2}},
$$

and for $n \geq 2$ there are C_{n-2} Catalan-Stanley trees with n nodes.

Catalan-Stanley Trees (Proof)

- \mathcal{T}. . class of plane trees

ALPEN-ADRIA UNIVERSITAT kLAGENFURT I WIEN GRAZ

Catalan-Stanley Trees (Proof)

- \mathcal{T}...class of plane trees
- Symbolic description:

$$
s=0+\operatorname{seQ}\binom{\mathcal{T}}{\mathcal{T}} \xrightarrow[\mathrm{SEQ}\binom{\mathcal{T}}{\mathcal{T}}]{ }
$$

110

Catalan-Stanley Trees (Proof)

- \mathcal{T}...class of plane trees
- Symbolic description:

Catalan-Stanley Trees (Proof)

- \mathcal{T}...class of plane trees
- Symbolic description:

$$
\begin{aligned}
s= & 0+\operatorname{SEQ}\binom{\mathcal{T}}{\mathcal{T}} \\
& \Rightarrow \quad \operatorname{SEQ}\binom{\mathcal{T}}{\mathcal{T}} \\
& \Rightarrow \quad(z, t)=z+\frac{z \frac{t}{1-T^{2}}}{1-\frac{t}{1-T^{2}}}=z+\frac{z t}{1-t-T^{2}}
\end{aligned}
$$

- Count w.r.t. size: set $t=z$, use $T=\frac{z}{1-T}$

Catalan-Stanley Trees (Proof)

- \mathcal{T}...class of plane trees
- Symbolic description:

$$
\begin{aligned}
& \mathcal{S}=+\operatorname{SEQ}\left(\begin{array}{l}
\mathcal{T} \\
1 \\
\mathcal{T}
\end{array}\right) \\
& \Rightarrow \quad \operatorname{SEQ}\left(\begin{array}{l}
\mathcal{T} \\
1 \\
\mathcal{T}
\end{array}\right) \\
& \operatorname{SEQ}\left(\begin{array}{l}
\mathcal{T} \\
1 \\
\mathcal{T}
\end{array}\right) \\
&\vdots, t)=z+\frac{z \frac{t}{1-T^{2}}}{1-\frac{t}{1-T^{2}}}=z+\frac{z t}{1-t-T^{2}}
\end{aligned}
$$

- Count w.r.t. size: set $t=z$, use $T=\frac{z}{1-T}$

$$
\Rightarrow \quad S(z, z)=z+\frac{z^{2}}{1-\left(z+T^{2}\right)}=z+\frac{z^{2}}{1-T}=z+z T
$$

Catalan-Stanley Trees (Proof)

- \mathcal{T}...class of plane trees
- Symbolic description:

$$
\begin{aligned}
s= & 0+\operatorname{SEQ}\binom{\mathcal{T}}{\mathcal{T}} \\
& \Rightarrow \quad S(z, t)=z+\frac{z \frac{t}{1-T^{2}}}{1-\frac{t}{1-T^{2}}}=z+\frac{z t}{1-t-T^{2}}
\end{aligned}
$$

- Count w.r.t. size: set $t=z$, use $T=\frac{z}{1-T}$

$$
\Rightarrow \quad S(z, z)=z+\frac{z^{2}}{1-\left(z+T^{2}\right)}=z+\frac{z^{2}}{1-T}=z+z T
$$

- $T(z)=\sum_{n \geq 1} C_{n-1} z^{n}$

Catalan-Stanley Trees (Proof)

- \mathcal{T}. . class of plane trees
- Symbolic description:

$$
\begin{aligned}
\mathcal{S}= & +\operatorname{SEQ}\left(\begin{array}{l}
\mathcal{T} \\
1 \\
\mathcal{T}
\end{array}\right) \\
& \Rightarrow \quad \operatorname{SEQ}\binom{\mathcal{T}}{\mathcal{T}} \\
& \quad S(z, t)=z+\frac{z \frac{t}{1-T^{2}}}{1-\frac{t}{1-T^{2}}}=z+\frac{z t}{1-t-T^{2}}
\end{aligned}
$$

- Count w.r.t. size: set $t=z$, use $T=\frac{z}{1-T}$

$$
\Rightarrow \quad S(z, z)=z+\frac{z^{2}}{1-\left(z+T^{2}\right)}=z+\frac{z^{2}}{1-T}=z+z T
$$

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square
- Optionally: add branches to root

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square
- Optionally: add branches to root
$\bigcirc \mapsto$

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square
- Optionally: add branches to root

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square
- Optionally: add branches to root

Growing Catalan-Stanley Trees

- Idea: grow tree at \square and ensure that odd-distance property is satisfied
- Strategy: insert a sequence of two plane trees before every \square
- Optionally: add branches to root

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :

110

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:

$$
\Phi\left(z^{n} t^{k}\right)=
$$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- O stay as they are: $z \mapsto z$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}
$$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$...counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- \bigcirc stay as they are: $z \mapsto z$
- $\begin{aligned} & \text { get two trees attached: } t \mapsto t T^{2}\end{aligned}$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}\left(t T^{2}\right)^{k}
$$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- \bigcirc stay as they are: $z \mapsto z$
- $\begin{aligned} & \text { get two trees attached: } t \mapsto t T^{2}\end{aligned}$
- add sequences of \square to the root ($k+1$ positions): $\left(\frac{1}{1-t}\right)^{k+1}$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}\left(t T^{2}\right)^{k}\left(\frac{1}{1-t}\right)^{k+1}
$$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- \bigcirc stay as they are: $z \mapsto z$
- \square get two trees attached: $t \mapsto t T^{2}$
- add sequences of \square to the root ($k+1$ positions): $\left(\frac{1}{1-t}\right)^{k+1}$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}\left(t T^{2}\right)^{k}\left(\frac{1}{1-t}\right)^{k+1}
$$

- A: This proves

$$
\Phi(f(z, t))=\frac{1}{1-t} f\left(z, \frac{t}{1-t} T^{2}\right)
$$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- \bigcirc stay as they are: $z \mapsto z$
- \square get two trees attached: $t \mapsto t T^{2}$
- add sequences of \square to the root ($k+1$ positions): $\left(\frac{1}{1-t}\right)^{k+1}$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}\left(t T^{2}\right)^{k}\left(\frac{1}{1-t}\right)^{k+1}
$$

- A: This proves

$$
\Phi(f(z, t))=\frac{1}{1-t} f\left(z, \frac{t}{1-t} T^{2}\right)
$$

- Note: $\Phi(z)=\frac{z}{1-t}=z+z t+z t^{2}+\cdots$

A Generating Function Approach

- Q: Describe tree growth via linear operator Φ :
- \mathcal{F}... some subclass of Catalan-Stanley trees, $f(z, t)$ g.f.
- $\Phi(f(z, t))$. . counts trees grown from those in \mathcal{F}
- Facts: Φ is linear, Image of $z^{n} t^{k}$:
- \bigcirc stay as they are: $z \mapsto z$
- $\begin{aligned} & \text { get two trees attached: } t \mapsto t T^{2}\end{aligned}$
- add sequences of $\boldsymbol{\square}$ to the root ($k+1$ positions): $\left(\frac{1}{1-t}\right)^{k+1}$

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}\left(t T^{2}\right)^{k}\left(\frac{1}{1-t}\right)^{k+1}
$$

- A: This proves

$$
\Phi(f(z, t))=\frac{1}{1-t} f\left(z, \frac{t}{1-t} T^{2}\right)
$$

- Note: $\Phi(z)=\frac{z}{1-t}=z+z t+z t^{2}+\cdots$
- O may not grow!

r-fold Iterated Growth

Proposition

- \mathcal{F}. . family of Catalan-Stanley trees

r-fold Iterated Growth

Proposition

- F. . . family of Catalan-Stanley trees
- Generating function $f(z, t)$

r-fold Iterated Growth

Proposition

- \mathcal{F}. . family of Catalan-Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

r-fold Iterated Growth

Proposition

- \mathcal{F}. . family of Catalan-Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

$$
\Phi^{r}(f(z, t))=\frac{1}{1-t \frac{1-T^{2 r}}{1-T^{2}}} f\left(z, \frac{t T^{2 r}}{1-t \frac{1-T^{2 r}}{1-T^{2}}}\right)
$$

counts trees grown from \mathcal{F} after r generations.

r-fold Iterated Growth

Proposition

- \mathcal{F}. . family of Catalan-Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

$$
\phi^{r}(f(z, t))=\frac{1}{1-t \frac{1-T^{2 r}}{1-T^{2}}} f\left(z, \frac{t T^{2 r}}{1-t \frac{1-T^{2 r}}{1-T^{2}}}\right)
$$

counts trees grown from \mathcal{F} after r generations.
For some Catalan-Stanley tree τ :

- Age of τ : min. \# of generations to grow τ from \bigcirc

r-fold Iterated Growth

Proposition

- \mathcal{F}. . family of Catalan-Stanley trees
- Generating function $f(z, t)$
- $r \in \mathbb{Z}_{\geq 0}$

$$
\phi^{r}(f(z, t))=\frac{1}{1-t \frac{1-T^{2 r}}{1-T^{2}}} f\left(z, \frac{t T^{2 r}}{1-t \frac{1-T^{2 r}}{1-T^{2}}}\right)
$$

counts trees grown from \mathcal{F} after r generations.
For some Catalan-Stanley tree τ :

- Age of τ : min. \# of generations to grow τ from \bigcirc
- Size of r th ancestor: size of r-fold reduced τ

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2} r}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq \mathrm{O}, t \triangleq \boldsymbol{\square}$.

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\Phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2 r}}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq O, t \triangleq \llbracket$.
Proof: O may not grow $\Rightarrow \Phi^{r}(z)$ counts trees of age $\leq r$.

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\Phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2 r}}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq \mathrm{O}, t \triangleq ■$.
Proof: O may not grow $\Rightarrow \Phi^{r}(z)$ counts trees of age $\leq r$.

- $D_{n} \ldots$ age of random Catalan-Stanley tree of size n

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2 r}}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq \mathrm{O}, t \triangleq \boldsymbol{\square}$.
Proof: O may not grow $\Rightarrow \Phi^{r}(z)$ counts trees of age $\leq r$.

- $D_{n} \ldots$ age of random Catalan-Stanley tree of size n
- Facts: $\mathbb{E} D_{n}=\sum_{r \geq 1} \mathbb{P}\left(D_{n} \geq r\right), \mathbb{V} D_{n}=\mathbb{E}\left(D_{n}^{2}\right)-\left(\mathbb{E} D_{n}\right)^{2}$,

$$
\mathbb{E}\left(D_{n}^{2}\right)=\sum_{r \geq 1}(2 r-1) \mathbb{P}\left(D_{n} \geq r\right)
$$

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2 r}}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq \mathrm{O}, t \triangleq \boldsymbol{\square}$.
Proof: O may not grow $\Rightarrow \Phi^{r}(z)$ counts trees of age $\leq r$.

- $D_{n} \ldots$ age of random Catalan-Stanley tree of size n
- Facts: $\mathbb{E} D_{n}=\sum_{r \geq 1} \mathbb{P}\left(D_{n} \geq r\right), \mathbb{V} D_{n}=\mathbb{E}\left(D_{n}^{2}\right)-\left(\mathbb{E} D_{n}\right)^{2}$, $\mathbb{E}\left(D_{n}^{2}\right)=\sum_{r \geq 1}(2 r-1) \mathbb{P}\left(D_{n} \geq r\right)$
- Want: $F_{r}^{\geq}(z) \ldots$ g.f. for trees of age $\geq r$

Trees of Given Age

Corollary

$$
F_{r}^{\leq}(z, t)=\phi^{r}(z)=\frac{z}{1-t \frac{1-T^{2 r}}{1-T^{2}}}
$$

counts Catalan-Stanley trees of age $\leq r$ w.r.t. $z \triangleq \mathrm{O}, t \triangleq \boldsymbol{\square}$.
Proof: O may not grow $\Rightarrow \Phi^{r}(z)$ counts trees of age $\leq r$.

- $D_{n} \ldots$ age of random Catalan-Stanley tree of size n
- Facts: $\mathbb{E} D_{n}=\sum_{r \geq 1} \mathbb{P}\left(D_{n} \geq r\right), \mathbb{V} D_{n}=\mathbb{E}\left(D_{n}^{2}\right)-\left(\mathbb{E} D_{n}\right)^{2}$, $\mathbb{E}\left(D_{n}^{2}\right)=\sum_{r \geq 1}(2 r-1) \mathbb{P}\left(D_{n} \geq r\right)$
- Want: $F_{r}^{\geq}(z) \ldots$ g.f. for trees of age $\geq r$

$$
\begin{aligned}
F_{r}^{\geq}(z) & =S(z, z)-F_{r-1}^{\leq}(z, z)=z(1+T) \frac{T^{2 r-1}}{1+T^{2 r-1}} \\
& =\sum_{n \geq 0} f_{n, r} z^{n}
\end{aligned}
$$

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$
$\frac{T^{2 r-1}}{1+T^{2 r-1}}$

111
ALPEN-ADRIA
UNIVERSITAT KLAGENFURT I WIEN GRAZ

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

$$
\frac{T^{2 r-1}}{1+T^{2 r-1}}=\frac{1}{1+T^{1-2 r}}=\frac{1}{1+2^{2 r-1}(1-\sqrt{1-4 z})^{1-2 r}}
$$

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

$$
\begin{aligned}
\frac{T^{2 r-1}}{1+T^{2 r-1}} & =\frac{1}{1+T^{1-2 r}}=\frac{1}{1+2^{2 r-1}(1-\sqrt{1-4 z})^{1-2 r}} \\
& =\frac{1}{\left(1+2^{2 r-1}\right)\left(1+\frac{2^{2 r-1}}{1+2^{2 r-1}} \sum_{j \geq 1}\binom{2 r+j-2}{j}(1-4 z)^{j / 2}\right)}
\end{aligned}
$$

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

$$
\begin{aligned}
\frac{T^{2 r-1}}{1+T^{2 r-1}} & =\frac{1}{1+T^{1-2 r}}=\frac{1}{1+2^{2 r-1}(1-\sqrt{1-4 z})^{1-2 r}} \\
& =\frac{1}{\left(1+2^{2 r-1}\right)\left(1+\frac{2^{2 r-1}}{1+2^{2 r-1}} \sum_{j \geq 1}\binom{2 r+j-2}{j}(1-4 z)^{j / 2}\right)}
\end{aligned}
$$

- Inversion,

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

$$
\begin{aligned}
\frac{T^{2 r-1}}{1+T^{2 r-1}} & =\frac{1}{1+T^{1-2 r}}=\frac{1}{1+2^{2 r-1}(1-\sqrt{1-4 z})^{1-2 r}} \\
& =\frac{1}{\left(1+2^{2 r-1}\right)\left(1+\frac{2^{2 r-1}}{1+2^{2 r-1}} \sum_{j \geq 1}\binom{2 r+j-2}{j}(1-4 z)^{j / 2}\right)}
\end{aligned}
$$

- Inversion,
- Multiplication by expansion of $z(1+T)$,

Singular Expansion

- Recall: $T=\frac{1-\sqrt{1-4 z}}{2}$

$$
\begin{aligned}
\frac{T^{2 r-1}}{1+T^{2 r-1}} & =\frac{1}{1+T^{1-2 r}}=\frac{1}{1+2^{2 r-1}(1-\sqrt{1-4 z})^{1-2 r}} \\
& =\frac{1}{\left(1+2^{2 r-1}\right)\left(1+\frac{2^{2 r-1}}{1+2^{2 r-1}} \sum_{j \geq 1}\binom{2 r+j-2}{j}(1-4 z)^{j / 2}\right)}
\end{aligned}
$$

- Inversion,
- Multiplication by expansion of $z(1+T)$,
- Coefficient extraction

Result - Age

Theorem (H-Prodinger, 2017)
The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with
$\mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right)$, where

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

$$
\mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right), \text { where }
$$

$$
\frac{f_{n, r}}{C_{n-2}}=\frac{4\left(4^{r}(3 r-1)+1\right)}{\left(4^{r}+2\right)^{2}}
$$

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

$$
\begin{aligned}
& \mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right) \text {, where } \\
& \frac{f_{n, r}}{C_{n-2}}=\frac{4\left(4^{r}(3 r-1)+1\right)}{\left(4^{r}+2\right)^{2}} \\
& \quad-\frac{6 \cdot 64^{r}\left(2 r^{3}-5 r^{2}+4 r-1\right)-6 \cdot 16^{r}\left(16 r^{3}-24 r^{2}+10 r-1\right)+24 \cdot 44^{\prime}\left(2 r^{3}-r^{2}\right)}{\left(4^{2}+2\right)^{4}} n^{-1}
\end{aligned}
$$

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

$$
\begin{aligned}
& \mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right), \text { where } \\
& \quad \frac{f_{n, r}}{C_{n-2}}=\frac{4\left(4^{r}(3 r-1)+1\right)}{\left(4^{r}+2\right)^{2}} \\
& \quad-\frac{6 \cdot 64 r^{r}\left(2 r^{3}-5 r^{2}+4 r-1\right)-6 \cdot 16^{r}\left(16 r^{3}-24 r^{2}+10 r-1\right)+24 \cdot 44^{r}\left(2 r^{3}-r^{2}\right)}{(4 r+2)^{4}} n^{-1} \\
& \quad+O\left(r^{5} 3^{-r} n^{-2}\right),
\end{aligned}
$$

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

$$
\begin{aligned}
& \mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right), \text { where } \\
& \begin{array}{l}
\frac{f_{n, r}}{C_{n-2}}=\frac{4\left(4^{r}(3 r-1)+1\right)}{\left(4^{r}+2\right)^{2}} \\
-\frac{6 \cdot 64^{r}\left(2 r^{3}-5 r^{2}+4 r-1\right)-6 \cdot 16^{r}\left(16 r^{3}-24 r^{2}+10 r-1\right)+24 \cdot 4^{r}\left(2 r^{3}-r^{2}\right)}{\left.(4)^{r}+2\right)^{4}} n^{-1} \\
\quad+O\left(r^{5} 3^{-r} n^{-2}\right), \\
\\
\quad \mathbb{E} D_{n}=2.71825 \ldots-4.22209 \ldots n^{-1}+O\left(n^{-2}\right),
\end{array}
\end{aligned}
$$

Result - Age

Theorem (H-Prodinger, 2017)

The age of a (uniformly random) Catalan-Stanley tree of size n follows a discrete limiting distribution with

$$
\begin{aligned}
& \mathbb{P}\left(D_{n}=r\right)=\frac{1}{C_{n-2}}\left(f_{n, r}-f_{n, r+1}\right), \text { where } \\
& \begin{array}{l}
\frac{f_{n, r}}{C_{n-2}}= \\
\quad \frac{4\left(4^{r}(3 r-1)+1\right)}{(4 r+2)^{2}} \\
-\frac{6 \cdot 64 r\left(2 r^{3}-5 r^{2}+4 r-1\right)-6 \cdot 16^{r}\left(16 r^{3}-24 r^{2}+10 r-1\right)+24 \cdot 4^{r}\left(2 r^{3}-r^{2}\right)}{(4 r+2)^{4}} n^{-1} \\
\quad+O\left(r^{5} 3^{-r} n^{-2}\right), \\
\\
\quad \mathbb{E} D_{n}=2.71825 \ldots-4.22209 \ldots n^{-1}+O\left(n^{-2}\right), \\
\\
\mathbb{V} D_{n}=0.91845 \ldots-9.16217 \ldots n^{-1}+O\left(n^{-2}\right) .
\end{array} .
\end{aligned}
$$

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\Phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

is the bivariate generating function enumerating Catalan-Stanley trees w.r.t. size ($\triangleq z)$ and the size of the r th ancestor $(\triangleq v)$.

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

is the bivariate generating function enumerating Catalan-Stanley trees w.r.t. size ($\triangleq z$) and the size of the r th ancestor ($\triangleq v$).

Proof: mark original tree size with v, expand r times.

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

is the bivariate generating function enumerating Catalan-Stanley trees w.r.t. size ($\triangleq z$) and the size of the r th ancestor ($\triangleq v$).

Proof: mark original tree size with v, expand r times.

- $X_{n, r} \ldots$ size of r th ancestor of (unif. random) Catalan-Stanley tree of size n

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\Phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

is the bivariate generating function enumerating Catalan-Stanley trees w.r.t. size $(\triangleq z)$ and the size of the r th ancestor $(\triangleq v)$.

Proof: mark original tree size with v, expand r times.

- $X_{n, r} \ldots$ size of r th ancestor of (unif. random) Catalan-Stanley tree of size n
- $\mathbb{E} X_{n, r}^{d}=\left.\frac{1}{C_{n-2}} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$

Generating Function for Ancestors

Corollary

$$
G_{r}(z, v)=\left.\Phi^{r}(S(z v, t v))\right|_{t=z}=\frac{1}{1-z \frac{1-T^{2 r}}{1-T^{2}}} S\left(z v, \frac{z T^{2 r}}{1-z \frac{1-T^{2 r}}{1-T^{2}}} v\right)
$$

is the bivariate generating function enumerating Catalan-Stanley trees w.r.t. size $(\triangleq z)$ and the size of the r th ancestor $(\triangleq v)$.

Proof: mark original tree size with v, expand r times.

- $X_{n, r} \ldots$ size of r th ancestor of (unif. random) Catalan-Stanley tree of size n
- $\mathbb{E} X \frac{d}{n, r}=\left.\frac{1}{C_{n-2}} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Singular expansion $z \rightarrow 1 / 4$, Singularity Analysis

Result - Size of r th Ancestor

Theorem (H-Prodinger, 2017)
$X_{n, r}$, the size of the r th ancestor of a (uniformly random) Catalan-Stanley tree of size n satisfies

Result - Size of r th Ancestor

Theorem (H-Prodinger, 2017)

$X_{n, r}$, the size of the r th ancestor of a (uniformly random)
Catalan-Stanley tree of size n satisfies

$$
\mathbb{E} X_{n, r}=\frac{1}{4^{r}} n+\frac{2 \cdot 4^{r}-2 r^{2}+r-2}{2 \cdot 4^{r}}+O\left(n^{-1}\right)
$$

Result - Size of r th Ancestor

Theorem (H-Prodinger, 2017)

$X_{n, r}$, the size of the r th ancestor of a (uniformly random)
Catalan-Stanley tree of size n satisfies

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{1}{4^{r}} n+\frac{2 \cdot 4^{r}-2 r^{2}+r-2}{2 \cdot 4^{r}}+O\left(n^{-1}\right), \\
\mathbb{V} X_{n, r}=\frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}-\frac{\sqrt{\pi}\left(4^{r}(3 r+1)-1\right)}{3 \cdot 16^{r}} n^{3 / 2} \\
+O\left(4^{-r} r^{2} n\right) .
\end{gathered}
$$

Result - Size of r th Ancestor

Theorem (H-Prodinger, 2017)

$X_{n, r}$, the size of the r th ancestor of a (uniformly random)
Catalan-Stanley tree of size n satisfies

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{1}{4^{r}} n+\frac{2 \cdot 4^{r}-2 r^{2}+r-2}{2 \cdot 4^{r}}+O\left(n^{-1}\right), \\
\mathbb{V} X_{n, r}=\frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}-\frac{\sqrt{\pi}\left(4^{r}(3 r+1)-1\right)}{3 \cdot 16^{r}} n^{3 / 2} \\
+O\left(4^{-r} r^{2} n\right) .
\end{gathered}
$$

In particular, we have

$$
\mathbb{E} X_{n, r}=1+\frac{1}{C_{n-2}}\binom{2 n-2 r-4}{n-2}
$$

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Age

Size of r th Ancestor

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Age

Size of r th Ancestor

- $\mathbb{E}=O(1)$

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

$$
\mathbb{E} \sim \frac{1}{4^{r}} n
$$

Summary: Age and Ancestors of Catalan-Stanley trees

- "nice", not too artificial growth process with different parameter behavior \checkmark

Size of r th Ancestor

- $\mathbb{E} \sim \frac{1}{4^{r}} n$
- $\mathbb{V} \sim \frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}$

