Algorithmic Approach
- Find critical points $\mathbf{w} \in \mathbb{C}_{*}^d$ (via $H(\mathbf{w}) = 0$ and $\mathbf{0}\neq \operatorname{diag}(\mathbf{w}) \nabla H(\mathbf{w}) \| \mathbf{r}$)
-
Check which critical points are minimal
Use all-in-one strategyvia [Melczer-Salvy]:
-
Consider system $H(t \mathbf{w}) = 0$, $\operatorname{diag}(w) \nabla H(\mathbf{w}) = \lambda \mathbf{r}$,
encode solutions with Kronecker representationlinear form $u - \kappa \mathbf{z} = 0$,
polynomials $P$, $Q_1$, ..., $Q_d$ s.t. $Q_j(u)/P'(u) = z_j$ determine components of solution vector for $u$ iterating through roots of $P$ -- bounded coefficients / degrees!
- Check positive ($\sim$ Pringsheim!) solutions for $t = 1$
- Use solutions for $t\in (0,1)$ to eliminate non-minimal $\mathbf{w}$