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Combinatorial Model Cutting Leaves Cutting Paths Further Models

Cutting Down Plane Trees

I Remove all leaves!

⇒ ⇒ ⇒

Parameters of Interest:

I Size of rth reduction

I Age: # of possible reductions
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I modelling reduction directly: not suitable
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Expansion operators

I F . . . family of plane trees; bivariate generating function f

I expansion operator Φ ⇒ Φ(f ) counts expanded trees

Leaf expansion Φ

I inverse operation to leaf reduction
I attach leaves to all current leaves (required)
I attach leaves to inner nodes (optional)

Φ−→ + + + · · ·

, t, , z ⇒ Φ(t) = zt + zt2 + zt3 + · · ·
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Reductions on Plane Trees
Leaves

Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves

Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves

Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves

Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Reductions on Plane Trees
Leaves Paths

Old leaves Old paths

Parameters of Interest:

I tree size after r
reductions

I cumulative reduction
size

Lessons learned from cutting trees – Benjamin Hackl



Combinatorial Model Cutting Leaves Cutting Paths Further Models

Bivariate Generating Function

Proposition

I T . . . rooted plane trees

I T (z , t). . . BGF for T (z  inner nodes, t  leaves)

⇒ T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2

Proof. Symbolic equation

T = +
T T · · · T

translates into

T (z , t) = t + z · T (z , t)

1− T (z , t)

which can be solved explicitly.

Lessons learned from cutting trees – Benjamin Hackl
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Leaf expansion operator Φ

Proposition

Φ(f (z , t)) = (1− t)f
( z

(1− t)2
,

zt

(1− t)2

)

I Tree with n inner nodes and k leaves  zntk

I Expansion:

I inner nodes stay inner nodes
I attach a non-empty sequence of leaves to

all current leaves
I there are 2n + k − 1 positions where

sequences of leaves can be inserted

I In total:

Φ(zntk) =

zn·
( zt

1− t

)k
· 1

(1− t)2n+k−1
= (1−t)

( z

(1− t)2

)n( zt

(1− t)2

)k
I As Φ is linear, this proves the proposition.
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Properties of Φ

I Functional equation: T (z , t) = Φ(T (z , t)) + t

I With z = u/(1 + u)2 and by some manipulations

Φr (T (z , t))|t=z =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
,
ur+1(1− u)2

(1− ur+2)2

)

I BGF Gr (z , v) for size comparison: z tracks original size, v size
of r -fold reduced tree

I Intuition: v “remembers” size while tree family is expanded

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T
(u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v
)

Lessons learned from cutting trees – Benjamin Hackl
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SageMath Demo

https://benjamin-hackl.at/downloads/talks/

2019-12-10-seminar-strobl.slides.html

Lessons learned from cutting trees – Benjamin Hackl

https://benjamin-hackl.at/downloads/talks/2019-12-10-seminar-strobl.slides.html
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Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size
Xn,r has mean and variance

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1),

VXn,r =
r(r + 2)

6(r + 1)2
n + O(1),

and Xn,r is asymptotically normally distributed.

Proof insights:

I EXn,r and VXn,r follow via singularity analysis

I Asymptotic normality: n − Xn,r is a tree parameter with small
toll function, limit law by Wagner (2015)

Lessons learned from cutting trees – Benjamin Hackl
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Pruning

I Remove all paths that end in a leaf!

⇒
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Pruning and Cutting

I Size after r rounds behaves similarly to “Cutting leaves”!

I Actually: very, very similar results: XPaths
n,r

d
= X Leaves

n,2r+1−2

Proposition / Conj.: More than just equality in distribution

Tn . . . trees of size n, ρP . . . path reduction, ρL . . . leaf reduction

ρrP(Tn) = ρ2r+1−2
L (Tn)

Bijection for removed structures for r = 1:

Work in progress for r ≥ 2.
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Branches in a Tree

I Trees can be partitioned into branches:

I Q: How many branches are there?

Observation

Total # of branches , # of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point). �
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Branches in a Tree – Result

Theorem (H.–Heuberger–Kropf–Prodinger)

Average # of branches in a random plane tree of size n is

αn +
1

6
log4 n + C + δ(log4 n) + O(n−1/4),

I α =
∑
k≥2

1

2k − 1
≈ 0.60669,

I C = −γ + 4α log 2 + log 2 + 24ζ ′(−1) + 2

12 log 2
≈ −0.11811,

I δ. . . periodic fluctuation:

δ(x) :=
1

log 2

∑
k∈Z\{0}

(−1 + χk)Γ(χk/2)ζ(−1 + χk)e2kπix , χk =
2πik

log 2
.
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Summary: Reductions on Plane Trees

Leaves

E ∼ n
r+1

V ∼ r(r+2)
6(r+1)2 n

limit law: X

Paths

E ∼ n
2r+1−1

V ∼ 2r+1(2r−1)
3(2r+1−1)2 n

limit law: X

Old leaves

E ∼ (2− Br−1(1/4))n

V = Θ(n)
limit law: X

Old paths

E ∼ 2n
r+2

V ∼ 2r(r+1)
3(r+2)2 n

limit law: X

Lessons learned from cutting trees – Benjamin Hackl
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Disclaimer

Results are not always that nice!
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Catalan–Stanley trees
I Motivation: Stanley’s Catalan interpretation #26

I Rightmost leaves in all branches of root have odd distance

I Reduction: remove parent & grandparent (except root) of �

→ → →

Lessons learned from cutting trees – Benjamin Hackl
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Counterexample: Results

I Reduction with different parameter behavior X

Age

I E = Θ(1)

I V = Θ(1)

I LLT: X

7→ · · · 7→

︸ ︷︷ ︸
# Generations = Age

Size of r th Reduction

I E ∼ 1
4r n

I V ∼ (2r+1)(2r−1)
16r n2

7→

︸ ︷︷ ︸
Reduction size

Lessons learned from cutting trees – Benjamin Hackl
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A Reduction on Binary Trees

Cutting strategy:

I Remove Leaves

I Merge single children with their corresponding parent

→ →
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Combinatorial Model Cutting Leaves Cutting Paths Further Models

How “old” do the nodes get?

We label the nodes according to the following rules:

I Leaves → 0

I age(left child) = age(right child) → increase by 1

I Otherwise: maximum of children

2

1

0 1

0 0

1

0 0

Lessons learned from cutting trees – Benjamin Hackl
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Combinatorial Model Cutting Leaves Cutting Paths Further Models

The Register Function

Age  Register function (Horton-Strahler-Index)

I Applications:

I Required stack size for evaluating arithmetic expressions
I Branching complexity of river networks (e.g. Danube: 9)

+

÷

1 −

a 1

×

a b

I Asymptotic analysis:

I Flajolet, Raoult, Vuillemin (1979)
I Flajolet, Prodinger (1986)
I r -branches, Numerics: Yamamoto, Yamazaki (2009)

Lessons learned from cutting trees – Benjamin Hackl
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Leaf Reduction: More Tree Families

Core Idea: # removed vertices . . . additive tree parameter

I τ ∈ T tree; τ1, τ2, . . . , τk branches of τ

I F (τ) = F (τ1) + F (τ2) + · · ·+ F (τk) + f (τ),
I with toll function f : T → R

· · ·

I Wagner (2015), Janson (2016), Wagner et al. (2018). . . :
I τn random tree, size n; f suitable

 F (τn) asymptotically Gaussian

Lessons learned from cutting trees – Benjamin Hackl
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Families suitable for
this approach:

I simply generated

I Pólya

I non-crossing

I . . . (?)
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