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Trimming binary trees

Binary trees can be “trimmed” by the following strategy:
» Remove all leaves

» Merge nodes with only one descendant
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“Surviving” nodes

Label all nodes in the tree by the following rules:
» Leaves — 0 (they do not survive a single reduction)
» val(left child) = val(right child) — increase by 1

» Otherwise: take the maximum
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The register function

Number in the root of the tree: Register function, a.k.a.
Horton-Strahler number.
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Number in the root of the tree: Register function, a.k.a.
Horton-Strahler number.

> Register function = maximal number of tree trimmings
» Applications:
» Required stack size for evaluating an expression
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The register function

Number in the root of the tree: Register function, a.k.a.
Horton-Strahler number.

> Register function = maximal number of tree trimmings

» Applications:

» Required stack size for evaluating an expression
» Branching complexity of river networks (e.g. Danube: 9)
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The register function — selection of known results

» Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of
expected value
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> Flajolet, Prodinger (1986): generalization to (weighted)
unary-binary trees
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The register function — selection of known results

» Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of
expected value

> Flajolet, Prodinger (1986): generalization to (weighted)
unary-binary trees

» Drmota, Prodinger (2006): generalization to t-ary trees

» Louchard, Prodinger (2008): register function for directed
lattice paths
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Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a
sequence of {1, —, ], }):

» If the path starts with 1 or |:
rotate it

> If the path ends with — or +:
rotate the last step

» Consider the pairs of
horizontal-vertical segments:

» Replace — ... 1 ... by 7,

» — ... by \,
> —...l...by
» «— ... T...by \.

» Rotate the entire path again
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Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a
sequence of {1, —, ], }):

» If the path starts with 1 or |:
rotate it
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Reduction — Example
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Compactification degree and functional equation

» Compactification degree: number of reductions until a path is
compactified to an atomic step {1, —, |, <}
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Compactification degree and functional equation

» Compactification degree: number of reductions until a path is
compactified to an atomic step {1, —, |, <}

The generating function of simple two-dimensional lattice paths of

length > 1, L(z) = {22, fulfills the functional equation

72

L(z) = 4z + 4L(m).
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Compactification degree and functional equation

» Compactification degree: number of reductions until a path is
compactified to an atomic step {1, —, |, <}

Proposition

The generating function of simple two-dimensional lattice paths of

length > 1, L(z) = $%, fulfills the functional equation

2

L(z) = 4z + 4L((1_Z—22)2).

Can be checked directly—or proven combinatorially!
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Functional equation (combinatorial proof)
Read the reduction backwards:
» Replace - by —...1T...and soon...
» Optionally rotate the entire path and/or the last step
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Functional equation (combinatorial proof)
Read the reduction backwards:
» Replace - by —...1T...and soon...
» Optionally rotate the entire path and/or the last step

Regular expression for — ... 1 ...
S (= or <) (1 or )

2
= Replacement corresponds to z —7(152z) :
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Functional equation (combinatorial proof)
Read the reduction backwards:
» Replace - by —...1T...and soon...
» Optionally rotate the entire path and/or the last step

Regular expression for — ... 1 ...
— (= or <) 1T (T or )

2

4
= Replacement corresponds to z +— T2y
Optional rotations: factor 4.
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Functional equation (combinatorial proof)
Read the reduction backwards:
» Replace - by —...1T...and soon...
» Optionally rotate the entire path and/or the last step

Regular expression for — ... 1 ...
— (= or <) 1T (T or )

2

4
= Replacement corresponds to z +— T2y
Optional rotations: factor 4.

22
4L(—>
(1-22)?
counts all reducible paths.
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Functional equation (combinatorial proof)
Read the reduction backwards:
» Replace - by —...1T...and soon...
» Optionally rotate the entire path and/or the last step
Regular expression for — ... 1 ...

— (= or <) 1T (T or )

2

4
= Replacement corresponds to z +— T2y
Optional rotations: factor 4.

“((1_2—22)2)

counts all reducible paths.
Adding 4z (for {f,—,],<}) then counts all paths. O l.'nLPEN wn
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Compactification degree — Recursion

» L7(z) ...OGF for paths with compactification degree r

r
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» L7(z) ...OGF for paths with compactification degree r
» Only {1, —, ], } have comp. deg. 0 = L;(z) =4z

» Recursion:

L7(z) = 4L, (ﬁ) r>1

. o 2
> “Magic substitution” z = ﬁ: zZ+ (1_27)2 becomes

u— u?
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Compactification degree — Recursion

» L7(z) ...OGF for paths with compactification degree r
» Only {1, —, ], } have comp. deg. 0 = L;(z) =4z
> Recursion:

L7(z) = 4L, (ﬁ) r>1

m H . H ” _ u . 22

> “Magic substitution” z = e’ 27 Ty becomes
U u?
» Overall:

2F
_ u u
1=(2) = 4r+1— — r+1—r
r( ) (1 + U)2 s (1 + u2 )2
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Compactification degree — Random variables

» X, ...compactification degree of a (uniformly) random lattice
path of length n

= P(X,=r)= —[Zn]i;: )
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climbing-densities.gif

Compactification degree — Random variables
» X, ...compactification degree of a (uniformly) random lattice

path of length n

= P(X,=r) = —[Zn]i;: &)

» Probability densities of Xj up to Xsi2:
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Analysis of EX), (1)
> As we have EX,, = 47"[2"] }_ ., rL; (2), we analyze

6(z) =Y i (2)

r>0
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» With z = (1%5 and u = et we have
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Analysis of EX), (1)

> As we have EX,, = 47"[2"] }_ ., rL; (2), we analyze

G(z) =) _ri(2)

r>0

» With z = ﬁg and u = e~ t, we have

G(Z): Z r4r+1(_1))\—1)\e—t)\2’
r,aA>0

~~ Local expansion for t — 0 (z — 1—11) via Mellin transform
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Analysis of EX), (2)

» By basic properties of the Mellin transform we find
22—5

G*(s) =T(s)C(s — 1)@
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Analysis of EX), (2)

» By basic properties of the Mellin transform we find
22—5

G*(s) =T(s)C(s — 1)@

» Double pole at s = 2, simple poles at s =2 + |c2>7g”2k =2+ xk
for k € Z\ {0}
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Analysis of EX), (2)

» By basic properties of the Mellin transform we find
22—5

G*(s) =T(s)C(s — 1)@

» Double pole at s = 2, simple poles at s =2 + |§7g7’2k =2+ xk
for k € Z\ {0}

» Mellin inversion:

6@ =i [T 1)y gt a

270 5 22-s
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Analysis of EX), (2)

» By basic properties of the Mellin transform we find
22—5

G*(s) =T(s)C(s — 1)@

» Double pole at s = 2, simple poles at s =2 + |c2)7g”2k =2+ xk
for k € Z\ {0}

» Mellin inversion:

1 3+ioco 22—5
Glz) = —— /3 (5)C(s — 1) gygt™* s

27 —ico

» Obtain contribution by shifting line of integration
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Analysis of EX), (3)

» Residue at s = 2:
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Analysis of EX), (3)

» Residue at s = 2:

4 4 -2
———t “logt (— — 2) t
log2 gt log 2

» Substituting z back for t and expanding locally for z — %
yields

log(1 — 4z) 2—3log2
log2(1—4z) ' log2(1—4z)
log2 —1 log(l —4z)
log 2 3log?2

+0(1—4z)
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Analysis of EX), (4)

> After division by 47, the local expansion translates into

y+2—3log?2

|
% T log 2

+0(n7?).
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Analysis of EX), (4)

> After division by 47, the local expansion translates into

y+2—3log?2

-2
2log 2 + O(n™ ).

log, n +

> Plot against exact values (left: comparison, right: difference):




Analysis of EX), (5)

Collecting the contributions at s = 2 + x yields:
Theorem (H.—Heuberger—Prodinger, 2016)

The expected compactification degree among all simple 2D lattice
paths of length n admits the asymptotic expansion

v+ 2—3log?2

-1
2log? + 61(logg n) + O(n ™),

EX, = logy n+
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Analysis of EX), (5)

Collecting the contributions at s = 2 + x yields:
Theorem (H.—Heuberger—Prodinger, 2016)

The expected compactification degree among all simple 2D lattice
paths of length n admits the asymptotic expansion

v+ 2—3log?2

EX, =1
n = K eF 2log?2

+ d1(log, n) + O(nfl),

where

]_X

M(2 + xk)C(L + Xk) ki
Iog2 2 M+ xe/2) -

is a small 1-periodic fluctuation.

AAAAAAAAAAAAAAAAAAA



Analysis of VX,

Similarly: variance VX, can be determined.

Theorem (H.—Heuberger-Prodinger, 2016)

The corresponding variance is given by

w2 —24log?m — 48("(0) —24 2logm 11

B 24 log?2 o log2 12

¥+2—3log?2
log 2

VX,

+ 02(logy n) + 91(logy n)

+ 63 (logy n) + O(Iog n)’

where 01(x) is defined as above and d>(x) is a small 1-periodic
fluctuation as well.

AAAAAAAAAAAAAAAAAAA



Expectation and Variance: exact vs. asymptotic
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Expectation and Variance: exact vs. asymptotic

100 200 300 400 100 200 300 200

Computations ~» Asymptotic Expansions in SageMath!
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Fringe Analysis

> Fringe: lattice path together with all reductions
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Fringe Analysis

> Fringe: lattice path together with all reductions

» Size of rth fringe. . .length of rth lattice path reduction

1

» How large is the rth fringe and the entire fringe on average?
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Bivariate generating function

» H,(z,v)...BGF counting path length (with z) and rth fringe
size (with v)
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Bivariate generating function

» H,(z,v)...BGF counting path length (with z) and rth fringe
size (with v)
> Recursion:

4zv

Holz,v) = 1—4zv’ Hi(z,v) = 4Hr— ((1 —222)2’ v)
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Bivariate generating function

» H,(z,v)...BGF counting path length (with z) and rth fringe
size (with v)
> Recursion:

4zv

Holz,v) = 1—4zv’ Hi(z,v) = 4Hr— ((1 —222)2’ v)

> Intuition: v “remembers” original size; path expansion in z
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Bivariate generating function

» H,(z,v)...BGF counting path length (with z) and rth fringe
size (with v)
> Recursion:

4zv

Holz,v) = 1—4zv’ Hi(z,v) = 4Hr— ((1 —222)2’ v)

> Intuition: v “remembers” original size; path expansion in z
» Explicit solution with z = ﬁz:

4120y
(1+u?)?—4u*v

H.(z,v) =
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Size of rth fringe

Theorem (H.—Heuberger-Prodinger, 2016)

The expectation E,f; . and variance V,,L; . of the rth fringe size of a
random path of length n have the asymptotic expansions
n 1—-47"

Evr=gt 3

+0(n*07"),
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Size of rth fringe

Theorem (H.—Heuberger-Prodinger, 2016)

The expectation E,f; . and variance V,,L; . of the rth fringe size of a
random path of length n have the asymptotic expansions

n 1—4-" _
EnL;r = 47 + 3 + O(n30r n)’
Ar—1  —2.16"—5-4"+7 B
L o_ 5
Voir = 37167 T 45167 +0(n70.7),
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Size of rth fringe

Theorem (H.—Heuberger-Prodinger, 2016)

The expectation E,f; . and variance V,,L; . of the rth fringe size of a
random path of length n have the asymptotic expansions

n 1-—-47" _
EnL;r = 47 + 3 + O(n30r n)’
/-1  —2.16"—5-4"+7 B
Vi =316 T 4516 +0(m0,7),
_ 4
where 9,« = HT(Zﬂ'm > 1.
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Size of rth fringe

Theorem (H.—Heuberger-Prodinger, 2016)

The expectation E,f; . and variance V,,L; . of the rth fringe size of a
random path of length n have the asymptotic expansions

n 1-—-47" _
EnL;r = 47 + 3 + O(naor n)’
-1  —2.16"—5-4"+7 B
L _ 5
Voir = 37167 T 45167 +0(n70.7),
_ 4
where 9,« = HT(Zﬂ'm > 1.

For r > 0, the random variables modeling the rth fringe size of
lattice paths of length n are asymptotically normally distributed.
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Overall fringe size

Strategy: sum over H,(z,v), expansion via Mellin transform,
singularity analysis.
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Overall fringe size

Strategy: sum over H,(z,v), expansion via Mellin transform,
singularity analysis.

Theorem (H.—Heuberger-Prodinger, 2016)

The expected fringe size EL for a random path of length n admits
the asymptotic expansion

543y —11llog?2

4
EL—=_ L
Nt 318 Nt —g1g2

3 3

+ 6(logy n) + O(n"* log n),

where §(x) is a 1-periodic fluctuation of mean zero with

6(x) = Wzlogz gﬁ%r(?’ +2Xk) (2¢(xk — 1) + Clxx + 1)) ™.
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Outlook

~~ reductions of rooted plane trees
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Outlook
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