Benjamin Hackl

May 16, 2019 UNIVERSITÄT

Cutting Down and Growing Trees

Joint work with

Clemens Heuberger, Sara Kropf, Helmut Prodinger, Stephan Wagner

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Plane Trees

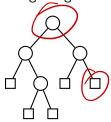
Related Research

Random edge removal (Meir–Moon, '70; Panholzer '06; ...)

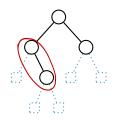
- Choose and remove random edge
- Keep component with root vertex
- How long does tree survive?

- Tree percolation (Lyons, '90, ...):
 - Infinite tree branching process
 - Remove edges (indep.) with probability p
 - How does "root component" look like?

- Remove Leaves
- Merge single children with their corresponding parent



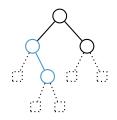
- Remove Leaves
- Merge single children with their corresponding parent



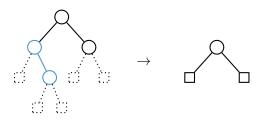
Cutting strategy:

Remove Leaves

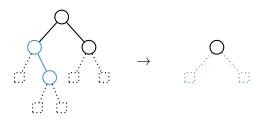
Merge single children with their corresponding parent



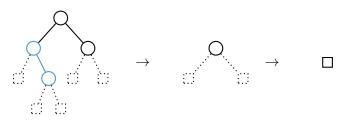
- Remove Leaves
- Merge single children with their corresponding parent



- Remove Leaves
- Merge single children with their corresponding parent



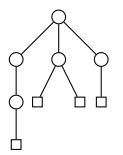
- Remove Leaves
- Merge single children with their corresponding parent



Register Function

Example: Cutting Down Plane Trees

Remove all leaves!

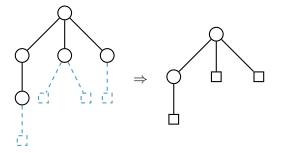


Plane Trees

Register Function

Example: Cutting Down Plane Trees

Remove all leaves!



Example: Cutting Down Plane Trees

Remove all leaves!

Cutting Down & Growing

00000

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Example: Cutting Down Plane Trees

Remove all leaves!

Cutting Down & Growing

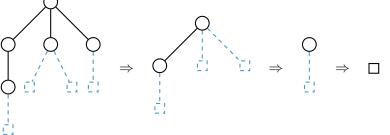
00000

Example: Cutting Down Plane Trees

Remove all leaves!

Parameters of Interest:

- Size of rth reduction
- ► Age: # of possible reductions



Plane Trees

Register Function

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees

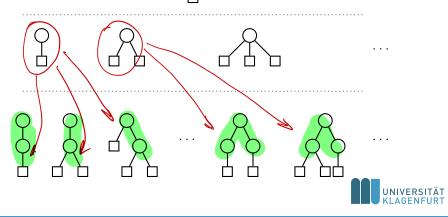
Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees

. . .

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees



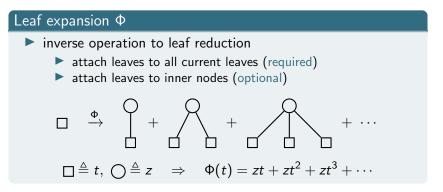
Expansion operators

► F... family of plane trees; bivariate generating function f

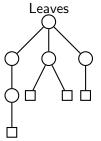
• expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

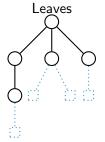
- ► F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees



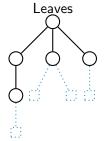
Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

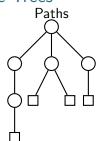


Cutting Down & Growing	Plane Trees	Register Function
00000	●0000000000	000000



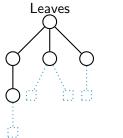
	Cutting Down & Growing	Plane Trees ●0000000000
--	------------------------	----------------------------

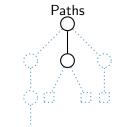




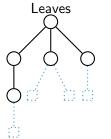
Register Function

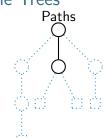
Cutting Down & Growing	Plane Trees	Register Function
	0000000000	000000

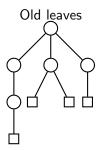




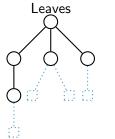
Cutting Down & Growing	Plane Trees ●00000000000	Register Function

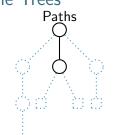


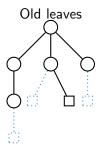




Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

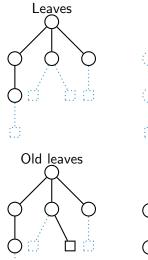


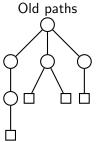




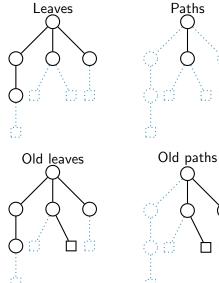
Cutting Down & Growing 00000	Plane Trees •00000000000	Register Function

Reductions on Plane Trees Leaves Paths

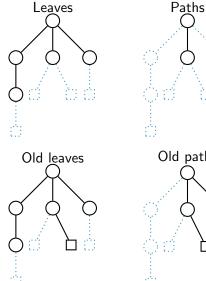


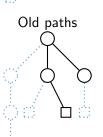


Cutting Down & Growing 00000	Plane Trees •00000000000	Register Function



Cutting Down & Growing	Plane Trees ●0000000000	Registe





Parameters of Interest:

- ▶ tree size after *r* reductions
- cumulative reduction size

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Proposition

► *T*... rooted plane trees

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

- ► *T*... rooted plane trees
- ▶ T(z, t)... BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

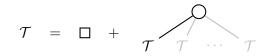
Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

► T...rooted plane trees ► T(z, t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$ $1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)}$

$$\Rightarrow T(z,t) = rac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

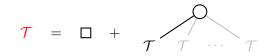
Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

T...rooted plane trees
 T(z, t) BGE for T (z are inner nodes t are leaves)

$$\Rightarrow T(z,t) = \frac{1 - (z-t) - \sqrt{1 - 2(z+t) + (z-t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

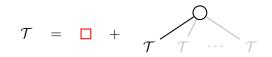
which can be solved explicitly.

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

T...rooted plane trees
 T(*z*, *t*)...BGF for *T* (*z* → inner nodes, *t* → leaves)
 ⇒ *T*(*z*, *t*) = 1 - (*z* - *t*) - √1 - 2(*z* + *t*) + (*z* - *t*)²

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

T...rooted plane trees
 T(*z*, *t*)...BGF for *T* (*z* → inner nodes, *t* → leaves)

$$\Rightarrow T(z,t) = \frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^2}}{2}$$

Proof. Symbolic equation

$$\mathcal{T} = \Box + \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

► T...rooted plane trees ► T(z, t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$ $1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)}$

$$\Rightarrow T(z,t) = rac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

$$\mathcal{T} = \Box + \mathcal{T} \mathcal{T} \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

T...rooted plane trees
 T(z, t)...BGF for *T* (z → inner nodes, t → leaves)
 ⇒ *T*(z, t) = 1 - (z - t) - √(1 - 2(z + t) + (z - t))^2)/2

Proof. Symbolic equation

$$\mathcal{T} = \Box + \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

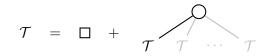
Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

Proposition

► T...rooted plane trees ► T(z, t)...BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$ $1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)}$

$$\Rightarrow T(z,t) = rac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation



translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

SageMath Demo

Cutting Down and Growing Trees - Benjamin Hackl

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Leaf expansion operator $\boldsymbol{\Phi}$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

000000 00000000000000000000000000000000	unction

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

Tree with n inner nodes and k leaves ~> zⁿt^k
 Expansion:

In total:

 $\Phi(z^n t^k) =$

000000 00000000000000000000000000000000	unction

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$

- **Expansion:**
 - inner nodes stay inner nodes

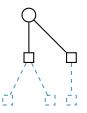
In total:

 $\Phi(z^n t^k) = z^n \cdot$

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$



• Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$

- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves

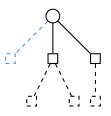
In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot$$

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$



• Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$

- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k − 1 positions where sequences of leaves can be inserted

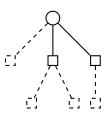
In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$



• Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$

- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k − 1 positions where sequences of leaves can be inserted

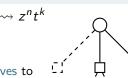
In total:

$$\Phi(z^{n}t^{k}) = z^{n} \cdot \left(\frac{zt}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n} \left(\frac{zt}{(1-t)^{2}}\right)^{k}$$

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$



Tree with n inner nodes and k leaves ~> zⁿt^k

- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k − 1 positions where sequences of leaves can be inserted

► In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t) \left(\frac{z}{(1-t)^2}\right)^n \left(\frac{zt}{(1-t)^2}\right)^k$$

• As Φ is linear, this proves the proposition.

Functional equation: $T(z,t) = \Phi(T(z,t)) + t$

Cutting Down & Growing 00000	Plane Trees	Register Function

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\Big(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\Big)$$

Cutting Down & Growing	Plane Trees	Register Function
	0000000000	

- Functional equation: $T(z,t) = \Phi(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\Big(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\Big)$$

BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree

Cutting Down & Growing 00000	Plane Trees 0000●0000000	Register Function

- Functional equation: $T(z,t) = \Phi(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\Big(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\Big)$$

BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree

► Intuition: v "remembers" size while tree family is expanded $G_r(z,v) = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}v, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}v\right)$

Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

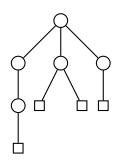
and $X_{n,r}$ is asymptotically normally distributed.

Proof insights:

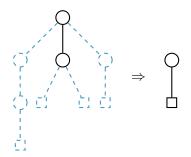
- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- ► Asymptotic normality: n X_{n,r} is a tree parameter with small toll function, limit law by Wagner (2015)

Pruning

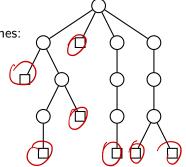
Remove all paths that end in a leaf!



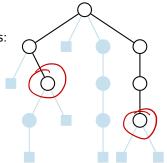
Remove all paths that end in a leaf!



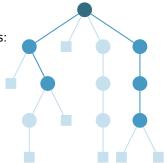
Trees can be partitioned into branches:



Trees can be partitioned into branches:

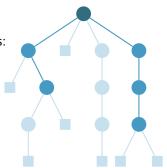


Trees can be partitioned into branches:

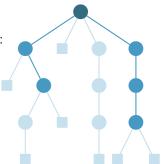


Cutting Down & Growing	Plane Trees	Register F
	00000000000	

- Trees can be partitioned into branches:
- Q: How many branches are there?



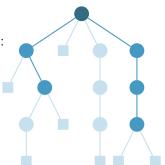
- Trees can be partitioned into branches:
- Q: How many branches are there?



Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

- Trees can be partitioned into branches:
- Q: How many branches are there?



Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000000	000000

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

$$\bullet \ \alpha = \sum_{k \ge 2} \frac{1}{2^k - 1} \approx 0.60669,$$

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

$$\bullet \ \alpha = \sum_{k \ge 2} \frac{1}{2^k - 1} \approx 0.60669,$$

$$\bullet \ C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$$

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

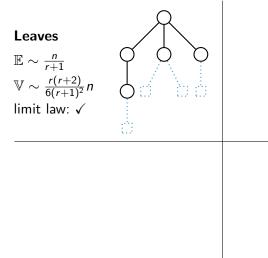
$$\alpha = \sum_{k \ge 2} \frac{1}{2^k - 1} \approx 0.60669,$$

$$C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$$

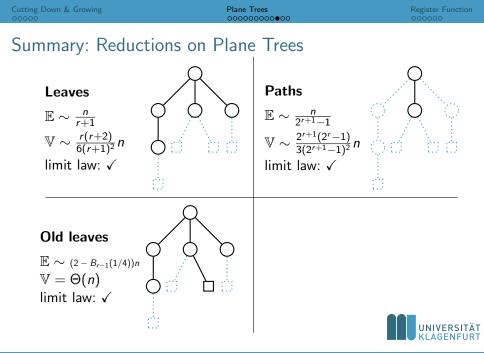
$$\delta \dots \text{ periodic fluctuation:}$$

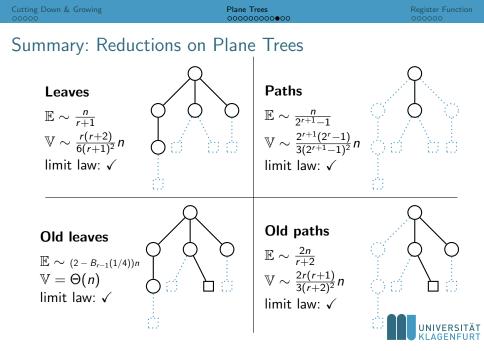
$$\delta(x) := \frac{1}{\log 2} \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}, \quad \chi_k = \frac{2\pi i k}{\log 2}.$$

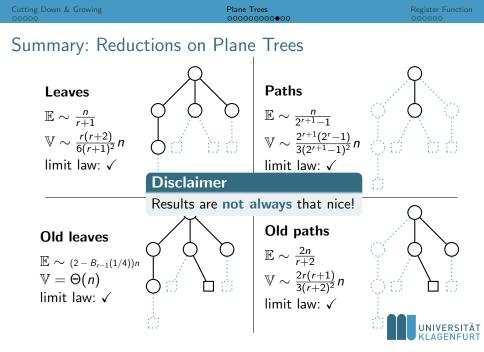
Summary: Reductions on Plane Trees



Cutting Down & Growing	Plane ⁻ 00000	Гrees 000000●00	Register Function
Summary: Reduc	ctions on Plane	e Trees	
Leaves $\mathbb{E} \sim \frac{n}{r+1}$ $\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$ limit law: \checkmark		Paths $\mathbb{E} \sim \frac{n}{2^{r+1}-1}$ $\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$ limit law: \checkmark	
			UNIVERSITÄT



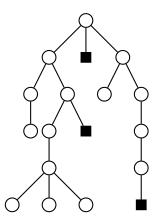




Cutting Down & Growing	Plane Trees	Register Function
	00000000000	

Counterexample: Catalan-Stanley trees

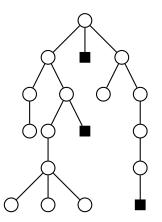
- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance



Cutting Down & Growing	Plane Trees	Register Function
	00000000000	

Counterexample: Catalan–Stanley trees

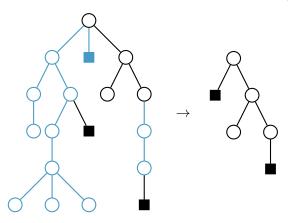
- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent/grandparent (except root) of ■



Cutting Down & Growing	Plane Trees	Register Function
	00000000000	

Counterexample: Catalan–Stanley trees

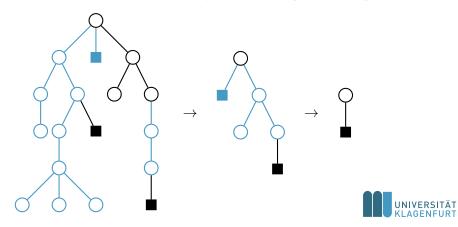
- ► Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent/grandparent (except root) of ■



Cutting Down & Growing	Plane Trees	Register Function
	00000000000	

Counterexample: Catalan–Stanley trees

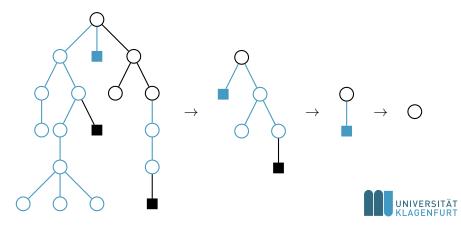
- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent/grandparent (except root) of ■



Cutting Down & Growing	Plane Trees	Register Function
	00000000000	

Counterexample: Catalan–Stanley trees

- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ▶ Reduction: remove parent/grandparent (except root) of ■



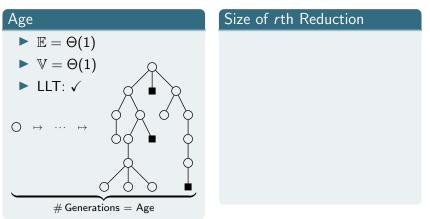
Counterexample: Results

 \blacktriangleright Reduction with different parameter behavior \checkmark

Age	Size of <i>r</i> th Reduction	

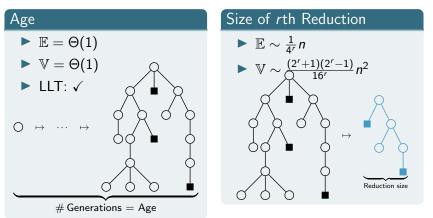
Counterexample: Results

Reduction with different parameter behavior \checkmark



Counterexample: Results

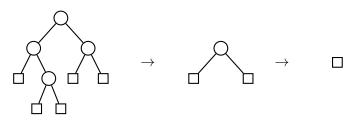
Reduction with different parameter behavior \checkmark



Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent



Bonus: Touchard's Identity

Proposition

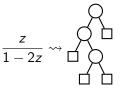
$$B(z) = 1 + rac{z}{1-2z} B\Big(rac{z^2}{(1-2z)^2}\Big)$$

Bonus: Touchard's Identity

Proposition

В

$$F(z) = 1 + \frac{z}{1-2z}B\Big(\frac{z^2}{(1-2z)^2}\Big)$$



Binary trees consist of...

... just a leaf,

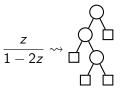
...a "smaller" tree with all leafs replaced by "chains"

Bonus: Touchard's Identity

Proposition

В

$$B(z) = 1 + \frac{z}{1-2z} B\left(\frac{z^2}{(1-2z)^2}\right)$$



Binary trees consist of...

... just a leaf,

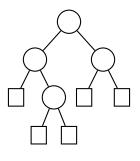
...a "smaller" tree with all leafs replaced by "chains"

Corollary (Touchard's Identity)

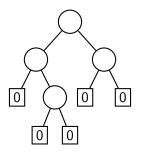
The Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$ satisfy

$$C_{n+1} = \sum_{0 \le k \le n/2} C_k 2^{n-2k} \binom{n}{2k}.$$

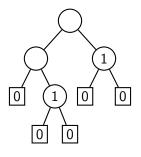
- Leaves $\rightarrow 0$
- ▶ age(left child) = age(right child) \rightarrow increase by 1
- Otherwise: maximum of children



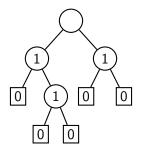
- Leaves $\rightarrow 0$
- ▶ age(left child) = age(right child) \rightarrow increase by 1
- Otherwise: maximum of children



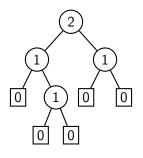
- Leaves $\rightarrow 0$
- ▶ age(left child) = age(right child) \rightarrow increase by 1
- Otherwise: maximum of children



- Leaves $\rightarrow 0$
- ▶ age(left child) = age(right child) \rightarrow increase by 1
- Otherwise: maximum of children



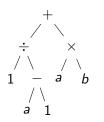
- Leaves $\rightarrow 0$
- ▶ age(left child) = age(right child) \rightarrow increase by 1
- Otherwise: maximum of children



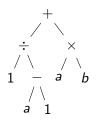
Age ~~ Register function (Horton-Strahler-Index)

► Applications:

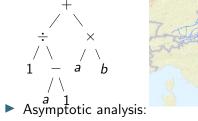
- Applications:
 - Required stack size for evaluating arithmetic expressions



- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

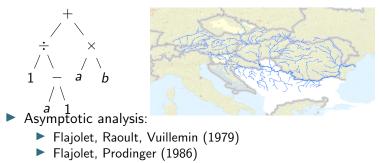


- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)



- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)



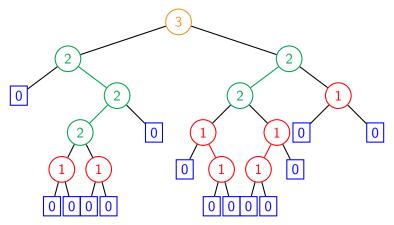
Age ~~ Register function (Horton-Strahler-Index)

- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

r-branches, Numerics: Yamamoto, Yamazaki (2009)

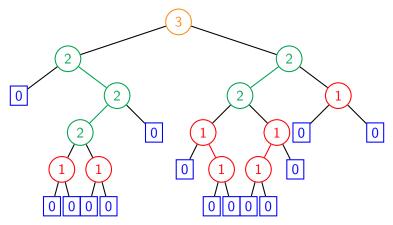
Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Local Structures - "r-branches"



Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

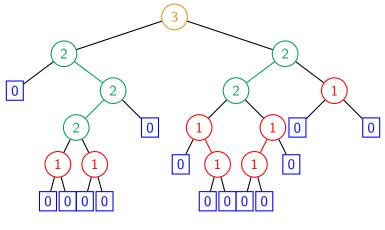
Local Structures - "r-branches"



▶ Number / Distribution of (*r*-)branches?

Cutting Down & Growing	Plane Trees	Register Function
00000	0000000000	000000

Local Structures - "r-branches"



Number / Distribution of (r-)branches?

• Example: $\frac{r}{\# r \text{-branches}} = \frac{12 \cdot 3}{14 \cdot 5 \cdot 2 \cdot 1}$

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

Cutting Down and Growing Trees - Benjamin Hackl

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

▶ # of *r*-branches is asymptotically normally distributed

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = rac{n}{4^r} + rac{1}{6} \Big(1 + rac{5}{4^r} \Big) + O(n^{-1}), \qquad \mathbb{V} = rac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

expected total # of branches is

$$\frac{4}{3}n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1}\log n),$$

• $C \approx 1.36190, \delta...$ periodic fluctuation

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

expected total # of branches is

$$\frac{4}{3}n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1}\log n),$$

• $C \approx 1.36190, \delta...$ periodic fluctuation

