
On Reductions of Rooted Plane Trees

Benjamin Hackl

joint work in progress with
Sara Kropf and Helmut Prodinger

2016, Hagenberg

August 1, 2016

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→ →

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→ →

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→ →

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→

→

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→

→

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Trimming binary trees

Binary trees can be “trimmed” by the following strategy:

I Remove all leaves

I Merge nodes with only one descendant

→ →

1

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“Surviving” nodes

Label all nodes in the tree by the following rules:

I Leaves → 0 (they do not survive a single reduction)

I val(left child) = val(right child) → increase by 1

I Otherwise: take the maximum

2

1

0 1

0 0

1

0 0

2

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“Surviving” nodes

Label all nodes in the tree by the following rules:

I Leaves → 0 (they do not survive a single reduction)

I val(left child) = val(right child) → increase by 1

I Otherwise: take the maximum

2

1

0

1

0 0

1

0 0

2

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“Surviving” nodes

Label all nodes in the tree by the following rules:

I Leaves → 0 (they do not survive a single reduction)

I val(left child) = val(right child) → increase by 1

I Otherwise: take the maximum

2

1

0 1

0 0

1

0 0

2

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“Surviving” nodes

Label all nodes in the tree by the following rules:

I Leaves → 0 (they do not survive a single reduction)

I val(left child) = val(right child) → increase by 1

I Otherwise: take the maximum

2

1

0 1

0 0

1

0 0

2

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

The register function

Number in the root of the tree: Register function, a.k.a.
Horton–Strahler number

I Register function = maximal number of tree trimmings
I Applications:

I Required stack size for evaluating an expression
I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

x 1

×

x y

3

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

The register function

Number in the root of the tree: Register function, a.k.a.
Horton–Strahler number

I Register function = maximal number of tree trimmings

I Applications:

I Required stack size for evaluating an expression
I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

x 1

×

x y

3

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

The register function

Number in the root of the tree: Register function, a.k.a.
Horton–Strahler number

I Register function = maximal number of tree trimmings
I Applications:

I Required stack size for evaluating an expression
I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

x 1

×

x y

3

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

The register function

Number in the root of the tree: Register function, a.k.a.
Horton–Strahler number

I Register function = maximal number of tree trimmings
I Applications:

I Required stack size for evaluating an expression

I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

x 1

×

x y

3

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

The register function

Number in the root of the tree: Register function, a.k.a.
Horton–Strahler number

I Register function = maximal number of tree trimmings
I Applications:

I Required stack size for evaluating an expression
I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

x 1

×

x y

3

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“What?” and “How?”

I Analysis of “surviving nodes” after iterative reduction

reduction−−−−−→

?

I Algorithmic description

I Investigation of “tree expansion” GF

I Coefficient extraction; Parameter distribution

4

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“What?” and “How?”

I Analysis of “surviving nodes” after iterative reduction

reduction−−−−−→

?

I Algorithmic description

I Investigation of “tree expansion” GF

I Coefficient extraction; Parameter distribution

4

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“What?” and “How?”

I Analysis of “surviving nodes” after iterative reduction

reduction−−−−−→

?

I Algorithmic description

I Investigation of “tree expansion” GF

I Coefficient extraction; Parameter distribution

4

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“What?” and “How?”

I Analysis of “surviving nodes” after iterative reduction

reduction−−−−−→

?

I Algorithmic description

I Investigation of “tree expansion” GF

I Coefficient extraction; Parameter distribution

4

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

“What?” and “How?”

I Analysis of “surviving nodes” after iterative reduction

reduction−−−−−→

?

I Algorithmic description

I Investigation of “tree expansion” GF

I Coefficient extraction; Parameter distribution

4

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees?

I Remove all leaves!

⇒ ⇒

5

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees?

I Remove all leaves!

⇒ ⇒

5

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees?

I Remove all leaves!

⇒

⇒

5

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees?

I Remove all leaves!

⇒ ⇒

5

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.

6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.

6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

BGF for rooted plane trees

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z inner nodes, t leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.
6

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion

I F . . . family of rooted plane trees; BGF f (z , t)

I Φ. . . “expansion operator” ⇒ Φ(f (z , t)) is BGF for expanded
trees

I Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

ΦL(f (z , t)) = (1− t)f
(z

(1− t)2
,

zt

(1− t)2

)
is the leaf expansion operator.

ΦL−→ + + + · · ·

7

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion

I F . . . family of rooted plane trees; BGF f (z , t)

I Φ. . . “expansion operator” ⇒ Φ(f (z , t)) is BGF for expanded
trees

I Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

ΦL(f (z , t)) = (1− t)f
(z

(1− t)2
,

zt

(1− t)2

)
is the leaf expansion operator.

ΦL−→ + + + · · ·

7

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion

I F . . . family of rooted plane trees; BGF f (z , t)

I Φ. . . “expansion operator” ⇒ Φ(f (z , t)) is BGF for expanded
trees

I Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

ΦL(f (z , t)) = (1− t)f
(z

(1− t)2
,

zt

(1− t)2

)
is the leaf expansion operator.

ΦL−→ + + + · · ·

7

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion

I F . . . family of rooted plane trees; BGF f (z , t)

I Φ. . . “expansion operator” ⇒ Φ(f (z , t)) is BGF for expanded
trees

I Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

ΦL(f (z , t)) = (1− t)f
(z

(1− t)2
,

zt

(1− t)2

)
is the leaf expansion operator.

ΦL−→ + + + · · ·

7

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion

I F . . . family of rooted plane trees; BGF f (z , t)

I Φ. . . “expansion operator” ⇒ Φ(f (z , t)) is BGF for expanded
trees

I Leaf expansion: inverse operation to leaf reduction

Proposition

The linear operator

ΦL(f (z , t)) = (1− t)f
(z

(1− t)2
,

zt

(1− t)2

)
is the leaf expansion operator.

ΦL−→ + + + · · ·

7

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:

I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves
I there are 2n + k − 1 positions where

sequences of leaves can be inserted

I In total:

ΦL(zntk) =

zn · zktk

(1− t)k
· 1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:

I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves
I there are 2n + k − 1 positions where

sequences of leaves can be inserted

I In total:

ΦL(zntk) =

zn · zktk

(1− t)k
· 1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:
I inner nodes stay inner nodes

I attach a non-empty sequence of leaves to
all current leaves

I there are 2n + k − 1 positions where
sequences of leaves can be inserted

I In total:

ΦL(zntk) = zn ·

zktk

(1− t)k
· 1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:
I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves

I there are 2n + k − 1 positions where
sequences of leaves can be inserted

I In total:

ΦL(zntk) = zn · zktk

(1− t)k
·

1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:
I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves
I there are 2n + k − 1 positions where

sequences of leaves can be inserted

I In total:

ΦL(zntk) = zn · zktk

(1− t)k
· 1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Leaf expansion — Proof

I Tree with n inner nodes and k leaves zntk

I Expansion:
I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves
I there are 2n + k − 1 positions where

sequences of leaves can be inserted

I In total:

ΦL(zntk) = zn · zktk

(1− t)k
· 1

(1− t)2n+k−1

I Linear extension of ΦL proves the proposition.

8

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Properties of ΦL

I Functional equation: T (z , t) = ΦL(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr
L(zntk)|t=z =

1− ur+2

(1− ur+1)(1 + u)

(u(1− ur+1)2

(1− ur+2)2

)n(ur+1(1− u)2

(1− ur+2)2

)k
I BGF Gr (z , v) for size comparison: z tracks original size, v size

of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

9

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Properties of ΦL

I Functional equation: T (z , t) = ΦL(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr
L(zntk)|t=z =

1− ur+2

(1− ur+1)(1 + u)

(u(1− ur+1)2

(1− ur+2)2

)n(ur+1(1− u)2

(1− ur+2)2

)k

I BGF Gr (z , v) for size comparison: z tracks original size, v size
of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

9

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Properties of ΦL

I Functional equation: T (z , t) = ΦL(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr
L(zntk)|t=z =

1− ur+2

(1− ur+1)(1 + u)

(u(1− ur+1)2

(1− ur+2)2

)n(ur+1(1− u)2

(1− ur+2)2

)k
I BGF Gr (z , v) for size comparison: z tracks original size, v size

of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

9

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Properties of ΦL

I Functional equation: T (z , t) = ΦL(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr
L(zntk)|t=z =

1− ur+2

(1− ur+1)(1 + u)

(u(1− ur+1)2

(1− ur+2)2

)n(ur+1(1− u)2

(1− ur+2)2

)k
I BGF Gr (z , v) for size comparison: z tracks original size, v size

of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

9

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Properties of ΦL

I Functional equation: T (z , t) = ΦL(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr
L(zntk)|t=z =

1− ur+2

(1− ur+1)(1 + u)

(u(1− ur+1)2

(1− ur+2)2

)n(ur+1(1− u)2

(1− ur+2)2

)k
I BGF Gr (z , v) for size comparison: z tracks original size, v size

of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

9

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

10

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

10

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

10

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

10

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

10

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves – Some insights

I EXn,r and VXn,r follow via singularity analysis

I We can do even better: all factorial moments:

EX d
n,r =

1

(r + 1)d
nd + O(nd−1)

I This requires identities like

∑
n≥1

(
n

d

)
un−d(1− ux)2n+d−1(1− u)d−1

(1− u2x)2n−1
Ñn−1

(x(1− u)2

(1− ux)2

)
= Ñd−1(x)

I Asymptotic normality: Xn,r is a tree parameter with small toll
function, limit law by Wagner (2015)

11

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves – Some insights

I EXn,r and VXn,r follow via singularity analysis

I We can do even better: all factorial moments:

EX d
n,r =

1

(r + 1)d
nd + O(nd−1)

I This requires identities like

∑
n≥1

(
n

d

)
un−d(1− ux)2n+d−1(1− u)d−1

(1− u2x)2n−1
Ñn−1

(x(1− u)2

(1− ux)2

)
= Ñd−1(x)

I Asymptotic normality: Xn,r is a tree parameter with small toll
function, limit law by Wagner (2015)

11

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves – Some insights

I EXn,r and VXn,r follow via singularity analysis

I We can do even better: all factorial moments:

EX d
n,r =

1

(r + 1)d
nd + O(nd−1)

I This requires identities like

∑
n≥1

(
n

d

)
un−d(1− ux)2n+d−1(1− u)d−1

(1− u2x)2n−1
Ñn−1

(x(1− u)2

(1− ux)2

)
= Ñd−1(x)

I Asymptotic normality: Xn,r is a tree parameter with small toll
function, limit law by Wagner (2015)

11

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting leaves – Some insights

I EXn,r and VXn,r follow via singularity analysis

I We can do even better: all factorial moments:

EX d
n,r =

1

(r + 1)d
nd + O(nd−1)

I This requires identities like

∑
n≥1

(
n

d

)
un−d(1− ux)2n+d−1(1− u)d−1

(1− u2x)2n−1
Ñn−1

(x(1− u)2

(1− ux)2

)
= Ñd−1(x)

I Asymptotic normality: Xn,r is a tree parameter with small toll
function, limit law by Wagner (2015)

11

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (2)

I Remove all paths that end in a leaf!

⇒

12

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (2)

I Remove all paths that end in a leaf!

⇒

12

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Path expansions
I Append one path to leaf longer path �

I ⇒ at least two paths need to be appended

I Write p = t
1−z . . . BGF for paths

I Similar to before we obtain

ΦP(zntk) = zn · zkp2k

(1− p)k
· 1

(1− p)2n+k−1

Proposition

The linear operator given by

ΦP(f (z , t)) = (1− p)f
(z

(1− p)2
,

zp2

(1− p)2

)
is the path expansion operator.

13

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Path expansions
I Append one path to leaf longer path �
I ⇒ at least two paths need to be appended

I Write p = t
1−z . . . BGF for paths

I Similar to before we obtain

ΦP(zntk) = zn · zkp2k

(1− p)k
· 1

(1− p)2n+k−1

Proposition

The linear operator given by

ΦP(f (z , t)) = (1− p)f
(z

(1− p)2
,

zp2

(1− p)2

)
is the path expansion operator.

13

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Path expansions
I Append one path to leaf longer path �
I ⇒ at least two paths need to be appended

I Write p = t
1−z . . . BGF for paths

I Similar to before we obtain

ΦP(zntk) = zn · zkp2k

(1− p)k
· 1

(1− p)2n+k−1

Proposition

The linear operator given by

ΦP(f (z , t)) = (1− p)f
(z

(1− p)2
,

zp2

(1− p)2

)
is the path expansion operator.

13

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Path expansions
I Append one path to leaf longer path �
I ⇒ at least two paths need to be appended

I Write p = t
1−z . . . BGF for paths

I Similar to before we obtain

ΦP(zntk) = zn · zkp2k

(1− p)k
· 1

(1− p)2n+k−1

Proposition

The linear operator given by

ΦP(f (z , t)) = (1− p)f
(z

(1− p)2
,

zp2

(1− p)2

)
is the path expansion operator.

13

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Path expansions
I Append one path to leaf longer path �
I ⇒ at least two paths need to be appended

I Write p = t
1−z . . . BGF for paths

I Similar to before we obtain

ΦP(zntk) = zn · zkp2k

(1− p)k
· 1

(1− p)2n+k−1

Proposition

The linear operator given by

ΦP(f (z , t)) = (1− p)f
(z

(1− p)2
,

zp2

(1− p)2

)
is the path expansion operator.

13

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Generating function for path reductions

Proposition

BGF for size comparison (z original size, v r -fold path
reduced size) is

1− u2r+1

(1− u2r+1−1)(1 + u)
T
(u(1− u2r+1−1)2

(1− u2r+1)2
v ,

u2r+1−1(1− u)2

(1− u2r+1)2
v
)
,

where z = u/(1 + u)2.

Observation. This is the BGF for leaf reductions

1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

with r 7→ 2r+1 − 2.

14

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Generating function for path reductions

Proposition

BGF for size comparison (z original size, v r -fold path
reduced size) is

1− u2r+1

(1− u2r+1−1)(1 + u)
T
(u(1− u2r+1−1)2

(1− u2r+1)2
v ,

u2r+1−1(1− u)2

(1− u2r+1)2
v
)
,

where z = u/(1 + u)2.

Observation. This is the BGF for leaf reductions

1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

with r 7→ 2r+1 − 2.

14

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well

I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting paths – Pruning

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1),

VXn,r =
2r+1(2r − 1)

3(2r+1 − 1)2
n + O(1).

Furthermore, Xn,r is asymptotically normally distributed.

I Factorial moments are known as well
I Proof: subsequence of RV’s from cutting leaves

15

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (3)

I Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

I Remove all leaves that are
leftmost children

Old paths

I Remove all paths consisting
of leftmost children

16

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (3)

I Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

I Remove all leaves that are
leftmost children

Old paths

I Remove all paths consisting
of leftmost children

16

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (3)

I Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

I Remove all leaves that are
leftmost children

Old paths

I Remove all paths consisting
of leftmost children

16

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (3)

I Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

I Remove all leaves that are
leftmost children

Old paths

I Remove all paths consisting
of leftmost children

16

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

How do we cut our trees? (3)

I Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

I Remove all leaves that are
leftmost children

Old paths

I Remove all paths consisting
of leftmost children

16

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L = +
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L = +
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L = +
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L =

+
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L = +
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Preliminaries

Proposition

I L. . . rooted plane trees

I L(z ,w). . . BGF (w old leaves together with parent,
z all other nodes)

Then

L(z ,w) =
1−
√

1− 4z − 4w + 4z2

2

and there are Ck−1

(n−2
n−2k

)
2n−2k trees of size n with k old leaves.

Proof. Symbolic equation

L = +
L · · · L

+
L −© L · · · L

,

translation; Lagrange inversion.

17

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ + + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ + + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,

ΦOL−−→ + + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→

+ + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ +

+ , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ + +

, zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ + + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Expansion operators

Proposition

The operators for “old leaf”- and “old path”-expansions are given
by

ΦOL(f (z ,w)) = f (z + w , (2z + w)w)

and

ΦOP(f (z ,w)) = f
(
z +

w

1− z
,
(
z +

w

1− z

) w

1− z

)
,

respectively.

Proof for old leaves.

w ,
ΦOL−−→ + + , zw + zw + w2

18

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

A technical inconvenience

I ΦOL and ΦOP expand incorrectly, e.g.

z ,
ΦOL−−→ + , z + w

I Correction term is required for OGF of ≥ r -fold reducible
trees:

Φr
∗(L(z ,w)− z) + Φr−1

∗ (w)

I Functional equation degenerates / simplifies:

L(z ,w) = Φ∗(L(z ,w))

19

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

A technical inconvenience

I ΦOL and ΦOP expand incorrectly, e.g.

z ,
ΦOL−−→ + , z + w

I Correction term is required for OGF of ≥ r -fold reducible
trees:

Φr
∗(L(z ,w)− z) + Φr−1

∗ (w)

I Functional equation degenerates / simplifies:

L(z ,w) = Φ∗(L(z ,w))

19

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

A technical inconvenience

I ΦOL and ΦOP expand incorrectly, e.g.

z ,
ΦOL−−→ + , z + w

I Correction term is required for OGF of ≥ r -fold reducible
trees:

Φr
∗(L(z ,w)− z) + Φr−1

∗ (w)

I Functional equation degenerates / simplifies:

L(z ,w) = Φ∗(L(z ,w))

19

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Bh(z). . . polynomial enumerating binary trees of height ≤ h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

EXn,r = (2− Br−1(1/4))n −
B ′r−1(1/4)

8
+ O(n−1),

VXn,r =
(
Br−1(1/4)− Br−1(1/4)2

+
(2− Br−1(1/4))B ′r−1(1/4)

2

)
n + O(1).

Note. Via Flajolet, Odlyzko (1982):

Br (1/4) = 2− 4

r
− 4 log r

r2
+ O(r−3), r →∞

20

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Bh(z). . . polynomial enumerating binary trees of height ≤ h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

EXn,r = (2− Br−1(1/4))n −
B ′r−1(1/4)

8
+ O(n−1),

VXn,r =
(
Br−1(1/4)− Br−1(1/4)2

+
(2− Br−1(1/4))B ′r−1(1/4)

2

)
n + O(1).

Note. Via Flajolet, Odlyzko (1982):

Br (1/4) = 2− 4

r
− 4 log r

r2
+ O(r−3), r →∞

20

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Bh(z). . . polynomial enumerating binary trees of height ≤ h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

EXn,r = (2− Br−1(1/4))n −
B ′r−1(1/4)

8
+ O(n−1),

VXn,r =
(
Br−1(1/4)− Br−1(1/4)2

+
(2− Br−1(1/4))B ′r−1(1/4)

2

)
n + O(1).

Note. Via Flajolet, Odlyzko (1982):

Br (1/4) = 2− 4

r
− 4 log r

r2
+ O(r−3), r →∞

20

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Bh(z). . . polynomial enumerating binary trees of height ≤ h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

EXn,r = (2− Br−1(1/4))n −
B ′r−1(1/4)

8
+ O(n−1),

VXn,r =
(
Br−1(1/4)− Br−1(1/4)2

+
(2− Br−1(1/4))B ′r−1(1/4)

2

)
n + O(1).

Note. Via Flajolet, Odlyzko (1982):

Br (1/4) = 2− 4

r
− 4 log r

r2
+ O(r−3), r →∞

20

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old leaves

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Bh(z). . . polynomial enumerating binary trees of height ≤ h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

EXn,r = (2− Br−1(1/4))n −
B ′r−1(1/4)

8
+ O(n−1),

VXn,r =
(
Br−1(1/4)− Br−1(1/4)2

+
(2− Br−1(1/4))B ′r−1(1/4)

2

)
n + O(1).

Note. Via Flajolet, Odlyzko (1982):

Br (1/4) = 2− 4

r
− 4 log r

r2
+ O(r−3), r →∞

20

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old paths

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
2n

r + 2
− r(r + 1)

3(r + 2)
+ O(n−1),

VXn,r =
2r(r + 1)

3(r + 2)2
n + O(1).

21

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old paths

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
2n

r + 2
− r(r + 1)

3(r + 2)
+ O(n−1),

VXn,r =
2r(r + 1)

3(r + 2)2
n + O(1).

21

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old paths

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
2n

r + 2
− r(r + 1)

3(r + 2)
+ O(n−1),

VXn,r =
2r(r + 1)

3(r + 2)2
n + O(1).

21

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Cutting old paths

Theorem (H.–Kropf–Prodinger, 2016)

I r . . . number of reductions, fixed

I Xn,r . . . RV for size of r -fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

EXn,r =
2n

r + 2
− r(r + 1)

3(r + 2)
+ O(n−1),

VXn,r =
2r(r + 1)

3(r + 2)2
n + O(1).

21

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Summary

Leaves

E ∼ n
r+1

V ∼ r(r+2)
6(r+1)2 n

limit law: X

Paths

E ∼ n
2r+1−1

V ∼ 2r+1(2r−1)
3(2r+1−1)2 n

limit law: X

Old leaves

E ∼ (2− Br−1(1/4))n

V = Θ(n)
limit law: ???

Old paths

E ∼ 2n
r+2

V ∼ 2r(r+1)
3(r+2)2 n

limit law: ???

22

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Summary

Leaves

E ∼ n
r+1

V ∼ r(r+2)
6(r+1)2 n

limit law: X

Paths

E ∼ n
2r+1−1

V ∼ 2r+1(2r−1)
3(2r+1−1)2 n

limit law: X

Old leaves

E ∼ (2− Br−1(1/4))n

V = Θ(n)
limit law: ???

Old paths

E ∼ 2n
r+2

V ∼ 2r(r+1)
3(r+2)2 n

limit law: ???

22

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Summary

Leaves

E ∼ n
r+1

V ∼ r(r+2)
6(r+1)2 n

limit law: X

Paths

E ∼ n
2r+1−1

V ∼ 2r+1(2r−1)
3(2r+1−1)2 n

limit law: X

Old leaves

E ∼ (2− Br−1(1/4))n

V = Θ(n)
limit law: ???

Old paths

E ∼ 2n
r+2

V ∼ 2r(r+1)
3(r+2)2 n

limit law: ???

22

Motivation: Binary Trees Cutting Leaves Pruning Oldest Leaves and Paths

Summary

Leaves

E ∼ n
r+1

V ∼ r(r+2)
6(r+1)2 n

limit law: X

Paths

E ∼ n
2r+1−1

V ∼ 2r+1(2r−1)
3(2r+1−1)2 n

limit law: X

Old leaves

E ∼ (2− Br−1(1/4))n

V = Θ(n)
limit law: ???

Old paths

E ∼ 2n
r+2

V ∼ 2r(r+1)
3(r+2)2 n

limit law: ???

22

	Motivation: Binary Trees

