Benf
Benfalin

Benf
Benfalin

Cutting Down Plane Trees

- Remove all leaves!

Cutting Down Plane Trees

- Remove all leaves!

Cutting Down Plane Trees

- Remove all leaves!

111

Cutting Down Plane Trees

- Remove all leaves!

11

Cutting Down Plane Trees

- Remove all leaves!

Parameters of Interest:

- Size of r th reduction
- Age: \# of possible reductions

111

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees
\square

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees
\square

Cutting Down and Growing Trees - Benjamin HackI

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees
\square

UNIVERSITÄT KLAGENFURT

Expansion operators

- F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

- F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion ϕ

- inverse operation to leaf reduction
- attach leaves to all current leaves (required)
- attach leaves to inner nodes (optional)

Reductions on Plane Trees

Leaves

Reductions on Plane Trees

Leaves

Cutting Down and Growing Trees - Benjamin HackI

Reductions on Plane Trees

Reductions on Plane Trees

Reductions on Plane Trees

111

Reductions on Plane Trees

Reductions on Plane Trees

Reductions on Plane Trees

Old paths

Reductions on Plane Trees

Parameters of Interest:

- tree size after r reductions
- cumulative reduction size

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}^{\ldots}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=
$$

11
UNIVERSITÄT KLAGENFURT

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
\rightarrow there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
\rightarrow there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

- As Φ is linear, this proves the proposition.

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$
G_{r}(z, v)=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

SageMath Demo

UNIVERSITÄT
KLAGENFURT

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Proof insights:

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- Asymptotic normality: $n-X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

Pruning

- Remove all paths that end in a leaf!

Pruning

- Remove all paths that end in a leaf!

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages
Proof: all branches end in exactly one leaf (at some point).

Branches in a Tree - Result

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \quad \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& -\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& \alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669 \\
& -C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811,
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

- $\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669$,
- $C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811$,
- δ. . . periodic fluctuation:

$$
\delta(x):=\frac{1}{\log 2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \quad \chi_{k}=\frac{2 \pi i k}{\log 2} .
$$

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Old paths

$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$

limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$$
\mathbb{E} \sim \frac{n}{r+1}
$$

$$
\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n
$$

limit law:

Disclaimer

Results are not always that nice!
Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$ limit law:

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$

limit law: \checkmark

Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance

Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent \& grandparent (except root) of \square

Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent \& grandparent (except root) of \square

Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent \& grandparent (except root) of \square

Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent \& grandparent (except root) of \square

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Age

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark
\# Generations = Age

Size of r th Reduction

- $\mathbb{E} \sim \frac{1}{4^{r}} n$
- $\mathbb{V} \sim \frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}$

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Cutting Down and Growing Trees - Benjamin HackI

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

A Reduction on Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)
- r-branches, Numerics: Yamamoto, Yamazaki (2009) \square

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ

111

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

- Wagner (2015), Janson (2016), Wagner et al. (2018). . . :
- τ_{n} random tree, size $n ; f$ suitable $\rightsquigarrow F\left(\tau_{n}\right)$ asymptotically Gaussian

Leaf Reduction: More Tree Families

Core Idea: \# removed vertices ... additive tree parameter

- $\tau \in \mathcal{T}$ tree; $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ branches of τ
- $F(\tau)=F\left(\tau_{1}\right)+F\left(\tau_{2}\right)+\cdots+F\left(\tau_{k}\right)+f(\tau)$,
- with toll function $f: \mathcal{T} \rightarrow \mathbb{R}$

Families suitable for this approach:

- simply generated
- Pólya
- non-crossing
- Wagner (2015), Janson (2016), Wagner et al. (2018). . . :
- τ_{n} random tree, size $n ; f$ suitable $\rightsquigarrow F\left(\tau_{n}\right)$ asymptotically Gaussian

