The Register Function and Reductions of Binary Trees and Lattice Paths

Benjamin Hackl

joint work with Clemens Heuberger and Helmut Prodinger

AofA'16, Kraków

July 8, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

Number in the root of the tree: *Register function*, a.k.a. *Horton-Strahler* number.

Register function = maximal number of tree trimmings

- Register function = maximal number of tree trimmings
- Applications:

- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression

- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression
 - Branching complexity of river networks (e.g. Danube: 9)

The register function - selection of known results

 Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of expected value

The register function – selection of known results

- Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of expected value
- Flajolet, Prodinger (1986): generalization to (weighted) unary-binary trees

The register function - selection of known results

- Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of expected value
- Flajolet, Prodinger (1986): generalization to (weighted) unary-binary trees
- ▶ Drmota, Prodinger (2006): generalization to *t*-ary trees

The register function – selection of known results

- Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of expected value
- Flajolet, Prodinger (1986): generalization to (weighted) unary-binary trees
- ▶ Drmota, Prodinger (2006): generalization to *t*-ary trees
- Louchard, Prodinger (2008): register function for directed lattice paths

- ► If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \ldots \downarrow \ldots \mathsf{by} \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- ► If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \dots \downarrow \dots \text{ by } \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- ► If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \ldots \downarrow \ldots \text{ by } \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- ► If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \ldots \downarrow \ldots \text{ by } \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - $\blacktriangleright \rightarrow \ldots \downarrow \ldots \text{ by } \searrow,$
 - $\blacktriangleright \leftarrow \dots \downarrow \dots \mathsf{by} \swarrow,$
 - $\blacktriangleright \leftarrow \dots \uparrow \dots \text{ by } \nwarrow.$
- Rotate the entire path again

- ► If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \dots \downarrow \dots \mathsf{by} \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - $\blacktriangleright \rightarrow \ldots \downarrow \ldots \text{ by } \searrow,$
 - $\blacktriangleright \leftarrow \dots \downarrow \dots \mathsf{by} \swarrow,$
 - $\leftarrow \dots \uparrow \dots$ by \nwarrow .
- Rotate the entire path again

- If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - \blacktriangleright \rightarrow ... \downarrow ... by \searrow ,
 - $\blacktriangleright \leftarrow \ldots \downarrow \ldots \mathsf{by} \swarrow,$
 - $\blacktriangleright \leftarrow \dots \uparrow \dots \text{ by } \nwarrow.$
- Rotate the entire path again

- If the path starts with ↑ or ↓: rotate it
- ► If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow ,
 - $\blacktriangleright \rightarrow \ldots \downarrow \ldots \text{ by }\searrow\text{,}$
 - $\blacktriangleright \leftarrow \dots \downarrow \dots \mathsf{by} \swarrow,$
 - $\blacktriangleright \leftarrow \dots \uparrow \dots \text{ by } \nwarrow.$
- Rotate the entire path again

Reduction – Example

Reduction – Example

Compactification degree and functional equation

Compactification degree: number of reductions until a path is compactified to an atomic step {↑, →, ↓, ←}

Compactification degree and functional equation

Compactification degree: number of reductions until a path is compactified to an atomic step {↑, →, ↓, ←}

Proposition

The generating function of simple two-dimensional lattice paths of length ≥ 1 , $L(z) = \frac{4z}{1-4z}$, fulfills the functional equation

$$L(z) = 4z + 4L\left(\frac{z^2}{(1-2z)^2}\right).$$

Compactification degree and functional equation

Compactification degree: number of reductions until a path is compactified to an atomic step {↑, →, ↓, ←}

Proposition

The generating function of simple two-dimensional lattice paths of length ≥ 1 , $L(z) = \frac{4z}{1-4z}$, fulfills the functional equation

$$L(z) = 4z + 4L\left(\frac{z^2}{(1-2z)^2}\right).$$

Can be checked directly-or proven combinatorially!

Functional equation (combinatorial proof)

Read the reduction *backwards*:

- Replace \rightarrow by $\rightarrow \dots \uparrow \dots$ and so on...
- Optionally rotate the entire path and/or the last step

Functional equation (combinatorial proof)

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step

Regular expression for $\rightarrow \ldots \uparrow \ldots$

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step

Regular expression for $\rightarrow \ldots \uparrow \ldots$

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step

Regular expression for $\rightarrow \ldots \uparrow \ldots$

$$ightarrow$$
 ($ightarrow$ or $ightarrow$)*

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step

Regular expression for $\rightarrow \ldots \uparrow \ldots$

$$ightarrow$$
 ($ightarrow$ or $ightarrow$)* \uparrow

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step

Regular expression for $\rightarrow \ldots \uparrow \ldots$

 $\rightarrow (\rightarrow \ \text{or} \ \leftarrow)^* \uparrow (\uparrow \ \text{or} \ \downarrow)^*$

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step Regular expression for $\rightarrow ... \uparrow ...$:

$$ightarrow (
ightarrow ext{ or } \leftarrow)^* \uparrow (\uparrow ext{ or } \downarrow)^*$$

 \Rightarrow Replacement corresponds to $z \mapsto \frac{z^2}{(1-2z)^2}$.

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step Regular expression for $\rightarrow ... \uparrow ...$:

$$ightarrow (
ightarrow ext{ or } \leftarrow)^* \uparrow (\uparrow ext{ or } \downarrow)^*$$

⇒ Replacement corresponds to $z \mapsto \frac{z^2}{(1-2z)^2}$. Optional rotations: factor 4.

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step Regular expression for $\rightarrow ... \uparrow ...$:

$$ightarrow$$
 ($ightarrow$ or $ightarrow$)* \uparrow (\uparrow or \downarrow)*

⇒ Replacement corresponds to $z \mapsto \frac{z^2}{(1-2z)^2}$. Optional rotations: factor 4.

$$4L\Big(\frac{z^2}{(1-2z)^2}\Big)$$

counts all reducible paths.

Read the reduction *backwards*:

- \blacktriangleright Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step Regular expression for $\rightarrow \ldots \uparrow \ldots$:

$$ightarrow (
ightarrow ext{ or } \leftarrow)^* \uparrow (\uparrow ext{ or } \downarrow)^*$$

⇒ Replacement corresponds to $z \mapsto \frac{z^2}{(1-2z)^2}$. Optional rotations: factor 4.

$$4L\Big(\frac{z^2}{(1-2z)^2}\Big)$$

counts all reducible paths.

Adding 4z (for $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$) then counts all paths. \Box

▶ $L_r^{=}(z)$... OGF for paths with compactification degree r

- ▶ $L_r^{=}(z) \dots \text{OGF}$ for paths with compactification degree r
- ▶ Only $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$ have comp. deg. $0 \Rightarrow L_0^=(z) = 4z$

- ▶ $L_r^{=}(z) \dots \text{OGF}$ for paths with compactification degree r
- Only $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$ have comp. deg. $0 \Rightarrow L_0^=(z) = 4z$
- Recursion:

$$L_r^{=}(z) = 4L_{r-1}^{=}\left(\frac{z^2}{(1-2z)^2}\right), \quad r \ge 1$$

- ▶ $L_r^{=}(z) \dots \text{OGF}$ for paths with compactification degree r
- ▶ Only $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$ have comp. deg. $0 \Rightarrow L_0^=(z) = 4z$
- Recursion:

$$L_r^{=}(z) = 4L_{r-1}^{=}\Big(rac{z^2}{(1-2z)^2}\Big), \quad r \geq 1$$

• "Magic substitution" $z = \frac{u}{(1+u)^2}$: $z \mapsto \frac{z^2}{(1-2z)^2}$ becomes $u \mapsto u^2$

- ▶ $L_r^{=}(z) \dots \text{OGF}$ for paths with compactification degree r
- ▶ Only $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$ have comp. deg. 0 $\Rightarrow L_0^=(z) = 4z$
- Recursion:

$$L_r^{=}(z) = 4L_{r-1}^{=}\Big(rac{z^2}{(1-2z)^2}\Big), \quad r \geq 1$$

- "Magic substitution" $z = \frac{u}{(1+u)^2}$: $z \mapsto \frac{z^2}{(1-2z)^2}$ becomes $u \mapsto u^2$
- Overall:

$$L_r^{=}(z) = 4^{r+1} \frac{u}{(1+u)^2} \bigg|_{u \mapsto u^{2^r}} = 4^{r+1} \frac{u^{2^r}}{(1+u^{2^r})^2}$$

Compactification degree – Random variables

► X_n...compactification degree of a (uniformly) random lattice path of length n

$$\Rightarrow \mathbb{P}(X_n = r) = \frac{[z^n]L_r^{=}(z)}{4^n}$$

Compactification degree – Random variables

► X_n...compactification degree of a (uniformly) random lattice path of length n

$$\Rightarrow \mathbb{P}(X_n = r) = \frac{[z^n]L_r^{=}(z)}{4^n}$$

• Probability densities of X_1 up to X_{512} :

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

• As we have
$$\mathbb{E}X_n = 4^{-n}[z^n] \sum_{r \ge 0} rL_r^{=}(z)$$
, we analyze

$$G(z) = \sum_{r\geq 0} rL_r^{=}(z)$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

• As we have
$$\mathbb{E}X_n = 4^{-n}[z^n] \sum_{r \ge 0} rL_r^{=}(z)$$
, we analyze

$$G(z) = \sum_{r\geq 0} rL_r^{=}(z)$$

• With
$$z = \frac{u}{(1+u)^2}$$
 and $u = e^{-t}$, we have

$$G(z) = \sum r4^{r+1}(-1)^{\lambda-1}\lambda e^{-t}$$

$$G(z) = \sum_{r,\lambda \ge 0} r 4^{r+1} (-1)^{\lambda-1} \lambda e^{-t\lambda 2^r}$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

• As we have
$$\mathbb{E}X_n = 4^{-n}[z^n] \sum_{r \ge 0} rL_r^=(z)$$
, we analyze

$$G(z) = \sum_{r\geq 0} rL_r^{=}(z)$$

• With
$$z = \frac{u}{(1+u)^2}$$
 and $u = e^{-t}$, we have

$$G(z) = \sum_{r,\lambda \ge 0} r 4^{r+1} (-1)^{\lambda - 1} \lambda e^{-t\lambda 2^r}$$

ightarrow Local expansion for t
ightarrow 0 $(z
ightarrow rac{1}{4})$ via Mellin transform

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

By basic properties of the Mellin transform we find

$$G^*(s) = \Gamma(s)\zeta(s-1)rac{2^{2-s}}{1-2^{2-s}}$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

By basic properties of the Mellin transform we find

$$G^*(s) = \Gamma(s)\zeta(s-1)rac{2^{2-s}}{1-2^{2-s}}$$

Double pole at s = 2, simple poles at s = 2 + ^{2πi}/_{log2}k = 2 + χ_k for k ∈ ℤ \ {0}

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

By basic properties of the Mellin transform we find

$$G^*(s) = \Gamma(s)\zeta(s-1)rac{2^{2-s}}{1-2^{2-s}}$$

- Double pole at s = 2, simple poles at s = 2 + ^{2πi}/_{log2}k = 2 + χ_k for k ∈ ℤ \ {0}
- Mellin inversion:

$$G(z) = \frac{1}{2\pi i} \int_{3-i\infty}^{3+i\infty} \Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}} t^{-s} ds$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

By basic properties of the Mellin transform we find

$$G^*(s) = \Gamma(s)\zeta(s-1)rac{2^{2-s}}{1-2^{2-s}}$$

- Double pole at s = 2, simple poles at s = 2 + ^{2πi}/_{log2}k = 2 + χ_k for k ∈ ℤ \ {0}
- Mellin inversion:

$$G(z) = \frac{1}{2\pi i} \int_{3-i\infty}^{3+i\infty} \Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}} t^{-s} ds$$

Obtain contribution by shifting line of integration

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Residue at s = 2:

$$-\frac{4}{\log 2}t^{-2}\log t + \left(\frac{4}{\log 2} - 2\right)t^{-2}$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Residue at s = 2:

$$-\frac{4}{\log 2}t^{-2}\log t + \left(\frac{4}{\log 2} - 2\right)t^{-2}$$

► Substituting z back for t and expanding locally for z → ¹/₄ yields

$$-\frac{\log(1-4z)}{\log 2(1-4z)} + \frac{2-3\log 2}{\log 2(1-4z)} + \frac{\log 2-1}{\log 2} + \frac{\log(1-4z)}{3\log 2} + O(1-4z)$$

Motivation: Binary Trees	Lattice Paths 000000	Asymptotic Analysis	Fringes

• After division by 4^n , the local expansion translates into

$$\log_4 n + \frac{\gamma + 2 - 3\log 2}{2\log 2} + O(n^{-2}).$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

▶ After division by 4ⁿ, the local expansion translates into

$$\log_4 n + \frac{\gamma + 2 - 3\log 2}{2\log 2} + O(n^{-2}).$$

Plot against exact values (left: comparison, right: difference):

Collecting the contributions at $s = 2 + \chi_k$ yields:

Theorem (H.–Heuberger–Prodinger, 2016)

The expected compactification degree among all simple 2D lattice paths of length n admits the asymptotic expansion

$$\mathbb{E}X_n = \log_4 n + \frac{\gamma + 2 - 3\log 2}{2\log 2} + \delta_1(\log_4 n) + O(n^{-1}),$$

Collecting the contributions at $s = 2 + \chi_k$ yields:

Theorem (H.–Heuberger–Prodinger, 2016)

The expected compactification degree among all simple 2D lattice paths of length n admits the asymptotic expansion

$$\mathbb{E}X_n = \log_4 n + \frac{\gamma + 2 - 3\log 2}{2\log 2} + \delta_1(\log_4 n) + O(n^{-1}),$$

where

$$\delta_1(x) = \frac{1}{\log 2} \sum_{k \neq 0} \frac{\Gamma(2 + \chi_k)\zeta(1 + \chi_k)}{\Gamma(1 + \chi_k/2)} e^{2k\pi i x}$$

is a small 1-periodic fluctuation.

Analysis of $\mathbb{V}X_n$

Similarly: variance $\mathbb{V}X_n$ can be determined.

Theorem (H.–Heuberger–Prodinger, 2016)

The corresponding variance is given by

$$\mathbb{V}X_n = \frac{\pi^2 - 24\log^2 \pi - 48\zeta''(0) - 24}{24\log^2 2} - \frac{2\log \pi}{\log 2} - \frac{11}{12} + \delta_2(\log_4 n) + \frac{\gamma + 2 - 3\log 2}{\log 2}\delta_1(\log_4 n) + \delta_1^2(\log_4 n) + O\left(\frac{1}{\log n}\right),$$

where $\delta_1(x)$ is defined as above and $\delta_2(x)$ is a small 1-periodic fluctuation as well.

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
		000000	

Expectation and Variance: exact vs. asymptotic

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Expectation and Variance: exact vs. asymptotic

Computations ~ Asymptotic Expansions in SageMath!

Motivation: Binary Trees	Lattice Paths 000000	Asymptotic Analysis	Fringes •000

Fringe Analysis

► Fringe: lattice path together with all reductions

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	0000000	•000

Fringe Analysis

- Fringe: lattice path together with all reductions
- Size of rth fringe...length of rth lattice path reduction

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	0000000	•000

Fringe Analysis

- Fringe: lattice path together with all reductions
- Size of rth fringe...length of rth lattice path reduction

▶ How large is the *r*th fringe and the entire fringe on average?

Bivariate generating function

H_r(z, v)...BGF counting path length (with *z*) and *r*th fringe size (with *v*)

Bivariate generating function

- ► H_r(z, v)... BGF counting path length (with z) and rth fringe size (with v)
- Recursion:

$$H_0(z, v) = \frac{4zv}{1-4zv}, \quad H_r(z, v) = 4H_{r-1}\left(\left(\frac{z}{1-2z}\right)^2, v\right)$$

Bivariate generating function

- ► H_r(z, v)... BGF counting path length (with z) and rth fringe size (with v)
- Recursion:

$$H_0(z, v) = \frac{4zv}{1-4zv}, \quad H_r(z, v) = 4H_{r-1}\left(\left(\frac{z}{1-2z}\right)^2, v\right)$$

Intuition: v "remembers" original size; path expansion in z

Bivariate generating function

- ► H_r(z, v)...BGF counting path length (with z) and rth fringe size (with v)
- Recursion:

$$H_0(z, v) = \frac{4zv}{1-4zv}, \quad H_r(z, v) = 4H_{r-1}\left(\left(\frac{z}{1-2z}\right)^2, v\right)$$

- Intuition: v "remembers" original size; path expansion in z
- Explicit solution with $z = \frac{u}{(1+u)^2}$:

$$H_r(z, v) = \frac{4^{r+1}u^{2^r}v}{(1+u^{2^r})^2 - 4u^{2^r}v}$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Theorem (H.-Heuberger-Prodinger, 2016)

The expectation $E_{n;r}^L$ and variance $V_{n;r}^L$ of the rth fringe size of a random path of length n have the asymptotic expansions

$$E_{n;r}^{L} = \frac{n}{4^{r}} + \frac{1 - 4^{-r}}{3} + O(n^{3}\theta_{r}^{-n}),$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Theorem (H.–Heuberger–Prodinger, 2016)

The expectation $E_{n;r}^L$ and variance $V_{n;r}^L$ of the rth fringe size of a random path of length n have the asymptotic expansions

$$E_{n;r}^{L} = \frac{n}{4^{r}} + \frac{1 - 4^{-r}}{3} + O(n^{3}\theta_{r}^{-n}),$$

$$V_{n;r}^{L} = \frac{4^{r}-1}{3\cdot 16^{r}}n + \frac{-2\cdot 16^{r}-5\cdot 4^{r}+7}{45\cdot 16^{r}} + O(n^{5}\theta_{r}^{-n}),$$

Theorem (H.-Heuberger-Prodinger, 2016)

The expectation $E_{n;r}^L$ and variance $V_{n;r}^L$ of the rth fringe size of a random path of length n have the asymptotic expansions

$$E_{n;r}^{L} = \frac{n}{4^{r}} + \frac{1 - 4^{-r}}{3} + O(n^{3}\theta_{r}^{-n}),$$

$$V_{n;r}^{L} = \frac{4^{r} - 1}{3 \cdot 16^{r}} n + \frac{-2 \cdot 16^{r} - 5 \cdot 4^{r} + 7}{45 \cdot 16^{r}} + O(n^{5} \theta_{r}^{-n}).$$

where $\theta_r = \frac{4}{2 + 2\cos(2\pi/2^r)} > 1$.

Theorem (H.-Heuberger-Prodinger, 2016)

The expectation $E_{n;r}^L$ and variance $V_{n;r}^L$ of the rth fringe size of a random path of length n have the asymptotic expansions

$$E_{n;r}^{L} = \frac{n}{4^{r}} + \frac{1 - 4^{-r}}{3} + O(n^{3}\theta_{r}^{-n}),$$

$$V_{n;r}^{L} = \frac{4^{r}-1}{3\cdot 16^{r}}n + \frac{-2\cdot 16^{r}-5\cdot 4^{r}+7}{45\cdot 16^{r}} + O(n^{5}\theta_{r}^{-n}),$$

where $\theta_r = \frac{4}{2+2\cos(2\pi/2^r)} > 1$. For r > 0, the random variables modeling the rth fringe size of lattice paths of length n are asymptotically normally distributed.

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	0000000	0000

Overall fringe size

Strategy: sum over $H_r(z, v)$, expansion via Mellin transform, singularity analysis.

Overall fringe size

Strategy: sum over $H_r(z, v)$, expansion via Mellin transform, singularity analysis.

Theorem (H.–Heuberger–Prodinger, 2016)

The expected fringe size E_n^L for a random path of length n admits the asymptotic expansion

$$E_n^L = \frac{4}{3}n + \frac{1}{3}\log_4 n + \frac{5 + 3\gamma - 11\log 2}{18\log 2} + \delta(\log_4 n) + O(n^{-1}\log n),$$

where $\delta(x)$ is a 1-periodic fluctuation of mean zero with

$$\delta(x) = \frac{2}{3\sqrt{\pi}\log 2} \sum_{k\neq 0} \Gamma\left(\frac{3+\chi_k}{2}\right) \left(2\zeta(\chi_k-1)+\zeta(\chi_k+1)\right) e^{2k\pi i x}.$$

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	0000000	0000

\rightsquigarrow reductions of rooted plane trees

22

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringe
			0000

\rightsquigarrow reductions of rooted plane trees

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	000000	0000

Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
0000	000000	0000000	0000

0000 000000 000000 0000	Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
	0000	000000	000000	0000

00000 0000000 0000000 00000000000000000	ivation: Binary Trees	lysis Frir	ringe
666666 6666666 6 6	00	00	000

0000 0000000 000000 0000	Motivation: Binary Trees	Lattice Paths	Asymptotic Analysis	Fringes
	0000	000000	0000000	0000

