Benjamin Hackl

February 27, 2019

From Touchard to Growing Trees and Lattice Paths

UNIVERSITÄT

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Cutting strategy:

💣 Remove Leaves

Cutting strategy:

Cutting strategy:

💣 Remove Leaves

Cutting strategy:

💣 Remove Leaves

Cutting strategy:

Cutting strategy:

💣 Remove Leaves

Register Function

Lattice Paths

Example: Cutting Down Plane Trees

Remove all leaves!

Example: Cutting Down Plane Trees

Remove all leaves!

Parameters of Interest:

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- *instead:* see inverse operation, growing trees

Reduction \rightarrow Expansion

- **d** modelling reduction directly: not suitable
- *instead:* see inverse operation, growing trees

Reduction \rightarrow Expansion

- **d** modelling reduction directly: not suitable
- *instead:* see inverse operation, growing trees

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	000000	000000

Expansion operators

- \checkmark F... family of plane trees; bivariate generating function f
- \checkmark expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

 \mathbf{o} F... family of plane trees; bivariate generating function f

 \checkmark expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

inverse operation to leaf reduction

attach leaves to all current leaves (required)

attach leaves to inner nodes (optional)

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Reductions on Plane Trees

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Reductions on Plane Trees

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
	0000000000		

Reductions on Plane Trees

Cutting Down & Growing	Plane Trees ●0000000000	Register Function	Lattice Paths
Reductions on P	lane Trees		
Leaves	Paths		
R	Q.		
$\sigma \circ \rho$	o dìo		
QC CC	ça aa		

Cutting Down & Growing	Plane Trees •000000000	Register Function 000000	Lattice Paths 000000
Reductions on P	lane Trees Paths		
Old leaves			UNIVERSITÄT

Cutting Down & Growing	Plane Trees ●0000000000	Register Function	Lattice Path 000000
Reductions on P	lane Trees Paths		
Old leaves			

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
	000000000		

Proposition

 \checkmark \mathcal{T} ...rooted plane trees

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
	000000000		

Proposition

- $\checkmark T$... rooted plane trees
- T(z, t)... BGF for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

$$T(z,t) = t + z \cdot \frac{I(z,t)}{1 - T(z,t)}$$

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

$$T(z,t) = t + z \cdot \frac{I(z,t)}{1 - T(z,t)}$$

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{I(z,t)}{1 - T(z,t)}$$

UNIVERSITÄT KLAGENFURT

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{I(z,t)}{1 - T(z,t)}$$

UNIVERSITÄT

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

UNIVERSITÄT

Proposition

✓
$$T$$
...rooted plane trees
✓ $T(z, t)$...BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)
 $\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$

Proof. Symbolic equation

$$T(z,t) = t + z \cdot \frac{I(z,t)}{1 - T(z,t)}$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Leaf expansion operator $\boldsymbol{\Phi}$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

Cutting Down & Growing Plan	ne Trees	Register Function	Lattice Paths
0000 000	00000000	000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

• Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$ • **Expansion**:

 $\Phi(z^n t^k) =$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Leaf expansion operator $\boldsymbol{\Phi}$

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

✓ Tree with *n* inner nodes and *k* leaves → zⁿt^k
 ✓ Expansion:
 ✓ inner nodes stay inner nodes

of In total:

 $\Phi(z^n t^k) = z^n \cdot$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(rac{z}{(1-t)^2},rac{zt}{(1-t)^2}
ight)$$

d Tree with *n* inner nodes and *k* leaves $\rightarrow z^n t^k$ *Expansion*:

- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

d Tree with *n* inner nodes and *k* leaves $\rightarrow z^n t^k$ *d* Expansion:

- *inner* nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

of In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\Big(rac{z}{(1-t)^2},rac{zt}{(1-t)^2}\Big)$$

d Tree with *n* inner nodes and *k* leaves $\rightarrow z^n t^k$ *d* Expansion:

- *inner* nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

of In total:

$$\Phi(z^{n}t^{k}) = z^{n} \cdot \left(\frac{zt}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n} \left(\frac{zt}{(1-t)^{2}}\right)^{k}$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Proposition

$$\Phi(f(z,t)) = (1-t)f\Big(rac{z}{(1-t)^2},rac{zt}{(1-t)^2}\Big)$$

Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$ *Expansion*:

- *inner* nodes stay inner nodes
- **attach** a non-empty sequence of leaves to all current leaves

of In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}} = (1-t) \left(\frac{z}{(1-t)^2}\right)^n \left(\frac{zt}{(1-t)^2}\right)^k$$

 \checkmark As Φ is linear, this proves the proposition.

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

• Functional equation: $T(z,t) = \Phi(T(z,t)) + t$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

✓ Functional equation: $T(z,t) = \Phi(T(z,t)) + t$ ✓ With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\Big(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\Big)$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

✓ Functional equation: $T(z, t) = \Phi(T(z, t)) + t$ ✓ With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\Big(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\Big)$$

• BGF $G_r(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

✓ Functional equation: $T(z,t) = \Phi(T(z,t)) + t$ ✓ With $z = u/(1+u)^2$ and by some manipulations

$$\Phi^{r}(T(z,t))|_{t=z} = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\left(\frac{u(1-u^{r+1})^{2}}{(1-u^{r+2})^{2}}, \frac{u^{r+1}(1-u)^{2}}{(1-u^{r+2})^{2}}\right)$$

SGF $G_r(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Intuition: v "remembers" size while tree family is expanded

$$G_r(z,v) = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}v, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}v\right)$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	000000000	000000	000000

Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

Proof insights:

 $\mathcal{I} \mathbb{E} X_{n,r}$ and $\mathbb{V} X_{n,r}$ follow via singularity analysis

Asymptotic normality: $n - X_{n,r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000		000000
Pruning			

Remove all paths that end in a leaf!

Cutting Down & Growing 0000	Plane Trees 00000●00000	Register Function	Lattice Paths
Pruning			

Remove all paths that end in a leaf!

- **d** Trees can be partitioned into branches:
- ✓ Q: How many branches are there?

- **d** Trees can be partitioned into branches:

Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

- **d** Trees can be partitioned into branches:
- Q: How many branches are there?

Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	00000000000	000000	000000

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

Theorem (H.–Heuberger–Kropf–Prodinger)

$$lpha n + rac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

 $\alpha = \sum_{k \ge 2} rac{1}{2^k - 1} \approx 0.60669,$

Theorem (H.–Heuberger–Kropf–Prodinger)

Theorem (H.–Heuberger–Kropf–Prodinger)

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

• $\alpha = \sum_{k \ge 2} \frac{1}{2^k - 1} \approx 0.60669,$

• $C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$

• $\delta \dots$ periodic fluctuation:
 $\delta(x) := \frac{1}{\log 2} \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}, \quad \chi_k = \frac{2\pi i k}{\log 2}.$

Cutting Down & Growing 0000	Plane Trees 00000000€00	Register Function	Lattice Paths 000000
Summary: Redu	ctions on Plane	Trees	
Leaves	R		

۲ N

 $\mathbb{E} \sim rac{n}{r+1}$ $\mathbb{V} \sim rac{r(r+2)}{6(r+1)^2}n$

limit law: √

Cutting Down & Growing	Plane Trees 00000000●00	Register Function	Lattice Paths 000000
Summary: Reduc	ctions on Plane	e Trees	
Leaves $\mathbb{E} \sim rac{n}{r+1}$ $\mathbb{V} \sim rac{r(r+2)}{6(r+1)^2}n$ limit law: \checkmark		Paths $\mathbb{E} \sim \frac{n}{2^{r+1}-1}$ $\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$ limit law: \checkmark	

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	000000	000000

- **d** Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance

Cutting Down & Growing Plan	ne Trees	Register Function	Lattice Paths
0000 000	000000000	000000	000000

- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ✓ Reduction: remove parent/grandparent (except root) of ■

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	000000	000000

- **d** Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ✓ Reduction: remove parent/grandparent (except root) of ■

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	000000	000000

- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ✓ Reduction: remove parent/grandparent (except root) of ■

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	000000	000000

- Motivation: Stanley's Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- ✓ Reduction: remove parent/grandparent (except root) of ■

Counterexample: Results

 \checkmark Reduction with different parameter behavior \checkmark

Age	Size of <i>r</i> th Reduction

Counterexample: Results

 \checkmark Reduction with different parameter behavior \checkmark

UNIVERSITÄT KLAGENFURT

Counterexample: Results

 \checkmark Reduction with different parameter behavior \checkmark

UNIVERSITÄT

Trimming Binary Trees

Cutting strategy:

💣 Remove Leaves

Merge single children with their corresponding parent

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	00000	000000

Bonus: Touchard's Identity

Proposition

$$B(z) = 1 + rac{z}{1-2z} B\Big(rac{z^2}{(1-2z)^2}\Big)$$

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	00000	000000

Bonus: Touchard's Identity

Proposition

$$B(z) = 1 + \frac{z}{1-2z}B\left(\frac{z^2}{(1-2z)^2}\right)$$

$$\frac{z}{1-2z} \rightarrow \Box$$

Sinary trees consist of...

♂ ... just a leaf,

♂ ...a "smaller" tree with all leafs replaced by "chains"

Cutting Down & Growing	Plane Trees	Register Function	Lattice Paths
0000	0000000000	00000	000000

Bonus: Touchard's Identity

Proposition

ø

$$B(z) = 1 + \frac{z}{1-2z}B\left(\frac{z^2}{(1-2z)^2}\right)$$

Binary trees consist of...

♂ ...a "smaller" tree with all leafs replaced by "chains"

Corollary (Touchard's Identity)

The Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$ satisfy

$$C_{n+1} = \sum_{0 \le k \le n/2} C_k 2^{n-2k} \binom{n}{2k}.$$

$$\checkmark$$
 Leaves \rightarrow 0

- age(left child) = age(right child) → increase by 1
- of Otherwise: maximum of children

$$\checkmark$$
 Leaves \rightarrow 0

- age(left child) = age(right child) → increase by 1
- of Otherwise: maximum of children

$$\checkmark$$
 Leaves \rightarrow 0

- of Otherwise: maximum of children

$$\checkmark$$
 Leaves \rightarrow 0

- age(left child) = age(right child) → increase by 1
- of Otherwise: maximum of children

$$\checkmark$$
 Leaves \rightarrow 0

- age(left child) = age(right child) → increase by 1
- of Otherwise: maximum of children

Age ~~ Register function (Horton-Strahler-Index)

Age \rightsquigarrow Register function (Horton-Strahler-Index)

Applications:

Age ~> Register function (Horton-Strahler-Index)

- Applications:
 - Required stack size for evaluating arithmetic expressions

Age ~~ Register function (Horton-Strahler-Index)

Applications:

Required stack size for evaluating arithmetic expressions

Branching complexity of river networks (e.g. Danube: 9)

Age ~~ Register function (Horton-Strahler-Index)

Applications:

Required stack size for evaluating arithmetic expressions

Branching complexity of river networks (e.g. Danube: 9)

Age ~~ Register function (Horton-Strahler-Index)

Applications:

Required stack size for evaluating arithmetic expressions

Branching complexity of river networks (e.g. Danube: 9)

Age ~~ Register function (Horton-Strahler-Index)

Applications:

Required stack size for evaluating arithmetic expressions

🖋 Branching complexity of river networks (e.g. Danube: 9)

💣 Flajolet, Prodinger (1986)

Age ~~ Register function (Horton-Strahler-Index)

Applications:

Required stack size for evaluating arithmetic expressions

🖋 Branching complexity of river networks (e.g. Danube: 9)

- ✓ Flajolet, Raoult, Vuillemin (1979)
- 🝼 Flajolet, Prodinger (1986)
- 💣 r-branches, Numerics: Yamamoto, Yamazaki (2009)

Cutting Down & Growing	Plane Trees 0000000000	Register Function 0000●0	Lattice Paths
Local Structures	- "r-branches"		
	3	~	
(2)		2	
0	(2))
	0 (1		
	<u> </u>		

Vumber / Distribution of (r-)branches?

"r-branches" - Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

"r-branches" - Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

 \checkmark # of r-branches is asymptotically normally distributed

"*r*-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

of r-branches is asymptotically normally distributed

with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

"*r*-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

of r-branches is asymptotically normally distributed

with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

expected total # of branches is

$$\frac{4}{3}n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1}\log n),$$

 \checkmark C \approx 1.36190, δ ... periodic fluctuation

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):

- ✓ If the path starts with \uparrow or \downarrow : rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:
 - $\begin{array}{cccc} \bullet & \mathsf{Replace} \to \dots \uparrow \dots \ \mathsf{by} \ \nearrow, \\ \bullet & \to \dots \downarrow \dots \ \mathsf{by} \ \searrow, \\ \bullet & \leftarrow \dots \downarrow \dots \ \mathsf{by} \ \swarrow, \\ \bullet & \leftarrow \dots \uparrow \dots \ \mathsf{by} \ \swarrow. \\ \end{array}$
- 💣 Rotate the entire path again

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow,\to,\downarrow,\leftarrow\}$):

- ✓ If the path starts with \uparrow or \downarrow : rotate it
- If the path ends with \rightarrow or \leftarrow : rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):

- If the path starts with ↑ or ↓: rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow,\to,\downarrow,\leftarrow\}$):

- If the path ends with \rightarrow or \leftarrow : rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow,\to,\downarrow,\leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- If the path ends with \rightarrow or \leftarrow : rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow,\to,\downarrow,\leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow,\to,\downarrow,\leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- ✓ If the path ends with → or ←: rotate the last step
- Consider the pairs of horizontal-vertical segments:

000000 0000000 00000 00000 00000	tting Down & Growing	Plane Trees	Register Function	Lattice Paths
	000	0000000000	000000	00000

Reduction – Example

tting Down & Growing	Plane Trees	Register Function	Lattice Paths
00	0000000000	000000	00000

Reduction – Example

Reduction degree and functional equation

♂ Reduction degree: "age" of a lattice path w.r.t. reduction

Reduction degree and functional equation

Reduction degree: "age" of a lattice path w.r.t. reduction

Proposition

The generating function of simple two-dimensional lattice paths of length ≥ 1 , $L(z) = \frac{4z}{1-4z}$, satisfies the functional equation

$$L(z) = 4z + 4L\left(\frac{z^2}{(1-2z)^2}\right).$$

Reduction degree and functional equation

Reduction degree: "age" of a lattice path w.r.t. reduction

Proposition

The generating function of simple two-dimensional lattice paths of length ≥ 1 , $L(z) = \frac{4z}{1-4z}$, satisfies the functional equation

$$L(z) = 4z + 4L\left(\frac{z^2}{(1-2z)^2}\right).$$

Can be checked directly-or proven combinatorially!

Modeling the Reduction Degree

 $\checkmark L_r^{=}(z) \dots \text{OGF}$ for paths with degree r

Modeling the Reduction Degree

• $L_r^{=}(z) \dots \text{OGF}$ for paths with degree r

 $\checkmark X_n \dots$ reduction degree of (unif. random) path, length n

$$\Rightarrow \mathbb{P}(X_n = r) = \frac{[z^n]L_r^{=}(z)}{4^n}$$

Modeling the Reduction Degree

• $L_r^{=}(z) \dots \text{OGF}$ for paths with degree r

• X_n ... reduction degree of (unif. random) path, length n

$$\Rightarrow \mathbb{P}(X_n = r) = \frac{[z^n]L_r^{=}(z)}{4^n}$$

• Probability densities of X_1 up to X_{512} :

✓ Analyze $G(z) = \sum_{r>0} rL_r^=(z)$

Analyze
$$G(z) = \sum_{r \ge 0} rL_r^=(z)$$
Substitutions $z = \frac{u}{(1+u)^2}$ and $u = e^{-t}$ yield
$$G(z) = \sum r4^{r+1}(-1)^{\lambda-1}\lambda e^{-t\lambda 2^r}$$

 $r,\lambda \geq 0$

Analyze
$$G(z) = \sum_{r \ge 0} rL_r^{=}(z)$$
Substitutions $z = \frac{u}{(1+u)^2}$ and $u = e^{-t}$ yield
$$G(z) = \sum_{r,\lambda \ge 0} r4^{r+1}(-1)^{\lambda-1}\lambda e^{-t\lambda 2^r}$$

$$G^*(s) = \Gamma(s)\zeta(s-1)\frac{2^{2-s}}{1-2^{2-s}},$$

Analyze
$$G(z) = \sum_{r \ge 0} rL_r^{=}(z)$$
Substitutions $z = \frac{u}{(1+u)^2}$ and $u = e^{-t}$ yield
$$G(z) = \sum_{r,\lambda \ge 0} r4^{r+1}(-1)^{\lambda-1}\lambda e^{-t\lambda 2^r}$$

💣 Mellin transform

$$G^*(s) = \Gamma(s)\zeta(s-1)\frac{2^{2-s}}{1-2^{2-s}},$$

• Poles: s = 2 (order 2), $s = 2 + \frac{2\pi i}{\log 2}k$ (order 1) for $k \in \mathbb{Z} \setminus \{0\}$

Theorem (H.–Heuberger–Prodinger)

The expected compactification degree among all simple 2D all list list and list list and list list and list list and list an

$$\mathbb{E}X_n = \log_4 n + \frac{\gamma + 2 - 3\log 2}{2\log 2} + \delta_1(\log_4 n) + O(n^{-1})$$

where

$$\delta_1(x) = \frac{1}{\log 2} \sum_{k \neq 0} \frac{\Gamma(2 + \chi_k)\zeta(1 + \chi_k)}{\Gamma(1 + \chi_k/2)} e^{2k\pi i x}$$

is a small 1-periodic fluctuation.

Protes: s = 2 (order 2), $s = 2 + \frac{1}{\log 2}\kappa$ (order 1) for $\kappa \in \mathbb{Z} \setminus \{0\}$

Reduction Degree – Variance

Theorem (H.–Heuberger–Prodinger)

The corresponding variance is given by

$$\mathbb{V}X_n = \frac{\pi^2 - 24\log^2 \pi - 48\zeta''(0) - 24}{24\log^2 2} - \frac{2\log \pi}{\log 2} - \frac{11}{12} + \delta_2(\log_4 n) + \frac{\gamma + 2 - 3\log 2}{\log 2}\delta_1(\log_4 n) + \delta_1^2(\log_4 n) + O\left(\frac{1}{\log n}\right),$$

where $\delta_1(x)$ is defined as above and $\delta_2(x)$ is a small 1-periodic fluctuation as well.

