

Flip-Sorting and Step-Changing Lattice Walks
September 11, 2019
Asymptotic Counting and Analytic Properties via Algebraic Classification

Introductory Example

－Given： $2 \times n$ checkerboard，n identical 1×2 domino pieces

－\＃of possibilities to cover the board？

$$
\begin{aligned}
& n=1: \square 1 \\
& n=2: \square \text {, E } 2 \\
& n=3 \text { OT [日 } 3 \\
& \text { [コ], Eコ, 田], [日ت, 昍5 } \\
& 2 \\
& n=3 \text { : 凹ワ, 曰, 曰 } \\
& 3 \\
& \text { sizal size } 2 \\
& \text { In guveral } \tau \ldots \text { all tilings } \Rightarrow \tau=\not \square+\square \tau+\boxminus \tau \\
& \Rightarrow f_{n}=f_{n-1}+f_{n-2} \longrightarrow \text { Fibonoca! }
\end{aligned}
$$

Overview: Some Algebraic Classes for Sequences

Polynomial Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is polynomial $: \Longleftrightarrow$

$$
a_{n}=p(n) \text { for polynomial } p
$$

Polynomial Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is polynomial $: \Longleftrightarrow$

$$
a_{n}=p(n) \text { for polynomial } p
$$

Generating Functions:

$$
\begin{aligned}
& \sum_{n \geq 0} a_{n} z^{n}=\frac{q(z)}{(1-z)^{\delta+1}}, \quad \text { with } \delta=\operatorname{deg} p, \operatorname{deg} q \leq \delta \\
& \text { - } \frac{1}{1-z}=1+z+z^{2}+\cdots=\sum_{n \geqslant 0} z^{n} \quad \text { (geometric series) } \\
& \| \text { Diff. } \\
& \frac{2 z^{2}+z(1-z)}{(1-z)^{3}} \\
& \frac{1}{(1-z)^{2}}=\sum_{n \geqslant 0} n z^{n-1} \quad \Rightarrow \frac{z}{(1-z)^{2}}=\sum_{n \geqslant 0} n z^{n} \\
& \frac{2}{(1-z)^{3}}=\sum_{n \geqslant 0} n(n-1) z^{n-2} \Rightarrow \frac{2 z^{2}}{(1-z)^{3}}=\sum_{n \geqslant 0} n(n-1) z^{n} \text {. }
\end{aligned}
$$

C-finite Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is C-finite $: \Longleftrightarrow$

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0
$$

for constants c_{0}, \ldots, c_{r-1} and all $n \geq 0$

C-finite Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is C-finite $: \Longleftrightarrow$

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0
$$

for constants c_{0}, \ldots, c_{r-1} and all $n \geq 0$

- \rightsquigarrow linear recurrence with Constant coefficients

C-finite Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is C-finite $: \Longleftrightarrow$

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0
$$

for constants c_{0}, \ldots, c_{r-1} and all $n \geq 0$

- \rightsquigarrow linear recurrence with Constant coefficients

Solution Space

Assume $z^{r}+c_{r-1} z^{r-1}+\cdots+c_{1} z+c_{0}=\left(z-\alpha_{1}\right)^{e_{1}} \ldots\left(z-\alpha_{m}\right)^{e_{m}}$. Basis of vector space containing solutions:

$$
\left(n^{j} \alpha_{k}^{n}\right)_{n \geq 0} \quad\left(1 \leq k \leq m, 0 \leq j<e_{k}\right)
$$

C-finite Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is C-finite $: \Longleftrightarrow$

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0
$$

for constants c_{0}, \ldots, c_{r-1} and all $n \geq 0$

- \rightsquigarrow linear recurrence with Constant coefficients

Solution Space

Assume $z^{r}+c_{r-1} z^{r-1}+\cdots+c_{1} z+c_{0}=\left(z-\alpha_{1}\right)^{e_{1}} \ldots\left(z-\alpha_{m}\right)^{e_{m}}$. Basis of vector space containing solutions:

$$
\left(n^{j} \alpha_{k}^{n}\right)_{n \geq 0} \quad\left(1 \leq k \leq m, 0 \leq j<e_{k}\right)
$$

Generating Functions: Rational Functions!

$$
\sum_{n \geq 0} a_{n} z^{n}=\frac{p(z)}{1+c_{r-1} z+\cdots+c_{0} z^{r}}, \quad \text { with } \operatorname{deg} p<r
$$

C-finite Example: Fibonacci

$$
f_{n+2}=f_{n+1}+f_{n}, n \geq 0 \quad\left(f_{0}=1, f_{n}=1\right)
$$

From symbolic Equation:

$$
\begin{aligned}
& \tau(\not \square-\square-\square)=\not \square \quad \mid:(\square]-(\square+\square)) \\
\Rightarrow & \tau=\frac{\square \square}{\square \square-(\square+\square)} .
\end{aligned}
$$

sperioliation: $\phi \hat{=} z^{\circ}, ~ \square \hat{=} z, ~ \boxminus \hat{\equiv} z^{2}$
(Bine's formula.)

Algebraic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is algebraic $: \Longleftrightarrow$

$$
\begin{aligned}
& p_{0}(z)+p_{1}(z) A(z)+\cdots+p_{d}(z) A(z)^{d}=0 \\
& \quad \text { for GF } A(z)=\sum_{n \geq 0} a_{n} z^{n} \text { and } \\
& \quad \text { polynomials } p_{0}, \ldots, p_{d}
\end{aligned}
$$

Algebraic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is algebraic $: \Longleftrightarrow$

$$
\begin{aligned}
& p_{0}(z)+p_{1}(z) A(z)+\cdots+p_{d}(z) A(z)^{d}=0 \\
& \quad \text { for GF } A(z)=\sum_{n \geq 0} a_{n} z^{n} \text { and } \\
& \quad \text { polynomials } p_{0, \ldots,}, p_{d}
\end{aligned}
$$

- $\rightsquigarrow A(z)$ is algebraic over $\mathbb{K}[z]$

Algebraic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is algebraic : \Longleftrightarrow

$$
\begin{aligned}
& p_{0}(z)+p_{1}(z) A(z)+\cdots+p_{d}(z) A(z)^{d}=0 \\
& \quad \text { for GF } A(z)=\sum_{n \geq 0} a_{n} z^{n} \text { and } \\
& \quad \text { polynomials } p_{0, \ldots}, \ldots, p_{d}
\end{aligned}
$$

- $\rightsquigarrow A(z)$ is algebraic over $\mathbb{K}[z]$

Counting Sequence

$\left(a_{n}\right)_{n \geq 0}$ satisfies linear recurrence with polynomial coefficients

Algebraic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is algebraic $: \Longleftrightarrow$

$$
p_{0}(z)+p_{1}(z) A(z)+\cdots+p_{d}(z) A(z)^{d}=0
$$

for GF $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and
 polynomials p_{0}, \ldots, p_{d}

- $\rightsquigarrow A(z)$ is algebraic over $\mathbb{K}[z]$

Analytic structure

- Puiseux series!

$$
A(z) \stackrel{z \rightarrow \zeta}{=} \sum_{k \geq k_{0}} \tilde{a}_{k}(1-z / \zeta)^{k / r}
$$

- "Singularity Analysis"

Counting Sequence

$\left(a_{n}\right)_{n \geq 0}$ satisfies linear recurrence with polynomial coefficients NB: Rational Exponent!

Algebraic Example: Catalan

Count Dyck-Poths:

Generating func.: vie Decomposition!

Holonomic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is holonomic : \Longleftrightarrow

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{r}(n) a_{n+r}=0
$$

for polynomials p_{0}, \ldots, p_{d} and all $n \geq 0$

Holonomic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is holonomic : \Longleftrightarrow

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{r}(n) a_{n+r}=0
$$

for polynomials p_{0}, \ldots, p_{d} and all $n \geq 0$
Generating Functions:

- $A(z)=\sum_{n \geq 0} a_{n} z^{n} \rightsquigarrow$ linear differential equation with polynomial coefficients

Holonomic Sequences

- $\left(a_{n}\right)_{n \geq 0}$ is holonomic : \Longleftrightarrow

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{r}(n) a_{n+r}=0
$$

for polynomials p_{0}, \ldots, p_{d} and all $n \geq 0$

Generating Functions:

- $A(z)=\sum_{n>0} a_{n} z^{n} \rightsquigarrow$ linear differential equation with polynomial coefficients
- Solutions: "generalized series", shape

$$
z^{\alpha} \exp \left(q\left(z^{-1 / s}\right)\right)\left(a_{0}(z)+\log (z) a_{1}(z)+\cdots+\log (z)^{m} a_{m}(z)\right)
$$

(1) Identify Singularity closed to θ
(2) Use ODE, extract gen. series
(3) Singularity tholysis!

Holonomic Example

- Harmonic Numbers: $H_{n}=\sum_{1 \leq k \leq n} \frac{1}{k}$

$$
\begin{aligned}
& H_{n+1}=H_{n}+\frac{1}{n+1} \\
& \text { 1.(nn1) } \\
& \begin{array}{ll|l}
(n+1) H_{n+1} & =(n+1) H_{n}+1 & (-1) \\
(n+2) H_{n+2} & =(n+2) H_{n+1}+1 &
\end{array} \\
& \frac{(n+2) H_{n+2}}{(n+2) H_{n+2}-(2 n+3) H_{n+1}+(n+1) H_{n}}=0 \\
& \log (1+z)=\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} z^{n} \Rightarrow \log (1-z)=-\sum_{n \geq 1} \frac{1}{n} z^{n} \\
& \left.\Rightarrow \log \left(\frac{1}{1-z}\right)=-\log (1-z)=\sum_{n=1} \frac{z^{n}}{n} \cdot \right\rvert\, \cdot \frac{1}{1-z} \ell^{\text {parthal sons! }} \\
& H=\frac{1}{1-z} \log \left(\frac{1}{1-z}\right)=\sum_{n=1} H_{n} z^{n} \longrightarrow H^{\prime}=\frac{1}{(1-z)^{2}} \cdot \log \left(\frac{1}{1-z}\right)+\frac{1}{1-z} \cdot(1-z) \cdot \frac{1}{(1-z)^{2}} \\
& \left.=\frac{1}{1-z} H+\frac{1}{(1-z)^{2}} \right\rvert\, \cdot(1-z)^{2} \\
& \Rightarrow(1-z)^{2} H^{\prime}=(1-z) H+1 .
\end{aligned}
$$

A Bit About Permutations

- Permutations: bijective maps $\sigma:[n] \rightarrow[n]$
- Run / Fall: consecutive elements getting larger / smaller

Flip-Sorting

Repeat until sorted:

- Partition σ into falls
- Reverse ("flip") all falls

Theorem (Ungar, 1982)
Any permutation of $[n]$ is sorted after at most $n-1$ flip-rounds.

Pop-Stacked Permutations joint work with Andrei Asinowski, Cyril Banderier, Sara Billey,

- Permutations are pop-stacked if they result from a flip-round

Theorem (Asinowski-Banderier-Billey-H.-Linusson, 2019+)

(1) π is pop-stacked \Longleftrightarrow consecutive runs overlap
(2) number of pop-stacked permutations with k runs \rightarrow C-finite

Pop-Stacked with k Runs - Proof

Bijection: permutations with k runs $\longleftrightarrow \mathcal{L}_{k} \subset$ words over [k]

$261453 \mapsto 213221$

Pop-Stacked with k Runs - Proof

Bijection: permutations with k runs $\longleftrightarrow \mathcal{L}_{k} \subset$ words over [k]

$261453 \mapsto 213221$
Strategy: construct DFA recognizing $\mathcal{L}_{k} \Rightarrow$ sequence C-finite

Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational

Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
- Thus: GF can be guessed from data!

Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
- Thus: GF can be guessed from data!

$$
\begin{aligned}
& P_{1}(z)=\frac{z}{1-z} \\
& P_{2}(z)=\frac{2 z^{3}}{(1-z)^{2}(1-2 z)} \\
& P_{3}(z)=\frac{2 z^{4}\left(1+3 z-6 z^{2}\right)}{(1-z)^{3}(1-2 z)^{2}(1-3 z)} \\
& P_{4}(z)=\frac{2 z^{6}\left(21-74 z+5 z^{2}+180 z^{3}-144 z^{4}\right)}{(1-z)^{4}(1-2 z)^{3}(1-3 z)^{2}(1-4 z)}
\end{aligned}
$$

Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
- Thus: GF can be guessed from data!

$$
\begin{aligned}
& P_{1}(z)=\frac{z}{1-z} \\
& P_{2}(z)=\frac{2 z^{3}}{(1-z)^{2}(1-2 z)} \\
& P_{3}(z)=\frac{2 z^{4}\left(1+3 z-6 z^{2}\right)}{(1-z)^{3}(1-2 z)^{2}(1-3 z)} \\
& P_{4}(z)=\frac{2 z^{6}\left(21-74 z+5 z^{2}+180 z^{3}-144 z^{4}\right)}{(1-z)^{4}(1-2 z)^{3}(1-3 z)^{2}(1-4 z)}
\end{aligned}
$$

Conjecture:

$$
P_{k}(z)=\frac{q_{k}(z)}{\prod_{1 \leq j \leq k}(1-j z)^{k-j+1}}
$$

A Bit About (2D) Lattice Walks

- Step set: $\mathcal{S} \subseteq \mathbb{Z}^{2}$
- Lattice walk: sequence over \mathcal{S}

A Bit About (2D) Lattice Walks

- Step set: $\mathcal{S} \subseteq \mathbb{Z}^{2}$
- Lattice walk: sequence over \mathcal{S}

$$
S=\{\uparrow, \rightarrow, \downarrow, \leftarrow\}
$$

Typical Questions: find \# of walks with n steps that
$>$ end in given point

- avoid given region

A Bit About (2D) Lattice Walks

- Step set: $\mathcal{S} \subseteq \mathbb{Z}^{2}$
- Lattice walk: sequence over \mathcal{S}

Typical Questions: find \# of walks with n steps that
$>$ end in given point

- avoid given region

Relevant Work by Bostan, Bousquet-Mélou, Mishna, Kauers: classification of lattice walks

- with "small steps"
- remaining in the quarter plane

Step-Changing Lattice Walks joint work with Manuel Kauess

- Idea: step set depends on current position

- Unrestricted walks: functional equation \rightsquigarrow algebraic
- Goal: systematic analysis of walks avoiding left half plane
- $2 \times$ small steps $\rightarrow\left(2^{8}\right)^{2}=65536$ different families!

Experimental Results

- Total number of "interesting" families: 38963

Experimental Results

- Total number of "interesting" families: 38963
- Guessing recurrences from 2500 sequence terms each

Experimental Results

- Total number of "interesting" families: 38963
- Guessing recurrences from 2500 sequence terms each

