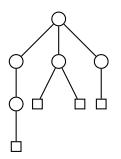




Combinatorial Model

•000

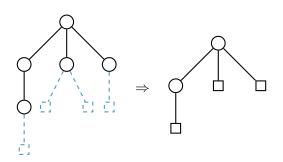
Remove all leaves!



Combinatorial Model

•000

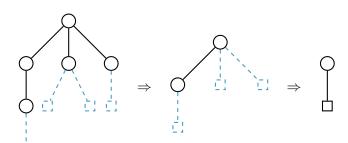
► Remove all leaves!



Combinatorial Model

•000

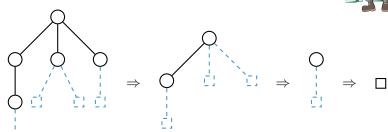
► Remove all leaves!



Combinatorial Model

•000

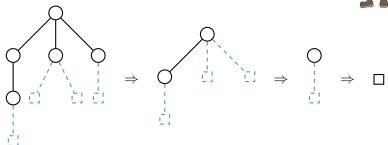
► Remove all leaves!



Combinatorial Model

●000

► Remove all leaves!



Parameters of Interest:

- ► Size of *r*th reduction
- ► Age: # of possible reductions

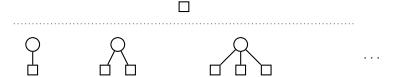
Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees

Reduction \rightarrow Expansion

Combinatorial Model

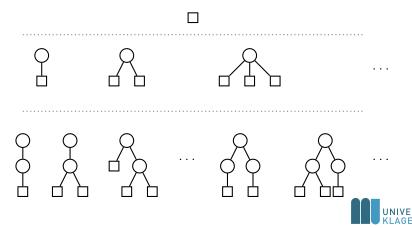
- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees



Reduction \rightarrow Expansion

Combinatorial Model

- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees



Expansion operators

- \blacktriangleright F... family of plane trees; bivariate generating function f
- ightharpoonup expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

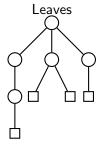
Combinatorial Model

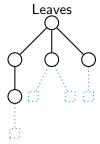
- F... family of plane trees; bivariate generating function f
- \blacktriangleright expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

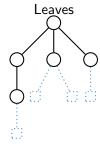
Leaf expansion Φ

- inverse operation to leaf reduction
 - attach leaves to all current leaves (required)
 - attach leaves to inner nodes (optional)

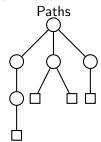
$$\square \triangleq t, \ \bigcirc \triangleq z \quad \Rightarrow \quad \Phi(t) = zt + zt^2 + zt^3 + \cdots$$

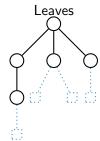




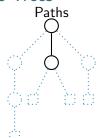


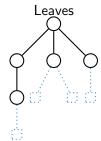
Combinatorial Model



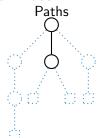


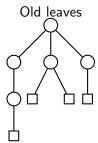
Combinatorial Model

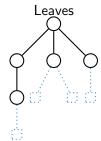




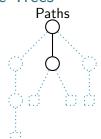
Combinatorial Model

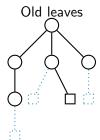


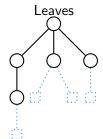


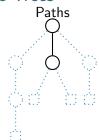


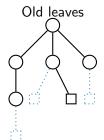
Combinatorial Model

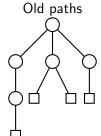


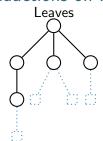




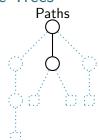


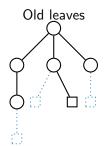


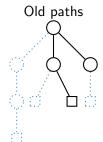


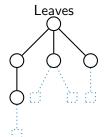


Combinatorial Model



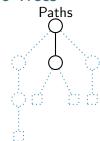


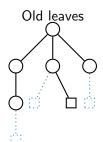


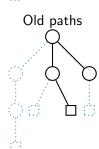


Combinatorial Model

0000







Parameters of Interest:

- tree size after r reductions
- cumulative reduction size

Proposition

► T...rooted plane trees

Proposition

- ► T...rooted plane trees
- ▶ T(z,t)... BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + \mathcal{T} \mathcal{T} \cdots \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$\mathcal{T} = \square + \mathcal{T} \mathcal{T} \cdots \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

- ► T... rooted plane trees
- ightharpoonup T(z,t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$T = \Box + T T \cdots T$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ▶ Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- **Expansion:**

► In total:

$$\Phi(z^n t^k) =$$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ► Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes

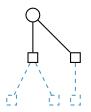
► In total:

$$\Phi(z^n t^k) = z^n \cdot$$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ► Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves



► In total:

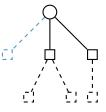
$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot$$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ► Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ▶ there are 2n + k 1 positions where sequences of leaves can be inserted
- ► In total:

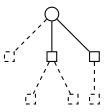
$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$



Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ▶ there are 2n + k 1 positions where sequences of leaves can be inserted



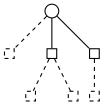
In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t) \left(\frac{z}{(1-t)^2}\right)^n \left(\frac{zt}{(1-t)^2}\right)^k$$
University

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ► Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ▶ there are 2n + k 1 positions where sequences of leaves can be inserted



► In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t)\left(\frac{z}{(1-t)^2}\right)^n \left(\frac{zt}{(1-t)^2}\right)^k$$

 \triangleright As Φ is linear, this proves the proposition.

▶ Functional equation: $T(z,t) = \Phi(T(z,t)) + t$

- Functional equation: $T(z,t) = \Phi(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^{2}}{(1 - u^{r+2})^{2}}, \frac{u^{r+1}(1 - u)^{2}}{(1 - u^{r+2})^{2}}\right)$$

- ► Functional equation: $T(z,t) = \Phi(T(z,t)) + t$
- ▶ With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^{2}}{(1 - u^{r+2})^{2}}, \frac{u^{r+1}(1 - u)^{2}}{(1 - u^{r+2})^{2}}\right)$$

▶ BGF $G_r(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

- ► Functional equation: $T(z,t) = \Phi(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^{2}}{(1 - u^{r+2})^{2}}, \frac{u^{r+1}(1 - u)^{2}}{(1 - u^{r+2})^{2}}\right)$$

- ▶ BGF $G_r(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$G_r(z,v) = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}v, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}v\right)$$

SageMath Demo

https://benjamin-hackl.at/downloads/talks/2019-12-10-seminar-strobl.slides.html

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

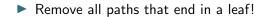
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

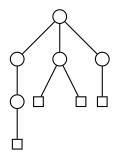
and $X_{n,r}$ is asymptotically normally distributed.

Proof insights:

- $ightharpoonup \mathbb{E} X_{n,r}$ and $\mathbb{V} X_{n,r}$ follow via singularity analysis
- Asymptotic normality: $n X_{n,r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

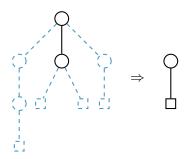
Pruning





Pruning

▶ Remove all paths that end in a leaf!



▶ Size after *r* rounds behaves similarly to "Cutting leaves"!

- ▶ Size after r rounds behaves similarly to "Cutting leaves"!
- ► Actually: very, very similar results: $X_{n,r}^{\text{Paths}} \stackrel{d}{=} X_{n,2^{r+1}-2}^{\text{Leaves}}$

- ▶ Size after *r* rounds behaves similarly to "Cutting leaves"!
- ► Actually: very, very similar results: $X_{n,r}^{\text{Paths}} \stackrel{d}{=} X_{n,2^{r+1}-2}^{\text{Leaves}}$

Proposition / Conj.: More than just equality in distribution

 \mathcal{T}_n ... trees of size n, ρ_P ... path reduction, ρ_L ... leaf reduction

$$\rho_{\mathsf{P}}^r(\mathcal{T}_n) = \rho_{\mathsf{L}}^{2^{r+1}-2}(\mathcal{T}_n)$$

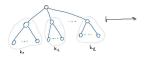
- ▶ Size after *r* rounds behaves similarly to "Cutting leaves"!
- ► Actually: very, very similar results: $X_{n,r}^{\text{Paths}} \stackrel{d}{=} X_{n,2^{r+1}-2}^{\text{Leaves}}$

Proposition / Conj.: More than just equality in distribution

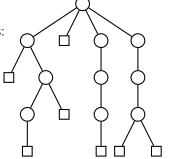
 \mathcal{T}_n ... trees of size n, ρ_P ... path reduction, ρ_L ... leaf reduction

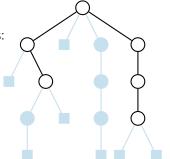
$$\rho_{\mathsf{P}}^{r}(\mathcal{T}_{n}) = \rho_{\mathsf{L}}^{2^{r+1}-2}(\mathcal{T}_{n})$$

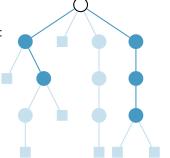
Bijection for removed structures for r = 1:

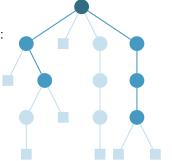


Work in progress for r > 2.

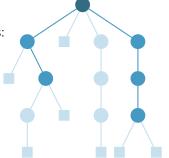




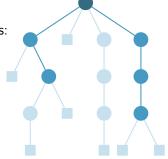




- ► Trees can be partitioned into branches:
- ▶ Q: How many branches are there?



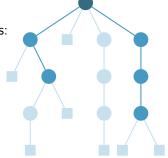
- ► Trees can be partitioned into branches:
- ▶ Q: How many branches are there?



Observation

Total # of branches \triangleq # of leaves in all reduction stages

- ► Trees can be partitioned into branches:
- ▶ Q: How many branches are there?

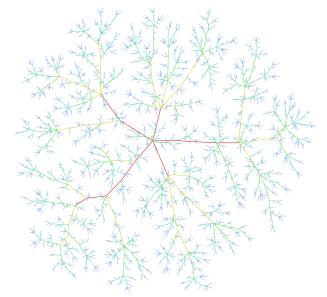


Observation

Total # of branches \triangleq # of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).

Visualized Branches in a Tree



Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

Theorem (H.-Heuberger-Kropf-Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

$$C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

$$C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$$

 \triangleright δ ... periodic fluctuation:

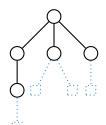
$$\delta(x) := \frac{1}{\log 2} \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}, \quad \chi_k = \frac{2\pi i k}{\log 2}.$$

Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

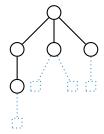
limit law: ✓



Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

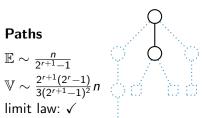
$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2} n$$



Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$2^{r+1}(2^r-1)$$

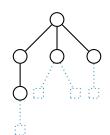


Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

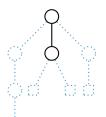


Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓

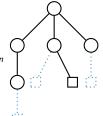


Old leaves

$$\mathbb{E} \sim (2 - B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: √

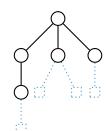


Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

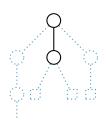


Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓

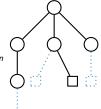


Old leaves

$$\mathbb{E} \sim (2 - B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: ✓

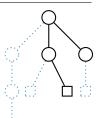


Old paths

$$\mathbb{E} \sim \frac{2n}{r+2}$$

$$\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$$

limit law: ✓

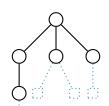


Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

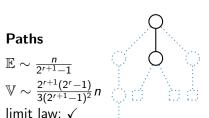
limit law: ✓



Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

limit law: ✓



Disclaimer

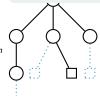
Results are not always that nice!

Old leaves

$$\mathbb{E} \sim (2 - B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: ✓

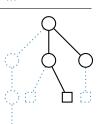


Old paths

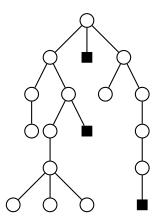
$$\mathbb{E} \sim \frac{2n}{r+2}$$

$$\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$$

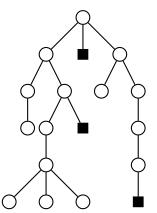
limit law: √



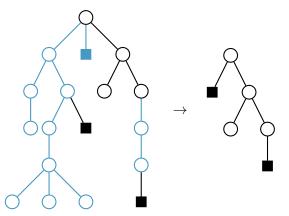
- ► Motivation: Stanley's Catalan interpretation #26
- ▶ Rightmost leaves in all branches of root have odd distance



- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent & grandparent (except root) of ■

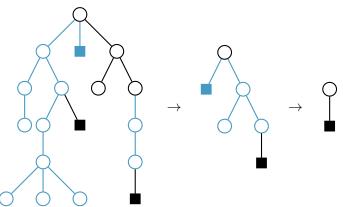


- ► Motivation: Stanley's Catalan interpretation #26
- ▶ Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent & grandparent (except root) of ■

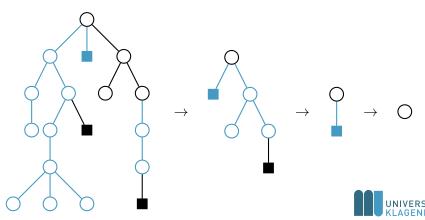


Further Models

- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent & grandparent (except root) of ■



- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent & grandparent (except root) of ■



Counterexample: Results

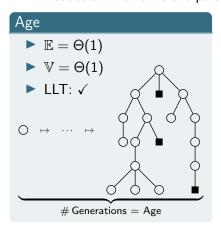
► Reduction with different parameter behavior ✓

Age

Size of rth Reduction

Counterexample: Results

► Reduction with different parameter behavior ✓

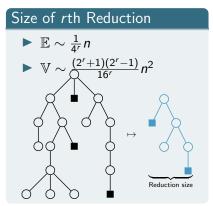


Size of rth Reduction

Counterexample: Results

▶ Reduction with different parameter behavior ✓



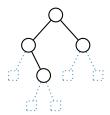


Cutting strategy:

- ▶ Remove Leaves
- ▶ Merge single children with their corresponding parent

Cutting strategy:

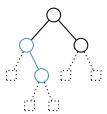
- ► Remove Leaves
- ▶ Merge single children with their corresponding parent



Further Models

Cutting strategy:

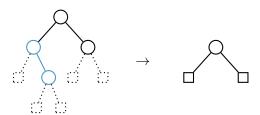
- ► Remove Leaves
- ► Merge single children with their corresponding parent



Further Models

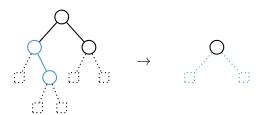
Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent



Cutting strategy:

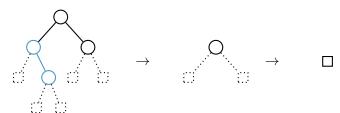
- ▶ Remove Leaves
- ► Merge single children with their corresponding parent



Further Models

Cutting strategy:

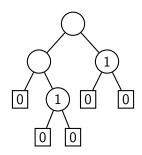
- Remove Leaves
- Merge single children with their corresponding parent



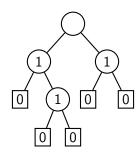
- ightharpoonup Leaves ightharpoonup 0
- ightharpoonup age(left child) \rightarrow increase by 1
- Otherwise: maximum of children

- ightharpoonup Leaves ightharpoonup 0
- ightharpoonup age(left child) = age(right child) ightharpoonup increase by 1
- ► Otherwise: maximum of children

- ightharpoonup Leaves ightharpoonup 0
- ightharpoonup age(left child) = age(right child) ightharpoonup increase by 1
- ► Otherwise: maximum of children

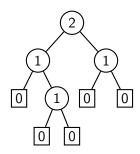


- ightharpoonup Leaves ightharpoonup 0
- ightharpoonup age(left child) = age(right child) ightharpoonup increase by 1
- ► Otherwise: maximum of children



We label the nodes according to the following rules:

- ightharpoonup Leaves ightharpoonup 0
- ightharpoonup age(left child) = age(right child) ightharpoonup increase by 1
- ► Otherwise: maximum of children



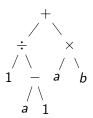
Further Models

Age → Register function (Horton-Strahler-Index)

► Applications:

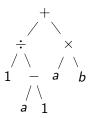
Age → Register function (Horton-Strahler-Index)

- ► Applications:
 - ▶ Required stack size for evaluating arithmetic expressions



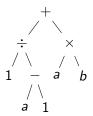
Further Models

- ► Applications:
 - ▶ Required stack size for evaluating arithmetic expressions
 - ▶ Branching complexity of river networks (e.g. Danube: 9)



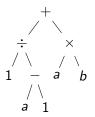
Age → Register function (Horton-Strahler-Index)

- ► Applications:
 - ▶ Required stack size for evaluating arithmetic expressions
 - ▶ Branching complexity of river networks (e.g. Danube: 9)



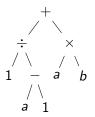
Asymptotic analysis:

- ► Applications:
 - ▶ Required stack size for evaluating arithmetic expressions
 - ▶ Branching complexity of river networks (e.g. Danube: 9)



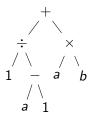
- ► Asymptotic analysis:
 - Flajolet, Raoult, Vuillemin (1979)

- ► Applications:
 - ▶ Required stack size for evaluating arithmetic expressions
 - ▶ Branching complexity of river networks (e.g. Danube: 9)



- Asymptotic analysis:
 - ► Flajolet, Raoult, Vuillemin (1979)
 - ► Flajolet, Prodinger (1986)

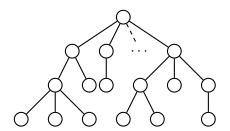
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)



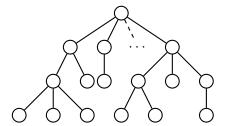
- Asymptotic analysis:
 - Flajolet, Raoult, Vuillemin (1979)
 - Flajolet, Prodinger (1986)
 - r-branches, Numerics: Yamamoto, Yamazaki (2009)

Core Idea: # removed vertices . . . additive tree parameter

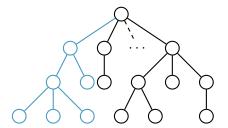
 $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au



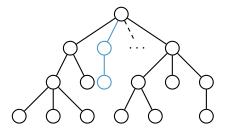
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



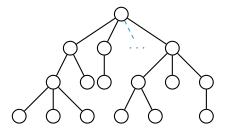
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



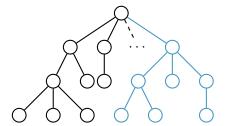
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - ightharpoonup with *toll function f* : $\mathcal{T} \to \mathbb{R}$



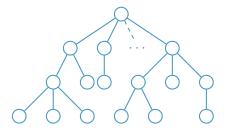
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



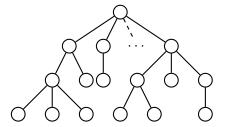
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



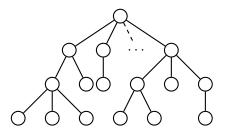
- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



- ▶ Wagner (2015), Janson (2016), Wagner et al. (2018)...:
 - $ightharpoonup au_n$ random tree, size n; f suitable $\rightsquigarrow F(\tau_n)$ asymptotically Gaussian

Core Idea: # removed vertices . . . additive tree parameter

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - \blacktriangleright with toll function $f: \mathcal{T} \to \mathbb{R}$



Families suitable for this approach:

- simply generated
- Pólya
- non-crossing
- **▶** ... (?)
- ▶ Wagner (2015), Janson (2016), Wagner et al. (2018)...:
 - $ightharpoonup au_n$ random tree, size n; f suitable $\rightsquigarrow F(\tau_n)$ asymptotically Gaussian

