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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→ →
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“Surviving” nodes

Label all nodes in the tree by the following rules:

I Leaves → 0 (they do not survive a single reduction)

I val(left child) = val(right child) → increase by 1

I Otherwise: take the maximum
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The register function

Number in the root of the tree: Register function, a.k.a.
Horton-Strahler number.

I Register function = maximal number of tree trimmings
I Applications:

I Required stack size for evaluating an expression
I Branching complexity of river networks (e.g. Danube: 9)

+
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The register function – selection of known results

I Flajolet, Raoult, Vuillemin (1979): asymptotic expansion of
expected value

I Flajolet, Prodinger (1986): generalization to (weighted)
unary-binary trees

I Drmota, Prodinger (2006): generalization to t-ary trees

I Louchard, Prodinger (2008): register function for directed
lattice paths

4
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Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a
sequence of {↑,→, ↓,←}):

I If the path starts with ↑ or ↓:
rotate it

I If the path ends with → or ←:
rotate the last step

I Consider the pairs of
horizontal-vertical segments:

I Replace → . . . ↑ . . . by ↗,
I → . . . ↓ . . . by ↘,
I ← . . . ↓ . . . by ↙,
I ← . . . ↑ . . . by ↖.

I Rotate the entire path again

5
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Reduction – Example
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Compactification degree and functional equation

I Compactification degree: number of reductions until a path is
compactified to an atomic step {↑,→, ↓,←}

Proposition

The generating function of simple two-dimensional lattice paths of
length ≥ 1, L(z) = 4z

1−4z , fulfills the functional equation

L(z) = 4z + 4L
( z2

(1− 2z)2

)
.

Can be checked directly—or proven combinatorially!

7
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Functional equation (combinatorial proof)
Read the reduction backwards:

I Replace → by → . . . ↑ . . . and so on. . .

I Optionally rotate the entire path and/or the last step

Regular expression for → . . . ↑ . . .:

→ (→ or ←)∗ ↑ (↑ or ↓)∗

⇒ Replacement corresponds to z 7→ z2

(1−2z)2 .

Optional rotations: factor 4.

4L
( z2

(1− 2z)2

)
counts all reducible paths.
Adding 4z (for {↑,→, ↓,←}) then counts all paths. �

8
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Compactification degree – Recursion

I L=r (z) . . . OGF for paths with compactification degree r

I Only {↑,→, ↓,←} have comp. deg. 0 ⇒ L=0 (z) = 4z

I Recursion:

L=r (z) = 4L=r−1

( z2

(1− 2z)2

)
, r ≥ 1

I “Magic substitution” z = u
(1+u)2

: z 7→ z2

(1−2z)2 becomes

u 7→ u2

I Overall:

L=r (z) = 4r+1 u

(1 + u)2

∣∣∣∣
u 7→u2r

= 4r+1 u2
r

(1 + u2r )2

9
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Compactification degree – Random variables

I Xn . . . compactification degree of a (uniformly) random lattice
path of length n

⇒ P(Xn = r) =
[zn]L=r (z)

4n

I Probability densities of X1 up to X512:

10
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Analysis of EXn (1)

I As we have EXn = 4−n[zn]
∑

r≥0 rL
=
r (z), we analyze

G (z) =
∑
r≥0

rL=r (z)

I With z = u
(1+u)2

and u = e−t , we have

G (z) =
∑
r ,λ≥0

r4r+1(−1)λ−1λe−tλ2
r

 Local expansion for t → 0 (z → 1
4) via Mellin transform
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Analysis of EXn (2)

I By basic properties of the Mellin transform we find

G ∗(s) = Γ(s)ζ(s − 1)
22−s

1− 22−s

I Double pole at s = 2, simple poles at s = 2 + 2πi
log 2k = 2 + χk

for k ∈ Z \ {0}
I Mellin inversion:

G (z) =
1

2πi

∫ 3+i∞

3−i∞
Γ(s)ζ(s − 1)

22−s

1− 22−s
t−s ds

I Obtain contribution by shifting line of integration
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Analysis of EXn (3)

I Residue at s = 2:

− 4

log 2
t−2 log t +

( 4

log 2
− 2
)
t−2

I Substituting z back for t and expanding locally for z → 1
4

yields

− log(1− 4z)

log 2 (1− 4z)
+

2− 3 log 2

log 2 (1− 4z)

+
log 2− 1

log 2
+

log(1− 4z)

3 log 2
+ O(1− 4z)

13
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Analysis of EXn (4)

I After division by 4n, the local expansion translates into

log4 n +
γ + 2− 3 log 2

2 log 2
+ O(n−2).

I Plot against exact values (left: comparison, right: difference):
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Analysis of EXn (5)

Collecting the contributions at s = 2 + χk yields:

Theorem (H.–Heuberger–Prodinger, 2016)

The expected compactification degree among all simple 2D lattice
paths of length n admits the asymptotic expansion

EXn = log4 n +
γ + 2− 3 log 2

2 log 2
+ δ1(log4 n) + O(n−1),

where

δ1(x) =
1

log 2

∑
k 6=0

Γ(2 + χk)ζ(1 + χk)

Γ(1 + χk/2)
e2kπix

is a small 1-periodic fluctuation.
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Analysis of VXn

Similarly: variance VXn can be determined.

Theorem (H.–Heuberger–Prodinger, 2016)

The corresponding variance is given by

VXn =
π2 − 24 log2 π − 48ζ ′′(0)− 24

24 log2 2
− 2 log π

log 2
− 11

12

+ δ2(log4 n) +
γ + 2− 3 log 2

log 2
δ1(log4 n)

+ δ21(log4 n) + O
( 1

log n

)
,

where δ1(x) is defined as above and δ2(x) is a small 1-periodic
fluctuation as well.

16



Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Expectation and Variance: exact vs. asymptotic

Computations  Asymptotic Expansions in SageMath!
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Fringe Analysis

I Fringe: lattice path together with all reductions

I Size of rth fringe. . . length of rth lattice path reduction

I How large is the r th fringe and the entire fringe on average?
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Bivariate generating function

I Hr (z , v). . . BGF counting path length (with z) and rth fringe
size (with v)

I Recursion:

H0(z , v) =
4zv

1− 4zv
, Hr (z , v) = 4Hr−1

(( z

1− 2z

)2
, v
)

I Intuition: v “remembers” original size; path expansion in z

I Explicit solution with z = u
(1+u)2

:

Hr (z , v) =
4r+1u2

r
v

(1 + u2r )2 − 4u2r v

19
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Size of r th fringe

Theorem (H.–Heuberger–Prodinger, 2016)

The expectation EL
n;r and variance V L

n;r of the rth fringe size of a
random path of length n have the asymptotic expansions

EL
n;r =

n

4r
+

1− 4−r

3
+ O(n3θ−nr ),

V L
n;r =

4r − 1

3 · 16r
n +
−2 · 16r − 5 · 4r + 7

45 · 16r
+ O(n5θ−nr ),

where θr = 4
2+2 cos(2π/2r ) > 1.

For r > 0, the random variables modeling the rth fringe size of
lattice paths of length n are asymptotically normally distributed.
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Motivation: Binary Trees Lattice Paths Asymptotic Analysis Fringes

Overall fringe size

Strategy: sum over Hr (z , v), expansion via Mellin transform,
singularity analysis.

Theorem (H.–Heuberger–Prodinger, 2016)

The expected fringe size EL
n for a random path of length n admits

the asymptotic expansion

EL
n =

4

3
n +

1

3
log4 n +

5 + 3γ − 11 log 2

18 log 2
+ δ(log4 n) +O(n−1 log n),

where δ(x) is a 1-periodic fluctuation of mean zero with

δ(x) =
2

3
√
π log 2

∑
k 6=0

Γ
(3 + χk

2

)(
2ζ(χk − 1) + ζ(χk + 1)

)
e2kπix .
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Outlook

 reductions of rooted plane trees
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