Introductory Example

- Given: \(2 \times n\) checkerboard, \(n\) identical \(1 \times 2\) domino pieces

- \# of possibilities to cover the board?

\[
\begin{align*}
\text{n = 1:} & \quad \begin{array}{c}
\square
\end{array} & \text{1} \\
\text{n = 2:} & \quad \begin{array}{c}
\square, \square
\end{array} & \text{2} \\
\text{n = 3:} & \quad \begin{array}{c}
\square, \square, \square
\end{array} & \text{3} \\
\text{n = 4:} & \quad \begin{array}{c}
\square, \square, \square, \square
\end{array} & \text{5}
\end{align*}
\]

In general, \(\exists \ldots \) all tilings \(\Rightarrow \exists = \emptyset + 0 \times \exists + \square \times \exists \rightarrow f_n = f_{n-1} + f_{n-2} \rightarrow \text{Fibonacci!}\)
Overview: Some Algebraic Classes for Sequences

- Algebraic sequences
- C-finite sequences
- Holonomic sequences
- Polynomial sequences
- Hypergeometric sequences

All sequences
Polynomial Sequences

- \((a_n)_{n \geq 0}\) is polynomial :\(\iff\)
 \[a_n = p(n) \text{ for polynomial } p \]
Polynomial Sequences

- \((a_n)_{n \geq 0}\) is polynomial \(\iff a_n = p(n)\) for polynomial \(p\)

Generating Functions:

\[
\sum_{n \geq 0} a_n z^n = \frac{q(z)}{(1 - z)^{\delta+1}}, \quad \text{with } \delta = \deg p, \, \deg q \leq \delta
\]

- \(\frac{1}{1-z} = 1 + z + z^2 + \ldots = \sum_{n \geq 0} z^n \) (geometric series)
- \(\frac{z}{(1-z)} = \sum_{n \geq 0} n z^{n-1} = \left(\frac{z}{(1-z)^2}\right) - \frac{z}{1-z} = \sum_{n \geq 0} n z^n\)
- \(\frac{2z^2 + z (1-z)}{(1-z)^3} = \sum_{n \geq 0} n^2 z^n\)
C-finite Sequences

\[(a_n)_{n \geq 0} \text{ is C-finite } \iff a_{n+r} + c_{r-1}a_{n+r-1} + \cdots + c_1a_{n+1} + c_0a_n = 0 \]

for constants \(c_0, \ldots, c_{r-1} \) and all \(n \geq 0 \)
C-finite Sequences

- $(a_n)_{n \geq 0}$ is C-finite if and only if:

 \[a_{n+r} + c_{r-1}a_{n+r-1} + \cdots + c_1a_{n+1} + c_0a_n = 0 \]

 for constants c_0, \ldots, c_{r-1} and all $n \geq 0$

- \leadsto linear recurrence with Constant coefficients
C-finite Sequences

- \((a_n)_{n \geq 0}\) is \textbf{C-finite} if

\[
a_{n+r} + c_{r-1}a_{n+r-1} + \cdots + c_1a_{n+1} + c_0a_n = 0
\]

for constants \(c_0, \ldots, c_{r-1}\) and all \(n \geq 0\).

- \(\leadsto\) linear recurrence with \textbf{Constant} coefficients

\[\textbf{Solution Space}\]

Assume

\[
z^r + c_{r-1}z^{r-1} + \cdots + c_1z + c_0 = (z - \alpha_1)^{e_1} \cdots (z - \alpha_m)^{e_m}.
\]

Basis of vector space containing solutions:

\[
(n^j \alpha_k^n)_{n \geq 0} \quad (1 \leq k \leq m, \ 0 \leq j < e_k)
\]
C-finite Sequences

- \((a_n)_{n \geq 0}\) is C-finite if
 \[a_{n+r} + c_{r-1}a_{n+r-1} + \cdots + c_1a_{n+1} + c_0a_n = 0 \]
 for constants \(c_0, \ldots, c_{r-1}\) and all \(n \geq 0\)

- \(\sim\) linear recurrence with Constant coefficients

Solution Space

Assume
\[
z^r + c_{r-1}z^{r-1} + \cdots + c_1z + c_0 = (z - \alpha_1)^{e_1} \cdots (z - \alpha_m)^{e_m}.
\]

Basis of vector space containing solutions:
\[
(n^j \alpha_k^n)_{n \geq 0} \quad (1 \leq k \leq m, \ 0 \leq j < e_k)
\]

Generating Functions: Rational Functions!

\[
\sum_{n \geq 0} a_n z^n = \frac{p(z)}{1 + c_{r-1}z + \cdots + c_0z^r}, \quad \text{with } \deg p < r
\]
C-finite Example: Fibonacci

\[f_{n+2} = f_{n+1} + f_n, \quad n \geq 0 \quad (f_0 = 1, f_1 = 1) \]

From symbolic Equation:

\[\mathcal{Z} = \emptyset \cdot \emptyset + \emptyset \cdot 2 \cdot \emptyset = \emptyset \]

\[\mathcal{Z} (\emptyset - \emptyset - \emptyset) = \emptyset \quad \therefore \quad \mathcal{Z} (\emptyset - (0 + \emptyset)) \]

\[\implies \mathcal{Z} = \emptyset - (0 + \emptyset) \]

Spezialisation: \(\mathcal{A} \equiv z^0, \quad \mathcal{D} \equiv z_1, \quad \mathcal{E} \equiv z^2 \)

\[T(z) = \frac{2^0}{2^0 - (z + z^2)} = \frac{1}{1 - (z + z^2)} \quad \rightarrow \quad [z^n] T(z) = \frac{1}{1 - \left(\frac{1 + \sqrt{5}}{2} \right)^n} - \left(\frac{1 - \sqrt{5}}{2} \right)^n \]

(Binet’s formula.)
Algebraic Sequences

\[(a_n)_{n \geq 0} \text{ is algebraic } \iff \]

\[p_0(z) + p_1(z)A(z) + \cdots + p_d(z)A(z)^d = 0\]

for GF \(A(z) = \sum_{n \geq 0} a_n z^n\) and polynomials \(p_0, \ldots, p_d\)
Algebraic Sequences

- \((a_n)_{n \geq 0}\) is algebraic if
 \[p_0(z) + p_1(z)A(z) + \cdots + p_d(z)A(z)^d = 0 \]
 for GF \(A(z) = \sum_{n \geq 0} a_n z^n\) and polynomials \(p_0, \ldots, p_d\).
- \(A(z)\) is algebraic over \(\mathbb{K}[z]\)
Algebraic Sequences

- $\langle a_n \rangle_{n \geq 0}$ is algebraic if
 \[p_0(z) + p_1(z)A(z) + \cdots + p_d(z)A(z)^d = 0 \]
 for GF $A(z) = \sum_{n \geq 0} a_n z^n$ and polynomials p_0, \ldots, p_d

- $A(z)$ is algebraic over $\mathbb{K}[z]$

Counting Sequence

$\langle a_n \rangle_{n \geq 0}$ satisfies linear recurrence with polynomial coefficients
Algebraic Sequences

- \((a_n)_{n \geq 0}\) is algebraic if
 \[
p_0(z) + p_1(z)A(z) + \cdots + p_d(z)A(z)^d = 0
 \]
 for GF \(A(z) = \sum_{n \geq 0} a_n z^n\) and polynomials \(p_0, \ldots, p_d\)
- \(\sim\) \(A(z)\) is algebraic over \(\mathbb{K}[z]\)

Analytic structure

- Puiseux series!
 \[
 A(z) \overset{z \rightarrow \zeta}{\longrightarrow} \sum_{k \geq k_0} \tilde{a}_k (1 - z/\zeta)^{k/r}
 \]
- “Singularity Analysis”

Counting Sequence

\((a_n)_{n \geq 0}\) satisfies linear recurrence with polynomial coefficients

\[
[z^n] \left(1 - \frac{z}{\zeta}\right)^{k/r} = \frac{n^{-k/r}}{\Gamma(-k/r)} \sum_{\mu=0}^{\nu} \binom{\frac{n}{r} - k/r}{\mu} \nu^\mu (1 + O(1/n))
\]

NB: Rational Exponent!
Algebraic Example: Catalan

Count Dyck Paths:

Generating func. via Decomposition:

\[C(z) = \frac{1}{1 - 2z - z^2} \]

Singly daily analysis:

\[\frac{-2}{\pi} \frac{n^{-3/2}}{\Gamma(-3/2)} \left(\frac{1}{4} \right)^n \left(1 + O(1/n) \right) \]

\[C(z) = \frac{1 - \sqrt{1 - 4z}}{2z} \]
Holonomic Sequences

- \((a_n)_{n \geq 0}\) is holonomic :

\[p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_r(n)a_{n+r} = 0 \]

for polynomials \(p_0, \ldots, p_d\) and all \(n \geq 0\)
Holonomic Sequences

- $(a_n)_{n \geq 0}$ is holonomic $:\iff$
 $$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_r(n)a_{n+r} = 0$$
 for polynomials p_0, \ldots, p_d and all $n \geq 0$

Generating Functions:

- $A(z) = \sum_{n \geq 0} a_n z^n \rightsquigarrow$ linear differential equation with polynomial coefficients
Holonomic Sequences

- $(a_n)_{n \geq 0}$ is holonomic:

$$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_r(n)a_{n+r} = 0$$

for polynomials p_0, \ldots, p_d and all $n \geq 0$

Generating Functions:

- $A(z) = \sum_{n \geq 0} a_n z^n \rightsquigarrow$ linear differential equation with polynomial coefficients

- Solutions: “generalized series”, shape

$$z^\alpha \exp(q(z^{-1/s}))(a_0(z) + \log(z)a_1(z) + \cdots + \log(z)^m a_m(z))$$

Strategy:

1. Identify Singularity closest to 0.
2. Use ODE, extract gen. series
3. Singularity analysis!
Holonomic Example

– Harmonic Numbers: \(H_n = \sum_{1 \leq k \leq n} \frac{1}{k} \)

\[
H_{n+1} = H_n + \frac{1}{n+1} \quad | \cdot (n+1)
\]

\[
(n+1) \cdot H_{n+1} = (n+1) \cdot H_n + 1 \quad | \cdot (-1)
\]

\[
(n+2) \cdot H_{n+2} = (n+2) \cdot H_{n+1} + 1 \quad \Rightarrow
\]

\[
(n+2) \cdot H_{n+2} - (2n+3) \cdot H_{n+1} + (n+1) \cdot H_n = 0
\]

\[
\log (1 + z) = \sum_{n \geq 1} \frac{(-1)^{n+1} z^n}{n} \Rightarrow \log (1 - z) = \sum_{n \geq 1} \frac{z^n}{n^2} \cdot \left| \cdot \frac{1}{1 - z} \right|
\]

\[
H = \frac{1}{1 - z} \cdot \log \left(\frac{1}{1 - z} \right) = \sum_{n \geq 1} H_n \cdot z^n \quad \rightarrow \quad H' = \frac{A}{(1 - z)^2} \cdot \log \left(\frac{1}{1 - z} \right) + \frac{A}{1 - z} \cdot (1 - z) \cdot \frac{1}{(1 - z)^2}
\]

\[
= \frac{A}{1 - z} \cdot H + \frac{A}{(1 - z)^2} \quad | \cdot (1 - z)^2
\]

\[
\Rightarrow \quad (1 - z)^2 \cdot H' = (1 - z) \cdot H + 1.
\]
A Bit About Permutations

- **Permutations**: bijective maps $\sigma : [n] \rightarrow [n]$
- **Run / Fall**: consecutive elements getting larger / smaller

1342756

134|27|56 (runs)

1|3|42|75|6 (falls)
Flip-Sorting

Repeat until sorted:

- Partition σ into falls
- Reverse (“flip”) all falls

Theorem (Ungar, 1982)

Any permutation of $[n]$ is sorted after at most $n - 1$ flip-rounds.
Permutations are **pop-stacked** if they result from a flip-round.

Theorem (Asinowski–Banderier–Billey–H.–Linusson, 2019+)

1. π is pop-stacked \iff consecutive runs overlap
2. number of pop-stacked permutations with k runs \rightarrow C-finite
Pop-Stacked with k Runs – Proof

Bijection: permutations with k runs $\leftrightarrow \mathcal{L}_k \subset \text{words over } [k]$

261453 \leftrightarrow 213221
Pop-Stacked with k Runs – Proof

Bijection: permutations with k runs $\leftrightarrow \mathcal{L}_k$ ⊂ words over $[k]$

261453 \leftrightarrow 213221

Strategy: construct DFA recognizing $\mathcal{L}_k \Rightarrow$ sequence C-finite
Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
- Thus: GF can be guessed from data!

\[P_1(z) = z \]
\[P_2(z) = 2z^3 \]
\[P_3(z) = 2z^4 \]
\[P_4(z) = 2z^6 \]

Conjecture:
\[P_k(z) = q_k(z) Q_{\lfloor j \rfloor} \left(1 - jz\right)^k \]

Benjamin Hackl
Flip-Sorting / Lattice Walks
Counting sequence is C-finite \implies generating function is rational

Thus: GF can be guessed from data!

\[
P_1(z) = \frac{z}{1 - z}
\]

\[
P_2(z) = \frac{2z^3}{(1 - z)^2(1 - 2z)}
\]

\[
P_3(z) = \frac{2z^4(1 + 3z - 6z^2)}{(1 - z)^3(1 - 2z)^2(1 - 3z)}
\]

\[
P_4(z) = \frac{2z^6(21 - 74z + 5z^2 + 180z^3 - 144z^4)}{(1 - z)^4(1 - 2z)^3(1 - 3z)^2(1 - 4z)}
\]
Pop-Stacked: Experimental Observations

- Counting sequence is C-finite \Rightarrow generating function is rational
- Thus: GF can be guessed from data!

\[
P_1(z) = \frac{z}{1 - z}
\]

\[
P_2(z) = \frac{2z^3}{(1 - z)^2(1 - 2z)}
\]

\[
P_3(z) = \frac{2z^4(1 + 3z - 6z^2)}{(1 - z)^3(1 - 2z)^2(1 - 3z)}
\]

\[
P_4(z) = \frac{2z^6(21 - 74z + 5z^2 + 180z^3 - 144z^4)}{(1 - z)^4(1 - 2z)^3(1 - 3z)^2(1 - 4z)}
\]

Conjecture:

\[
P_k(z) = \frac{q_k(z)}{\prod_{1 \leq j \leq k}(1 - jz)^{k-j+1}}
\]
A Bit About (2D) Lattice Walks

- **Step set:** $S \subseteq \mathbb{Z}^2$
- **Lattice walk:** sequence over S
A Bit About (2D) Lattice Walks

- **Step set:** $S \subseteq \mathbb{Z}^2$
- **Lattice walk:** sequence over S

Typical Questions: find \# of walks with n steps that
- end in given point
- avoid given region

Relevant Work by Bostan, Bousquet-Mélou, Mishna, Kauers:
- classification of lattice walks
 - with “small steps”
 - remaining in the quarter plane
A Bit About (2D) Lattice Walks

- **Step set**: $S \subseteq \mathbb{Z}^2$
- **Lattice walk**: sequence over S

Typical Questions: find # of walks with n steps that
- end in given point
- avoid given region

Relevant Work by Bostan, Bousquet-Mélou, Mishna, Kauers: classification of lattice walks
- with “small steps”
- remaining in the quarter plane
Step-Changing Lattice Walks joint work with Manuel Kauers

- **Idea:** step set depends on current position

- **Unrestricted walks:** functional equation \rightsquigarrow **algebraic**

- **Goal:** systematic analysis of walks *avoiding left half plane*

 - $2\times$ small steps $\rightarrow (2^8)^2 = 65536$ different families!
Experimental Results

- Total number of “interesting” families: 38963
Experimental Results

- Total number of “interesting” families: **38963**
- Guessing recurrences from 2500 sequence terms each
Experimental Results

- Total number of “interesting” families: **38963**
- Guessing recurrences from 2500 sequence terms each

<table>
<thead>
<tr>
<th>Endpoint at</th>
<th>% of walks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>5.174</td>
</tr>
<tr>
<td>(x, 0)</td>
<td>0.264</td>
</tr>
<tr>
<td>(0, y)</td>
<td>0.031</td>
</tr>
<tr>
<td>*</td>
<td>5.087</td>
</tr>
<tr>
<td>(x, 0)</td>
<td>0.329</td>
</tr>
<tr>
<td>(0, y)</td>
<td>2.687</td>
</tr>
<tr>
<td>*</td>
<td>0.028</td>
</tr>
<tr>
<td>(0, y)</td>
<td>2.413</td>
</tr>
<tr>
<td>*</td>
<td>0.000</td>
</tr>
<tr>
<td>(x, 0)</td>
<td>0.000</td>
</tr>
<tr>
<td>(0, y)</td>
<td>0.000</td>
</tr>
<tr>
<td>*</td>
<td>0.008</td>
</tr>
<tr>
<td>(0, 0)</td>
<td>2.605</td>
</tr>
<tr>
<td>(x, 0)</td>
<td>0.000</td>
</tr>
<tr>
<td>(0, y)</td>
<td>0.023</td>
</tr>
<tr>
<td>*</td>
<td>81.352</td>
</tr>
</tbody>
</table>