On Reductions of Rooted Plane Trees

Benjamin Hackl

joint work in progress with
Sara Kropf and Helmut Prodinger

C3C 2016, Hagenberg
August 1, 2016

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function $=$ maximal number of tree trimmings

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings
- Applications:

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings
- Applications:
- Required stack size for evaluating an expression

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings
- Applications:
- Required stack size for evaluating an expression
- Branching complexity of river networks (e.g. Danube: 9)

"What?" and "How?"

- Analysis of "surviving nodes" after iterative reduction

"What?" and "How?"

- Analysis of "surviving nodes" after iterative reduction

"What?" and "How?"

- Analysis of "surviving nodes" after iterative reduction

- Algorithmic description

"What?" and "How?"

- Analysis of "surviving nodes" after iterative reduction
 reduction
- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow GF

"What?" and "How?"

- Analysis of "surviving nodes" after iterative reduction
 reduction
- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow GF
- Coefficient extraction; Parameter distribution

How do we cut our trees?

- Remove all leaves!

How do we cut our trees?

- Remove all leaves!

How do we cut our trees?

- Remove all leaves!

How do we cut our trees?

- Remove all leaves!

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees

BGF for rooted plane trees

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{}_{\mathcal{T}} \cdots{ }_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for rooted plane trees

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t) \ldots$. BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Leaf expansion

- F...family of rooted plane trees; BGF $f(z, t)$

Leaf expansion

- F... family of rooted plane trees; BGF $f(z, t)$
- Φ. . "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees

Leaf expansion

- F... family of rooted plane trees; BGF $f(z, t)$
- $\Phi \ldots$. "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Leaf expansion

- F... family of rooted plane trees; BGF $f(z, t)$
- Φ. . "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

is the leaf expansion operator.

Leaf expansion

- F... family of rooted plane trees; BGF $f(z, t)$
- Ф... "expansion operator" $\Rightarrow \Phi(f(z, t))$ is BGF for expanded trees
- Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

is the leaf expansion operator.

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=
$$

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} .
$$

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} t^{k}}{(1-t)^{k}} .
$$

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} t^{k}}{(1-t)^{k}} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

Leaf expansion - Proof

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} t^{k}}{(1-t)^{k}} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

- Linear extension of Φ_{L} proves the proposition.

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$
G_{r}(z, v)=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

Cutting leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

Cutting leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Cutting leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right)
$$

Cutting leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

Cutting leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- We can do even better: all factorial moments:

$$
\mathbb{E} X_{n, r}^{d}=\frac{1}{(r+1)^{d}} n^{d}+O\left(n^{d-1}\right)
$$

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- We can do even better: all factorial moments:

$$
\mathbb{E} X \frac{d}{n, r}=\frac{1}{(r+1)^{d}} n^{d}+O\left(n^{d-1}\right)
$$

- This requires identities like

$$
\sum_{n \geq 1}\binom{n}{d} \frac{u^{n-d}(1-u x)^{2 n+d-1}(1-u)^{d-1}}{\left(1-u^{2} x\right)^{2 n-1}} \tilde{N}_{n-1}\left(\frac{x(1-u)^{2}}{(1-u x)^{2}}\right)=\tilde{N}_{d-1}(x)
$$

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- We can do even better: all factorial moments:

$$
\mathbb{E} X \frac{d}{n, r}=\frac{1}{(r+1)^{d}} n^{d}+O\left(n^{d-1}\right)
$$

- This requires identities like

$$
\sum_{n \geq 1}\binom{n}{d} \frac{u^{n-d}(1-u x)^{2 n+d-1}(1-u)^{d-1}}{\left(1-u^{2} x\right)^{2 n-1}} \tilde{N}_{n-1}\left(\frac{x(1-u)^{2}}{(1-u x)^{2}}\right)=\tilde{N}_{d-1}(x)
$$

- Asymptotic normality: $X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

How do we cut our trees? (2)

- Remove all paths that end in a leaf!

How do we cut our trees? (2)

- Remove all paths that end in a leaf!

Path expansions

- Append one path to leaf \rightsquigarrow longer path \downarrow

Path expansions

- Append one path to leaf \rightsquigarrow longer path \downarrow
- \Rightarrow at least two paths need to be appended

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths
- Similar to before we obtain

$$
\Phi_{P}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} p^{2 k}}{(1-p)^{k}} \cdot \frac{1}{(1-p)^{2 n+k-1}}
$$

Path expansions

- Append one path to leaf \rightsquigarrow longer path \downarrow
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths
- Similar to before we obtain

$$
\Phi_{P}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} p^{2 k}}{(1-p)^{k}} \cdot \frac{1}{(1-p)^{2 n+k-1}}
$$

Proposition

The linear operator given by

$$
\Phi_{P}(f(z, t))=(1-p) f\left(\frac{z}{(1-p)^{2}}, \frac{z p^{2}}{(1-p)^{2}}\right)
$$

is the path expansion operator.

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow r$-fold path reduced size) is

$$
\frac{1-u^{2^{r+1}}}{\left(1-u^{2^{r+1}-1}\right)(1+u)} T\left(\frac{u\left(1-u^{r^{r+1}-1}\right)^{2}}{\left(1-u^{2 r+1}\right)^{2}} v, \frac{u^{2^{r+1}-1}(1-u)^{2}}{\left(1-u^{2 r+1}\right)^{2}} v\right),
$$

where $z=u /(1+u)^{2}$.

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow r$-fold path reduced size) is

$$
\frac{1-u^{2^{r+1}}}{\left(1-u^{2^{r+1}-1}\right)(1+u)} T\left(\frac{u\left(1-u^{r^{r+1}-1}\right)^{2}}{\left(1-u^{2^{r+1}}\right)^{2}} v, \frac{u^{2^{r+1}-1}(1-u)^{2}}{\left(1-u^{2 r+1}\right)^{2}} v\right),
$$

where $z=u /(1+u)^{2}$.
Observation. This is the BGF for leaf reductions

$$
\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

with $r \mapsto 2^{r+1}-2$.

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right)
$$

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right), \\
\mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1) .
\end{gathered}
$$

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

- Factorial moments are known as well

Cutting paths - Pruning

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

- Factorial moments are known as well
- Proof: subsequence of RV's from cutting leaves
- Introduced by Chen, Deutsch, Elizalde (2006)

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006) Old leaves
- Remove all leaves that are leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

Old paths

- Remove all paths consisting of leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

Old paths

- Remove all paths consisting of leftmost children

Preliminaries

Proposition

- \mathcal{L}... rooted plane trees

Preliminaries

Proposition

- L....rooted plane trees
- $L(z, w) \ldots B G F$ ($w \rightsquigarrow$ old leaves together with parent, $z \rightsquigarrow$ all other nodes)

Preliminaries

Proposition

- \mathcal{L}... rooted plane trees
- $L(z, w) \ldots B G F(w \rightsquigarrow$ old leaves together with parent, $z \rightsquigarrow$ all other nodes)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

Preliminaries

Proposition

- $\mathcal{L} \ldots$ rooted plane trees
- $L(z, w) \ldots$ BGF ($w \rightsquigarrow$ old leaves together with parent, $z \rightsquigarrow$ all other nodes)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

$$
\mathcal{L}=\bigcirc
$$

Preliminaries

Proposition

- $\mathcal{L} \ldots$ rooted plane trees
- $L(z, w) \ldots$ BGF $(w \rightsquigarrow$ old leaves together with parent, $z \rightsquigarrow$ all other nodes)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

$$
\mathcal{L}=\bigcirc+\underbrace{}_{\mathcal{L}}
$$

Preliminaries

Proposition

- \mathcal{L}...rooted plane trees
- $L(z, w) \ldots$ BGF ($w \rightsquigarrow$ old leaves together with parent, $z \rightsquigarrow$ all other nodes)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

$$
\mathcal{L}=\bigcirc+\underbrace{}_{\mathcal{L}}+
$$

translation; Lagrange inversion.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right),
$$

respectively.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right),
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right),
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

A technical inconvenience

- $\Phi_{O L}$ and $\Phi_{O P}$ expand \square incorrectly, e.g.

$$
z \triangleq \square \xrightarrow{\Phi_{O L}} \square+\bigcirc \triangleq z+w
$$

A technical inconvenience

- $\Phi_{O L}$ and $\Phi_{O P}$ expand \square incorrectly, e.g.

$$
z \triangleq \square \xrightarrow{\Phi_{O L}} \square+\bigcirc \triangleq z+w
$$

- Correction term is required for OGF of $\geq r$-fold reducible trees:

$$
\Phi_{*}^{r}(L(z, w)-z)+\Phi_{*}^{r-1}(w)
$$

A technical inconvenience

- $\Phi_{O L}$ and $\Phi_{O P}$ expand \square incorrectly, e.g.

$$
z \triangleq \square \xrightarrow{\Phi_{O L}} \square+\bigcirc \triangleq z+w
$$

- Correction term is required for OGF of $\geq r$-fold reducible trees:

$$
\Phi_{*}^{r}(L(z, w)-z)+\Phi_{*}^{r-1}(w)
$$

- Functional equation degenerates / simplifies:

$$
L(z, w)=\Phi_{*}(L(z, w))
$$

Cutting old leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

Cutting old leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $B_{h}(z)$. . polynomial enumerating binary trees of height $\leq h$

Cutting old leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $B_{h}(z) \ldots$ polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$
\mathbb{E} X_{n, r}=\left(2-B_{r-1}(1 / 4)\right) n-\frac{B_{r-1}^{\prime}(1 / 4)}{8}+O\left(n^{-1}\right)
$$

Cutting old leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $B_{h}(z) \ldots$ polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\left(2-B_{r-1}(1 / 4)\right) n-\frac{B_{r-1}^{\prime}(1 / 4)}{8}+O\left(n^{-1}\right), \\
\mathbb{V} X_{n, r}=\left(B_{r-1}(1 / 4)-B_{r-1}(1 / 4)^{2}\right. \\
\left.+\frac{\left(2-B_{r-1}(1 / 4)\right) B_{r-1}^{\prime}(1 / 4)}{2}\right) n+O(1) .
\end{gathered}
$$

Cutting old leaves

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $B_{h}(z) \ldots$ polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\left(2-B_{r-1}(1 / 4)\right) n-\frac{B_{r-1}^{\prime}(1 / 4)}{8}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\left(B_{r-1}(1 / 4)-B_{r-1}(1 / 4)^{2}\right. \\
\\
\left.+\frac{\left(2-B_{r-1}(1 / 4)\right) B_{r-1}^{\prime}(1 / 4)}{2}\right) n+O(1) .
\end{gathered}
$$

Note. Via Flajolet, Odlyzko (1982):

$$
B_{r}(1 / 4)=2-\frac{4}{r}-\frac{4 \log r}{r^{2}}+O\left(r^{-3}\right), \quad r \rightarrow \infty
$$ UNIVERSITAT

Cutting old paths

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

Cutting old paths

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Cutting old paths

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{2 n}{r+2}-\frac{r(r+1)}{3(r+2)}+O\left(n^{-1}\right)
$$

Cutting old paths

Theorem (H.-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{2 n}{r+2}-\frac{r(r+1)}{3(r+2)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{2 r(r+1)}{3(r+2)^{2}} n+O(1)
\end{gathered}
$$

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law: ???

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$

limit law: ???

