On Reductions of Rooted Plane Trees

Benjamin Hackl

joint work in progress with Sara Kropf and Helmut Prodinger

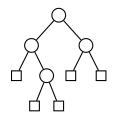
CCC 2016, Hagenberg

August 1, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

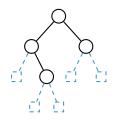
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000			

- Remove all leaves
- Merge nodes with only one descendant



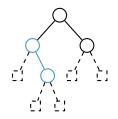
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000			

- Remove all leaves
- Merge nodes with only one descendant



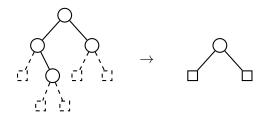
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000			

- Remove all leaves
- Merge nodes with only one descendant



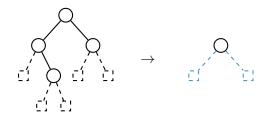
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000			

- Remove all leaves
- Merge nodes with only one descendant



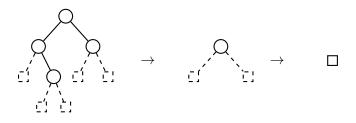
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000			

- Remove all leaves
- Merge nodes with only one descendant



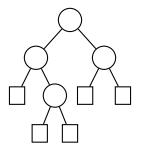
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
●000	000000	0000	000000

- Remove all leaves
- Merge nodes with only one descendant



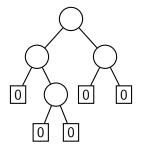
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum



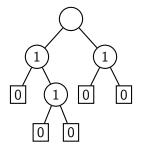
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum



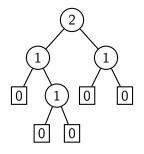
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum



Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum



Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

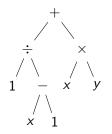
Number in the root of the tree: *Register function*, a.k.a. *Horton–Strahler* number

Register function = maximal number of tree trimmings

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- Register function = maximal number of tree trimmings
- Applications:

- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression



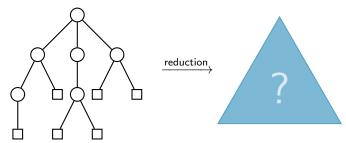
- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression
 - Branching complexity of river networks (e.g. Danube: 9)

Motivation: Binary Trees 000●	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths
	211		

Analysis of "surviving nodes" after iterative reduction

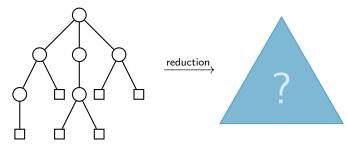
Motivation: Binary Trees	Cutting Leaves 0000000	Pruning 0000	Oldest Leaves and Paths

Analysis of "surviving nodes" after iterative reduction



Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

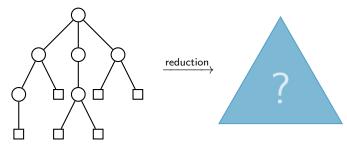
Analysis of "surviving nodes" after iterative reduction



Algorithmic description

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

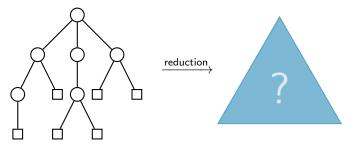
Analysis of "surviving nodes" after iterative reduction



- Algorithmic description
- ► Investigation of "tree expansion" ~→ GF

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Analysis of "surviving nodes" after iterative reduction

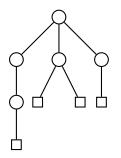


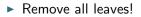
- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow GF
- Coefficient extraction; Parameter distribution

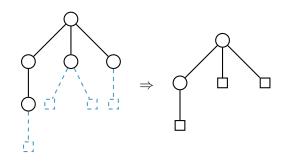
	000000		
Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths

Remove all leaves!

Remove all leaves!

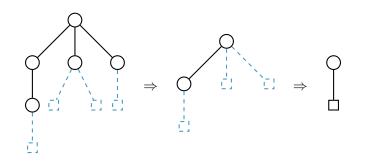






Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	000000		
			N

► Remove all leaves!



Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Proposition

▶ *T*... rooted plane trees

00000 000000 00000 000000	Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000	000000	0000	000000

Proposition

- ► *T*... rooted plane trees
- T(z, t)...BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

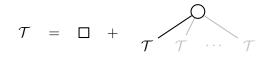
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

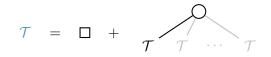
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

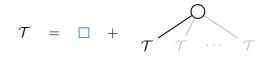
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

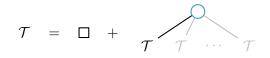
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)$$
... BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

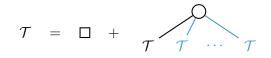
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)$$
... BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

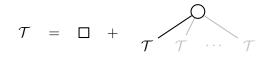
Proposition

▶ *T*... rooted plane trees

►
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	000000		000000

Leaf expansion

• F... family of rooted plane trees; BGF f(z, t)

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Leaf expansion

- F... family of rooted plane trees; BGF f(z, t)
- Φ ... "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Leaf expansion

- F... family of rooted plane trees; BGF f(z, t)
- Φ ... "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Leaf expansion

- F... family of rooted plane trees; BGF f(z, t)
- ▶ Φ... "expansion operator" ⇒ Φ(f(z, t)) is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

is the leaf expansion operator.

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

Leaf expansion

- F... family of rooted plane trees; BGF f(z, t)
- ▶ Φ... "expansion operator" ⇒ Φ(f(z, t)) is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

is the leaf expansion operator.

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

• Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	000000		

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:

► In total:

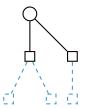
 $\Phi_L(z^n t^k) =$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes

► In total:

$$\Phi_L(z^nt^k)=z^n\cdot$$

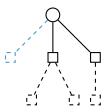
- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves



► In total:

$$\Phi_L(z^n t^k) = z^n \cdot \frac{z^k t^k}{(1-t)^k} \cdot$$

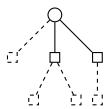
- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k 1 positions where sequences of leaves can be inserted



► In total:

$$\Phi_L(z^n t^k) = z^n \cdot \frac{z^k t^k}{(1-t)^k} \cdot \frac{1}{(1-t)^{2n+k-1}}$$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k 1 positions where sequences of leaves can be inserted



In total:

$$\Phi_L(z^n t^k) = z^n \cdot \frac{z^k t^k}{(1-t)^k} \cdot \frac{1}{(1-t)^{2n+k-1}}$$

• Linear extension of Φ_L proves the proposition.

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

• Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths 000000

- Functional equation: $T(z, t) = \Phi_L(T(z, t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths 000000

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

▶ BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths 000000

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

- BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree
- ▶ Intuition: v "remembers" size while tree family is expanded

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

- BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree
- ▶ Intuition: v "remembers" size while tree family is expanded

$$G_r(z,v) = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\left(\frac{u(1-u^{r+1})^2}{(1-u^{r+2})^2}v, \frac{u^{r+1}(1-u)^2}{(1-u^{r+2})^2}v\right)$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000000		

Theorem (H.–Kropf–Prodinger, 2016)

▶ *r*...number of reductions, fixed

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000000		

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000000		000000

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000000		000000

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000000		000000

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

• $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- We can do even better: all factorial moments:

$$\mathbb{E}X_{\overline{n,r}}^{\underline{d}} = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- ▶ We can do even better: all factorial moments:

$$\mathbb{E}X_{n,r}^d = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

This requires identities like

$$\sum_{n\geq 1} \binom{n}{d} \frac{u^{n-d}(1-ux)^{2n+d-1}(1-u)^{d-1}}{(1-u^2x)^{2n-1}} \tilde{N}_{n-1}\left(\frac{x(1-u)^2}{(1-ux)^2}\right) = \tilde{N}_{d-1}(x)$$

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- We can do even better: all factorial moments:

$$\mathbb{E}X_{n,r}^d = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

This requires identities like

$$\sum_{n\geq 1} \binom{n}{d} \frac{u^{n-d}(1-ux)^{2n+d-1}(1-u)^{d-1}}{(1-u^2x)^{2n-1}} \tilde{N}_{n-1}\left(\frac{x(1-u)^2}{(1-ux)^2}\right) = \tilde{N}_{d-1}(x)$$

 Asymptotic normality: X_{n,r} is a tree parameter with small toll function, limit law by Wagner (2015)

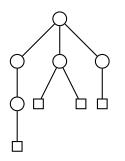
Motivation: Binary Trees

Cutting Leaves

Pruning •000 Oldest Leaves and Paths 000000

How do we cut our trees? (2)

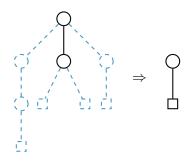
Remove all paths that end in a leaf!



Motivation: Binary Trees

Remove all paths that end in a leaf!

How do we cut our trees? (2)



00000 0000000 00000 000000	Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
	0000	000000	0000	000000

► Append one path to leaf ~→ longer path 4

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
		0000	

- ► Append one path to leaf ~→ longer path 4
- \blacktriangleright \Rightarrow at least two paths need to be appended

Motivation: Binary Trees	Cutting Leaves	Pruning ○●○○	Oldest Leaves and Paths

- ► Append one path to leaf ~→ longer path 4
- \blacktriangleright \Rightarrow at least two paths need to be appended
- Write $p = \frac{t}{1-z} \dots$ BGF for paths

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- ► Append one path to leaf ~→ longer path 4
- ightarrow \Rightarrow at least two paths need to be appended
- Write $p = \frac{t}{1-z} \dots$ BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	000000

- ► Append one path to leaf ~→ longer path 4
- \blacktriangleright \Rightarrow at least two paths need to be appended
- Write $p = \frac{t}{1-z} \dots$ BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$

Proposition

The linear operator given by

$$\Phi_P(f(z,t)) = (1-p)f\Big(rac{z}{(1-p)^2},rac{zp^2}{(1-p)^2}\Big)$$

is the path expansion operator.

Motivation: Binary Trees Cutti	ng Leaves	Pruning	Oldest Leaves and Paths
0000 0000	0000	0000	000000

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow$ r-fold path reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where $z = u/(1+u)^2$.

Generating function for path reductions

Proposition

BGF for size comparison (z \rightsquigarrow original size, v \rightsquigarrow r-fold path reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where $z = u/(1+u)^2$.

Observation. This is the BGF for leaf reductions

$$\frac{1-u^{r+2}}{(1-u^{r+1})(1+u)}T\Big(\frac{u(1-u^{r+1})^2}{(1-u^{r+2})^2}v,\frac{u^{r+1}(1-u)^2}{(1-u^{r+2})^2}v\Big)$$

with $r \mapsto 2^{r+1} - 2$.

Oldest Leaves and Paths 000000

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

r...number of reductions, fixed

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

Factorial moments are known as well

Cutting paths – Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

- Factorial moments are known as well
- Proof: subsequence of RV's from cutting leaves

Cutting Leaves

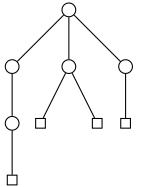
Pruning 0000 Oldest Leaves and Paths •00000

How do we cut our trees? (3)

Introduced by Chen, Deutsch, Elizalde (2006)

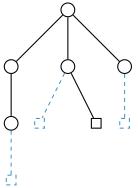
Oldest Leaves and Paths •00000

- Introduced by Chen, Deutsch, Elizalde (2006)
 Old leaves
- Remove all leaves that are leftmost children



Oldest Leaves and Paths •00000

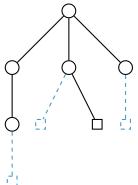
- Introduced by Chen, Deutsch, Elizalde (2006)
 Old leaves
- Remove all leaves that are leftmost children



▶ Introduced by Chen, Deutsch, Elizalde (2006)

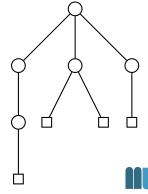
Old leaves

 Remove all leaves that are leftmost children



Old paths

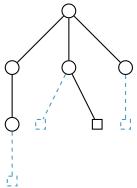
 Remove all paths consisting of leftmost children



Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

 Remove all leaves that are leftmost children



Old paths

 Remove all paths consisting of leftmost children

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths 00000

Proposition

L...rooted plane trees

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Proposition

- ► *L*...rooted plane trees
- ► L(z, w)...BGF (w ~> old leaves together with parent, z ~> all other nodes)

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Proposition

- *L*...rooted plane trees
- ► L(z, w)...BGF (w ~> old leaves together with parent, z ~> all other nodes)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Proposition

- *L*...rooted plane trees
- ► L(z, w)...BGF (w ~> old leaves together with parent, z ~> all other nodes)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

$$\mathcal{L} = \mathcal{O}$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Proposition

- *L*...rooted plane trees
- ► L(z, w)...BGF (w ~> old leaves together with parent, z ~> all other nodes)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Proposition

- *L*...rooted plane trees
- ► L(z, w)...BGF (w ~> old leaves together with parent, z ~> all other nodes)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

$$\mathcal{L} = \bigcirc + \overbrace{\mathcal{L}}^{\bigcirc} \mathcal{L}$$

translation; Lagrange inversion.

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigwedge \xrightarrow{\Phi_{OL}} \bigwedge$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigwedge^{\Phi_{OL}} \bigwedge^{\Phi_{OL}} + \bigwedge$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigvee_{i} \xrightarrow{\Phi_{OL}} + \bigvee_{i} + \bigvee_{i} + \bigvee_{i} \stackrel{i}{\longrightarrow} = zw + zw + w^{2}$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigwedge \xrightarrow{\Phi_{OL}} X + \bigwedge + \bigwedge + \bigwedge = zw + zw + w^{2}$$

A technical inconvenience

• Φ_{OL} and Φ_{OP} expand \Box incorrectly, e.g.

$$z \triangleq \Box \xrightarrow{\Phi_{OL}} \Box + \bigwedge^{\bigcirc} \triangleq z + w$$

A technical inconvenience

• Φ_{OL} and Φ_{OP} expand \Box incorrectly, e.g.

$$z \triangleq \Box \xrightarrow{\Phi_{OL}} \Box + \bigwedge^{\bigcirc} \triangleq z + w$$

Correction term is required for OGF of ≥ r-fold reducible trees:

$$\Phi_*^r(L(z,w)-z)+\Phi_*^{r-1}(w)$$

A technical inconvenience

• Φ_{OL} and Φ_{OP} expand \Box incorrectly, e.g.

$$z \triangleq \Box \xrightarrow{\Phi_{OL}} \Box + \bigwedge^{\bigcirc} \triangleq z + w$$

Correction term is required for OGF of ≥ r-fold reducible trees:

$$\Phi^r_*(L(z,w)-z)+\Phi^{r-1}_*(w)$$

Functional equation degenerates / simplifies:

$$L(z,w) = \Phi_*(L(z,w))$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Theorem (H.–Kropf–Prodinger, 2016)

r...number of reductions, fixed

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_{r-1}(1/4))n - \frac{B'_{r-1}(1/4)}{8} + O(n^{-1}),$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\begin{split} \mathbb{E} X_{n,r} &= (2 - B_{r-1}(1/4))n - \frac{B_{r-1}'(1/4)}{8} + O(n^{-1}), \\ \mathbb{V} X_{n,r} &= \left(B_{r-1}(1/4) - B_{r-1}(1/4)^2 \right. \\ &+ \frac{(2 - B_{r-1}(1/4))B_{r-1}'(1/4)}{2} \right)n + O(1). \end{split}$$

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_{r-1}(1/4))n - \frac{B'_{r-1}(1/4)}{8} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \left(B_{r-1}(1/4) - B_{r-1}(1/4)^2 + \frac{(2 - B_{r-1}(1/4))B'_{r-1}(1/4)}{2}\right)n + O(1).$$

Note. Via Flajolet, Odlyzko (1982):

$$B_r(1/4) = 2 - rac{4}{r} - rac{4\log r}{r^2} + O(r^{-3}), \quad r \to \infty$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Theorem (H.–Kropf–Prodinger, 2016)

▶ r...number of reductions, fixed

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Theorem (H.–Kropf–Prodinger, 2016)

- ▶ r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$

Motivation: Binary Trees	Cutting Leaves	Pruning	Oldest Leaves and Paths
0000	000000	0000	00000

Theorem (H.–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2r(r+1)}{3(r+2)^2}n + O(1).$$

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths
Summary		I	
Leaves $\mathbb{E} \sim \frac{n}{r+1}$ $\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$ limit law: \checkmark			

Motivation: Binary Trees	Cutting Leaves	Pruning 0000	Oldest Leaves and Paths
Summary			
Leaves $\mathbb{E} \sim \frac{n}{r+1}$ $\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$ limit law: \checkmark		Paths $\mathbb{E} \sim \frac{n}{2^{r+1}-1}$ $\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}r$ limit law: \checkmark	,

