## Iterative Cutting and Pruning of Planar Trees

#### Benjamin Hackl

joint work in progress with Sara Kropf and Helmut Prodinger



Analco17 January 16, 2017







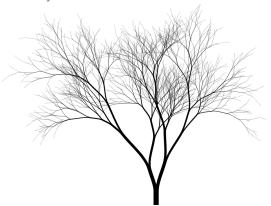


#### Procedural Tree Generation

► Computer Graphics: "How to generate trees that look like trees efficiently?"

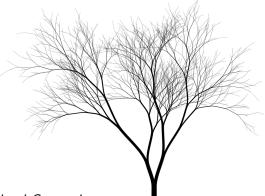


Computer Graphics: "How to generate trees that look like trees efficiently?"





► Computer Graphics: "How to generate trees that look like trees efficiently?"

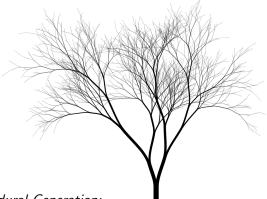


► Procedural Generation:



#### Procedural Tree Generation

► Computer Graphics: "How to generate trees that look like trees efficiently?"

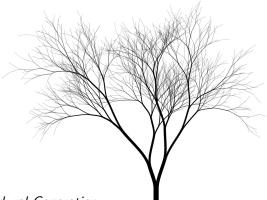


- Procedural Generation:
  - grow the tree iteratively,



#### Procedural Tree Generation

► Computer Graphics: "How to generate trees that look like trees efficiently?"



- Procedural Generation:
  - grow the tree iteratively,
  - apply fancy graphics.



## Growing rooted plane trees

► How can we grow trees?



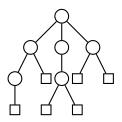
- ► How can we grow trees?
- Easier question: what could be the inverse operation?



- ► How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!

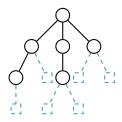


- ► How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!



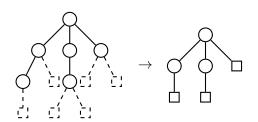


- How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!



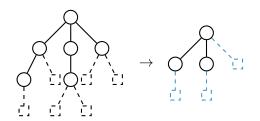


- ► How can we grow trees?
- ► Easier question: what could be the inverse operation?
  - ► Most straightforward: cut away all leaves!



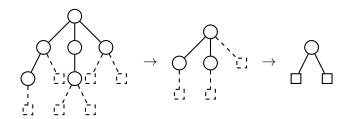


- ► How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!



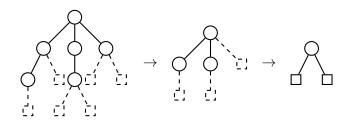


- ► How can we grow trees?
- ► Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!





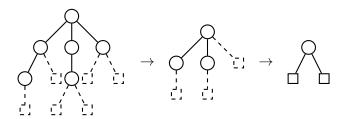
- How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!



Growing trees:



- How can we grow trees?
- Easier question: what could be the inverse operation?
  - Most straightforward: cut away all leaves!



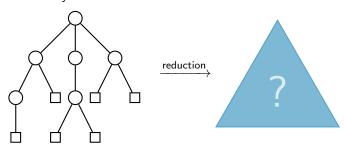
- Growing trees:
  - grow new leaves out of current leaves and inner nodes



► Aim: analysis of tree structure under iterated reduction

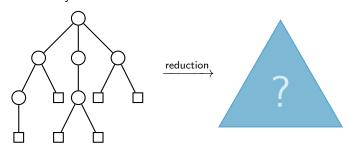


► Aim: analysis of tree structure under iterated reduction





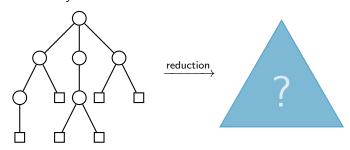
► Aim: analysis of tree structure under iterated reduction



Algorithmic description



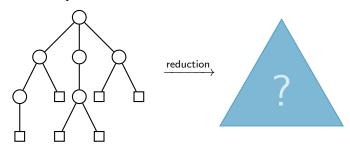
**Aim:** analysis of tree structure under iterated reduction



- Algorithmic description
- Investigation of "tree expansion" → GF



**Aim:** analysis of tree structure under iterated reduction



- Algorithmic description
- Investigation of "tree expansion" → GF
- Coefficient extraction; Parameter distribution

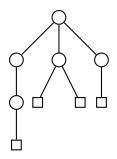


#### How do we cut our trees?

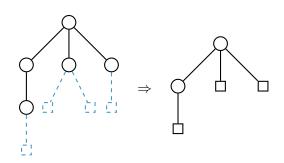








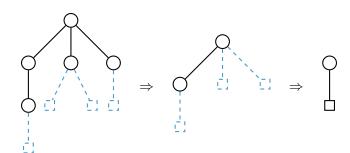






## How do we cut our trees?







## Proposition

▶ T...rooted plane trees



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)...BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)... BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)...BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



#### **Proposition**

- ▶ T...rooted plane trees
- ▶ T(z,t)... BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)...BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)... BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)... BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$\mathcal{T} = \Box + \mathcal{T} \mathcal{T} \cdots \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



## Proposition

- ▶ T...rooted plane trees
- ▶ T(z,t)... BGF for  $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Cutting Leaves

**Proof.** Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$



# Expansion operators

▶ F... family of rooted plane trees; BGF f(z,t)



# Expansion operators

- ▶ F...family of rooted plane trees; BGF f(z,t)
- ightharpoonup expansion operator  $\Phi \Rightarrow \Phi(f(z,t))$  counts expanded trees



## Expansion operators

- ▶ F... family of rooted plane trees; BGF f(z,t)
- expansion operator  $\Phi \Rightarrow \Phi(f(z,t))$  counts expanded trees

#### Leaf expansion $\Phi_L$

▶ inverse operation to leaf reduction

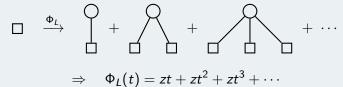


## Expansion operators

- ▶ F... family of rooted plane trees; BGF f(z,t)
- ightharpoonup expansion operator  $\Phi \Rightarrow \Phi(f(z,t))$  counts expanded trees

#### Leaf expansion $\Phi_L$

- inverse operation to leaf reduction
  - attach leaves to all current leaves (necessary)
  - attach leaves to inner nodes (optional)





#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$



#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves  $\rightsquigarrow z^n t^k$
- **Expansion:**



► In total:

$$\Phi_L(z^n t^k) =$$



#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves  $\rightsquigarrow z^n t^k$
- **Expansion:** 
  - inner nodes stay inner nodes



► In total:

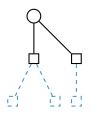
$$\Phi_L(z^nt^k)=z^n\cdot$$



#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves  $\rightsquigarrow z^n t^k$
- **Expansion:** 
  - inner nodes stay inner nodes
  - attach a non-empty sequence of leaves to all current leaves



In total:

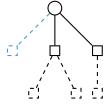
$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot$$



#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves  $\rightsquigarrow z^n t^k$
- **Expansion:** 
  - inner nodes stay inner nodes
  - attach a non-empty sequence of leaves to all current leaves
  - ▶ there are 2n + k 1 positions where sequences of leaves can be inserted



► In total:

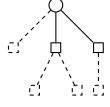
$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$



#### **Proposition**

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves  $\rightsquigarrow z^n t^k$
- **Expansion:** 
  - inner nodes stay inner nodes
  - ▶ attach a non-empty sequence of leaves to all current leaves
  - ▶ there are 2n + k 1 positions where sequences of leaves can be inserted



► In total:

$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$

 $\triangleright$  Linear extension of  $\Phi_I$  proves the proposition.



# Properties of $\Phi_I$

▶ Functional equation:  $T(z,t) = \Phi_L(T(z,t)) + t$ 



# Properties of $\Phi_{I}$

- ▶ Functional equation:  $T(z,t) = \Phi_I(T(z,t)) + t$
- ▶ With  $z = u/(1+u)^2$  and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\right)^n \left(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)^k$$



Cutting Leaves

# Properties of $\Phi_L$

- ▶ Functional equation:  $T(z,t) = \Phi_L(T(z,t)) + t$
- ▶ With  $z = u/(1 + u)^2$  and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\right)^n \left(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)^k$$

▶ BGF  $G_r(z, v)$  for size comparison: z tracks original size, v size of r-fold reduced tree



# Properties of $\Phi_L$

- ▶ Functional equation:  $T(z,t) = \Phi_L(T(z,t)) + t$
- With  $z = u/(1+u)^2$  and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\right)^n \left(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)^k$$

- ▶ BGF  $G_r(z, v)$  for size comparison: z tracks original size, v size of r-fold reduced tree
- ▶ Intuition: v "remembers" size while tree family is expanded



# Properties of $\Phi_L$

- ▶ Functional equation:  $T(z,t) = \Phi_L(T(z,t)) + t$
- With  $z = u/(1+u)^2$  and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\right)^n \left(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)^k$$

- ▶ BGF  $G_r(z, v)$  for size comparison: z tracks original size, v size of r-fold reduced tree
- ▶ Intuition: v "remembers" size while tree family is expanded

$$G_r(z,v) = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}v, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}v\right)$$



# Cutting leaves

## Theorem (H.-Kropf-Prodinger, 2016)

▶ r...number of reductions, fixed



### Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X<sub>n,r</sub>...RV for size of r-fold leaf-reduced tree with originally n nodes



# Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X<sub>n,r</sub>...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$



## Cutting leaves

#### Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- ► X<sub>n.r...</sub> RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$



# Cutting leaves

#### Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ► X<sub>n,r</sub>...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and  $X_{n,r}$  is asymptotically normally distributed.



▶  $\mathbb{E}X_{n,r}$  and  $\mathbb{V}X_{n,r}$  follow via singularity analysis



# Cutting leaves – Some insights

- $ightharpoonup \mathbb{E} X_{n,r}$  and  $\mathbb{V} X_{n,r}$  follow via singularity analysis
- We can do even better: all factorial moments:

$$\mathbb{E}X_{n,r}^{\underline{d}} = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$



# Cutting leaves – Some insights

- $ightharpoonup \mathbb{E} X_{n,r}$  and  $\mathbb{V} X_{n,r}$  follow via singularity analysis
- ▶ We can do even better: all factorial moments:

$$\mathbb{E}X_{n,r}^{\underline{d}} = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

**Cutting Leaves** 

This requires identities like

$$\sum_{n>1} \binom{n}{d} \frac{u^{n-d} (1-ux)^{2n+d-1} (1-u)^{d-1}}{(1-u^2x)^{2n-1}} \tilde{N}_{n-1} \left( \frac{x(1-u)^2}{(1-ux)^2} \right) = \tilde{N}_{d-1}(x)$$



- $ightharpoonup \mathbb{E} X_{n,r}$  and  $\mathbb{V} X_{n,r}$  follow via singularity analysis
- ▶ We can do even better: all factorial moments:

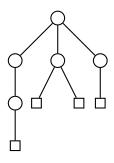
$$\mathbb{E}X_{n,r}^{\underline{d}} = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

This requires identities like

$$\sum_{n\geq 1} \binom{n}{d} \frac{u^{n-d} (1-ux)^{2n+d-1} (1-u)^{d-1}}{(1-u^2x)^{2n-1}} \tilde{N}_{n-1} \left(\frac{x(1-u)^2}{(1-ux)^2}\right) = \tilde{N}_{d-1}(x)$$

Asymptotic normality:  $X_{n,r}$  is a tree parameter with small toll function, limit law by Wagner (2015)

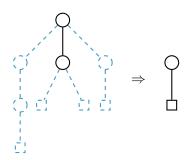
▶ Remove all paths that end in a leaf!







▶ Remove all paths that end in a leaf!







## Path expansions

► Append one path to leaf → longer path \$





# Path expansions

- ▶ Append one path to leaf → longer path ¼
- → at least two paths need to be appended





# Path expansions

- ▶ Append one path to leaf → longer path ¼
- → at least two paths need to be appended
- Write  $p = \frac{t}{1-z} \dots BGF$  for paths

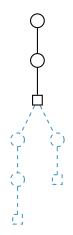




## Path expansions

- Append one path to leaf → longer path ‡
- → at least two paths need to be appended
- ▶ Write  $p = \frac{t}{1-z}$  ... BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$





## Path expansions

- Append one path to leaf → longer path ‡
- → at least two paths need to be appended
- ▶ Write  $p = \frac{t}{1-z}$  ... BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$

#### **Proposition**

The linear operator given by

$$\Phi_P(f(z,t)) = (1-p)f\left(\frac{z}{(1-p)^2}, \frac{zp^2}{(1-p)^2}\right)$$

is the path expansion operator.





# Generating function for path reductions

#### **Proposition**

BGF for size comparison ( $z \rightsquigarrow$  original size,  $v \rightsquigarrow$  r-fold path reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where 
$$z = u/(1 + u)^2$$
.



# Generating function for path reductions

#### **Proposition**

BGF for size comparison ( $z \leadsto \text{original size}, v \leadsto r\text{-fold path}$  reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where  $z = u/(1 + u)^2$ .

Observation. This is the BGF for leaf reductions

$$\frac{1-u^{r+2}}{(1-u^{r+1})(1+u)}T\Big(\frac{u(1-u^{r+1})^2}{(1-u^{r+2})^2}v,\frac{u^{r+1}(1-u)^2}{(1-u^{r+2})^2}v\Big)$$

with  $r \mapsto 2^{r+1} - 2$ 



## Theorem (H.-Kropf-Prodinger, 2016)

► r...number of reductions, fixed



# Cutting paths – Pruning

## Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $\triangleright$   $X_{n,r}$ ... RV for size of r-fold path-reduced tree with originally n nodes



## Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- ► X<sub>n,r</sub>...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$



## Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X<sub>n,r</sub>...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$



## Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X<sub>n,r</sub>...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore,  $X_{n,r}$  is asymptotically normally distributed.



# Cutting paths – Pruning

### Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X<sub>n,r</sub>...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore,  $X_{n,r}$  is asymptotically normally distributed.

► Factorial moments are known as well



### Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X<sub>n,r</sub>...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

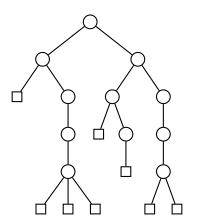
Furthermore,  $X_{n,r}$  is asymptotically normally distributed.

- ► Factorial moments are known as well
- ▶ Proof: subsequence of RV's from cutting leaves



Pruning 0000•0

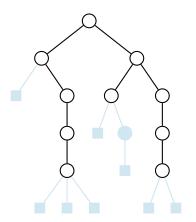
► Trees can be partitioned into paths (→ branches)!





# Counting total number of paths

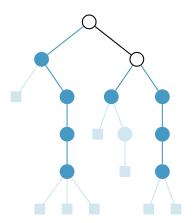
► Trees can be partitioned into paths (~> branches)!





# Counting total number of paths

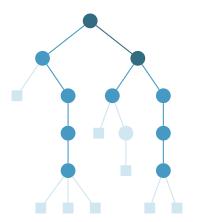
► Trees can be partitioned into paths (~> branches)!





# Counting total number of paths

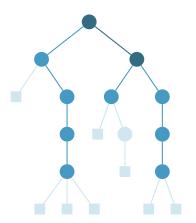
► Trees can be partitioned into paths (~> branches)!





Pruning 0000•0

► Trees can be partitioned into paths (~> branches)!



Average number of paths?



### Theorem (H.-Kropf-Prodinger, 2017)

 $\triangleright$   $P_n \dots RV$  for number of paths in tree of size n



# Cutting paths – total number of paths

#### Theorem (H.-Kropf-Prodinger, 2017)

 $\triangleright$   $P_n \dots RV$  for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2}).$$



# Cutting paths – total number of paths

### Theorem (H.-Kropf-Prodinger, 2017)

 $\triangleright$   $P_n \dots RV$  for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2}).$$

$$\delta(x) := \frac{1}{\log 2} \sum_{k \neq 0} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x},$$

• 
$$\alpha := \sum_{k>1} 1/(2^k - 1) \approx 1.606695$$
,

 $c \approx -0.118105$ .



# Cutting paths – total number of paths

### Theorem (H.-Kropf-Prodinger, 2017)

 $ightharpoonup P_n \dots RV$  for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2}).$$

- $\delta(x) := \frac{1}{\log 2} \sum_{k \neq 0} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}$ ,
- $\alpha := \sum_{k>1} 1/(2^k 1) \approx 1.606695$ ,
- ►  $c \approx -0.118105$ .
- ► **Proof:** Sum of leaves in all reductions, Mellin-transform, singularity analysis.

▶ Introduced by Chen, Deutsch, Elizalde (2006)



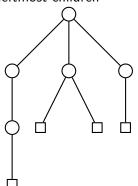


# How do we cut our trees? (3)

▶ Introduced by Chen, Deutsch, Elizalde (2006)

#### Old leaves

Remove all leaves that are leftmost children





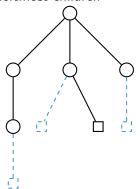


# How do we cut our trees? (3)

▶ Introduced by Chen, Deutsch, Elizalde (2006)

#### Old leaves

Remove all leaves that are leftmost children



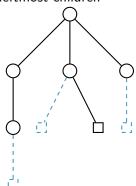




▶ Introduced by Chen, Deutsch, Elizalde (2006)

#### Old leaves

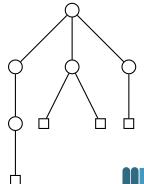
Remove all leaves that are leftmost children





### Old paths

Remove all paths consisting of leftmost children

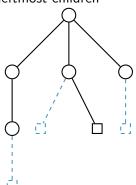


# How do we cut our trees? (3)

▶ Introduced by Chen, Deutsch, Elizalde (2006)

#### Old leaves

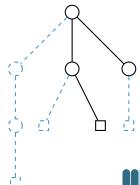
Remove all leaves that are leftmost children





### Old paths

Remove all paths consisting of leftmost children





### Theorem (H.-Kropf-Prodinger, 2016)

▶ r... number of reductions, fixed



### Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $\triangleright$   $B_h(z)$ ... polynomial enumerating binary trees of height  $\leq h$



## Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $\triangleright$   $B_h(z)$ ... polynomial enumerating binary trees of height  $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r}=(2-B_{r-1}(1/4))n-\frac{B'_{r-1}(1/4)}{8}+O(n^{-1}),$$



## Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $\triangleright$   $B_h(z)$ ... polynomial enumerating binary trees of height  $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_{r-1}(1/4))n - \frac{B'_{r-1}(1/4)}{8} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \left(B_{r-1}(1/4) - B_{r-1}(1/4)^2 + \frac{(2 - B_{r-1}(1/4))B'_{r-1}(1/4)}{2}\right)n + O(1).$$



### Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $\triangleright$   $B_h(z)$ ... polynomial enumerating binary trees of height  $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_{r-1}(1/4))n - \frac{B'_{r-1}(1/4)}{8} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \left(B_{r-1}(1/4) - B_{r-1}(1/4)^2 + \frac{(2 - B_{r-1}(1/4))B'_{r-1}(1/4)}{2}\right)n + O(1).$$

**Note.** Via Flajolet, Odlyzko (1982):

$$B_r(1/4) = 2 - \frac{4}{r} - \frac{4 \log r}{r^2} + O(r^{-3}), \quad r \to \infty$$



### Theorem (H.-Kropf-Prodinger, 2016)

r...number of reductions, fixed



### Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $\triangleright$   $X_{n,r}...RV$  for size of r-fold "old path"-reduced tree with originally n nodes



### Theorem (H.–Kropf–Prodinger, 2016)

- r... number of reductions, fixed
- $\triangleright$   $X_{n,r} \dots RV$  for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$



### Theorem (H.–Kropf–Prodinger, 2016)

- r... number of reductions, fixed
- $\triangleright$   $X_{n,r} \dots RV$  for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{2r(r+1)}{3(r+2)^2}n + O(1).$$

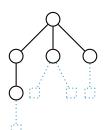


#### Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓



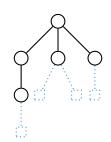


#### Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

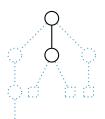


#### **Paths**

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓



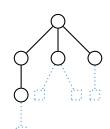


#### Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

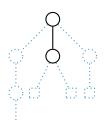


#### **Paths**

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓

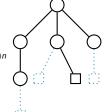


### **Old leaves**

$$\mathbb{E} \sim (2-B_{r-1}(1/4))n$$

 $\mathbb{V} = \Theta(n)$ 

limit law: ???



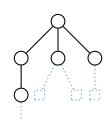


#### Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

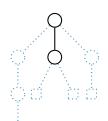


#### **Paths**

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓

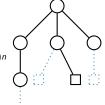


#### Old leaves

$$\mathbb{E} \sim (2-B_{r-1}(1/4))n$$

 $\mathbb{V} = \Theta(n)$ 

limit law: ???



### Old paths

$$\mathbb{E} \sim \frac{2n}{r+2}$$

$$\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$$

limit law: ???

