One step at a time: a simple growth bound
$T(\mathbf{w})$ ... polytorus with radii $w_1$, $w_2$, ..., $w_d$
- Via multivariate version of Cauchy's integral formula:
\[ f_{n\mathbf{r}} = \frac{1}{(2\pi i)^d} \oint_{T(\mathbf{w})} F(\mathbf{z}) \frac{d\mathbf{z}}{z_1^{nr_1 + 1} \dots z_d^{nr_d + 1}} \]
-
Integral bound, let $C_w := \max_{\mathbf{z}\in T(\mathbf{w})} |F(z)| < \infty$:
\[ |f_{n\mathbf{r}}| \leq C_w |w_1|^{-nr_1} \cdots |w_d|^{-nr_d} = C_w \exp(h_{\mathbf{r}}(\mathbf{w}) \cdot n), \]
with $h_{\mathbf{r}}(\mathbf{w})$ ... "height function"
Critical points
Definition: A point $w \in (\mathbb{C}\setminus\{0\})^d$ with ...
- $H(w) = 0$$w\in \mathcal{V}$
- $r_1 w_j H_{z_j}(\mathbf{w}) - r_j w_1 H_{z_1}(\mathbf{w}) = 0$ for $2\leq j\leq d$$(\nabla_{\log} H)(\mathbf{w}) || \mathbf{r}$
where any $H_{z_j}(\mathbf{w}) \neq 0$ is called smooth critical point.
- Note: we have "best" asymptotic bounds at critical points.
- Cauchy integral can be approximated there; points are feasible for saddle point method!
Min. Crit. Points: Toy Example
\[ F(x, y) = \frac{1}{1 - x - y},\qquad \mathbf{r} = (19, 9) \]
\[ H(x, y) = 1 - x - y \stackrel{!}{=} 0 \rightsquigarrow x + y = 1 \]
\[ \nabla_{\log} H(x, y) = \begin{pmatrix} -x \\ -y \end{pmatrix} \bigg|\bigg| \begin{pmatrix} 19\\ 9 \end{pmatrix} \fragment{2}{\rightsquigarrow -9x + 19y = 0} \]
-
Critical point: $\mathbf{w} = (19/28, 9/28)$
-
Exponential "bound": $\limsup_{n\to\infty} \binom{28n}{19n}^{1/n} \leq |w_1|^{-r_1} |w_2|^{-r_2} = \Bigl(\frac{28}{19}\Bigr)^{19} \Bigl(\frac{28}{9}\Bigr)^{9}$