Benjamin HackI

From Touchard to Growing Trees and Lattice Paths

Example: Trimming Binary Trees

Cutting strategy:

* Remove Leaves
© Merge single children with their corresponding parent

Example: Trimming Binary Trees

Cutting strategy:

* Remove Leaves
© Merge single children with their corresponding parent

Example: Trimming Binary Trees

Cutting strategy:
\& Remove Leaves
© Merge single children with their corresponding parent

Example: Trimming Binary Trees

Cutting strategy:

* Remove Leaves
* Merge single children with their corresponding parent

Example: Trimming Binary Trees

Cutting strategy:

* Remove Leaves
* Merge single children with their corresponding parent

Example: Trimming Binary Trees

Cutting strategy:

* Remove Leaves
* Merge single children with their corresponding parent

Example: Cutting Down Plane Trees

Remove all leaves!

Example: Cutting Down Plane Trees

Remove all leaves!

Example: Cutting Down Plane Trees

Remove all leaves!

Example: Cutting Down Plane Trees

© Remove all leaves!

Example: Cutting Down Plane Trees

\leqslant Remove all leaves!

Parameters of Interest:

δ Size of r th reduction

* Age: \# of possible reductions

Reduction \rightarrow Expansion

क modelling reduction directly: not suitable
instead: see inverse operation, growing trees
\square

Reduction \rightarrow Expansion

\& modelling reduction directly: not suitable instead: see inverse operation, growing trees

Reduction \rightarrow Expansion

* modelling reduction directly: not suitable
© instead: see inverse operation, growing trees
\square

UNIVERSITÄT KLAGENFURT

Expansion operators

\& F... family of plane trees; bivariate generating function f
© expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

\& F. . family of plane trees; bivariate generating function f
expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

δ inverse operation to leaf reduction

- attach leaves to all current leaves (required)
attach leaves to inner nodes (optional)

Reductions on Plane Trees

Leaves

Reductions on Plane Trees

Leaves

Reductions on Plane Trees

Reductions on Plane Trees

Reductions on Plane Trees

Old leaves

Reductions on Plane Trees

Old leaves

Reductions on Plane Trees

Reductions on Plane Trees

Reductions on Plane Trees

Paths

Parameters of Interest:

δ tree size after r reductions
© cumulative reduction size

11

Bivariate Generating Function

Proposition

© \mathcal{T}... rooted plane trees

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}^{\cdots}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{}_{\mathcal{T}} \overbrace{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}^{\cdots}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation
translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

of \mathcal{T}.. rooted plane trees
ఠ $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}^{\cdots}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

© Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
Expansion:

δ In total:
$\Phi\left(z^{n} t^{k}\right)=$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

∞ Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Expansion:

© inner nodes stay inner nodes

σ In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

\propto Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Expansion:

inner nodes stay inner nodes
attach a non-empty sequence of leaves to all current leaves

σ In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} .
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

\propto Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Expansion:

inner nodes stay inner nodes
attach a non-empty sequence of leaves to all current leaves
σ there are $2 n+k-1$ positions where sequences of leaves can be inserted

o In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

\propto Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Expansion:

inner nodes stay inner nodes
attach a non-empty sequence of leaves to all current leaves there are $2 n+k-1$ positions where sequences of leaves can be inserted

σ In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

\propto Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$

Expansion:

inner nodes stay inner nodes
attach a non-empty sequence of leaves to all current leaves there are $2 n+k-1$ positions where sequences of leaves can be inserted

of In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

\diamond As Φ is linear, this proves the proposition.

Properties of Φ

σ Functional equation: $T(z, t)=\Phi(T(z, t))+t$

Properties of Φ

Functional equation: $T(z, t)=\Phi(T(z, t))+t$
With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

Properties of Φ

Functional equation: $T(z, t)=\Phi(T(z, t))+t$
With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

© BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Properties of Φ

Functional equation: $T(z, t)=\Phi(T(z, t))+t$
© With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
\& Intuition: v "remembers" size while tree family is expanded

$$
G_{r}(z, v)=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Proof insights:

$\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
Asymptotic normality: $n-X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

Pruning

\& Remove all paths that end in a leaf!

Pruning

σ Remove all paths that end in a leaf!

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

* Trees can be partitioned into branches:

Branches in a Tree

* Trees can be partitioned into branches:

〇〇
UNIVERSITÄT KLAGENFURT

Branches in a Tree

- Trees can be partitioned into branches:

〇〇
UNIVERSITÄT KLAGENFURT

Branches in a Tree

© Trees can be partitioned into branches:
δ Q: How many branches are there?

Branches in a Tree

© Trees can be partitioned into branches:
δ Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages

Branches in a Tree

© Trees can be partitioned into branches:
Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages
Proof: all branches end in exactly one leaf (at some point).

Branches in a Tree - Result

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

* $\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669$,

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{gathered}
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right) \\
\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669 \\
C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811
\end{gathered}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

* $\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669$,
o $C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811$,
of δ. . periodic fluctuation:
$\delta(x):=\frac{1}{\log 2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \quad \chi_{k}=\frac{2 \pi i k}{\log 2}$.

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: \checkmark

11
UNIVERSITÄT KLAGENFURT

Summary: Reductions on Plane Trees

Leaves

$$
\mathbb{E} \sim \frac{n}{r+1}
$$

$$
\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n
$$

limit law:

Disclaimer

Results are not always that nice!

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$ limit law: \checkmark

$$
\frac{-1)}{1)^{2}} n
$$

\qquad

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$ limit law:
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: \checkmark

\qquad

-

UNIVERSITÄT KLAGENFURT

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
\& Rightmost leaves in all branches of root have odd distance

0

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26

Rightmost leaves in all branches of root have odd distance
\& Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
\& Rightmost leaves in all branches of root have odd distance
\& Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
\& Rightmost leaves in all branches of root have odd distance
Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

Motivation: Stanley's Catalan interpretation \#26
Rightmost leaves in all branches of root have odd distance
Reduction: remove parent/grandparent (except root) of \square

III

Counterexample: Results

R Reduction with different parameter behavior \checkmark

Age

Size of r th Reduction

Counterexample: Results

\& Reduction with different parameter behavior \checkmark

Age

Size of r th Reduction

Counterexample: Results

Reduction with different parameter behavior \checkmark

Age

o $\mathbb{E}=\Theta(1)$
of $\mathbb{V}=\Theta(1)$
of LLT \checkmark
$\bigcirc \mapsto \cdots \mapsto$

\# Generations = Age

Size of r th Reduction

- $\mathbb{E} \sim \frac{1}{4^{r}} n$
$\sigma \mathbb{V} \sim \frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}$

Trimming Binary Trees

Cutting strategy:
\& Remove Leaves
© Merge single children with their corresponding parent

Bonus: Touchard's Identity

Proposition

$$
B(z)=1+\frac{z}{1-2 z} B\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

Bonus: Touchard's Identity

Proposition

$$
B(z)=1+\frac{z}{1-2 z} B\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

© Binary trees consist of...
\& ...just a leaf,

* ...a "smaller" tree with all leafs replaced by "chains"

Bonus: Touchard's Identity

Proposition

$$
B(z)=1+\frac{z}{1-2 z} B\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

- Binary trees consist of...
- ...just a leaf,
- ...a "smaller" tree with all leafs replaced by "chains"

Corollary (Touchard's Identity)

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ satisfy

$$
C_{n+1}=\sum_{0 \leq k \leq n / 2} C_{k} 2^{n-2 k}\binom{n}{2 k} .
$$

How "old" do the nodes get?

We label the nodes according to the following rules:
δ Leaves $\rightarrow 0$
age(left child) $=$ age(right child $) \rightarrow$ increase by 1

- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:
\propto Leaves $\rightarrow 0$
age(left child) $=$ age(right child $) \rightarrow$ increase by 1
O Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:
$\boldsymbol{*}$ Leaves $\rightarrow 0$
age(left child) $=$ age(right child $) \rightarrow$ increase by 1

- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:
$\boldsymbol{*}$ Leaves $\rightarrow 0$
age(left child) $=$ age(right child $) \rightarrow$ increase by 1

- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:
$\boldsymbol{*}$ Leaves $\rightarrow 0$
age(left child) $=$ age(right child $) \rightarrow$ increase by 1

- Otherwise: maximum of children

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)
Applications:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

Applications:
Required stack size for evaluating arithmetic expressions

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:

Required stack size for evaluating arithmetic expressions
Branching complexity of river networks (e.g. Danube: 9)

〇〇

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

o Applications:
Required stack size for evaluating arithmetic expressions
Branching complexity of river networks (e.g. Danube: 9)

© Asymptotic analysis:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

o Applications:
Required stack size for evaluating arithmetic expressions
Branching complexity of river networks (e.g. Danube: 9)

© Asymptotic analysis:
of Flajolet, Raoult, Vuillemin (1979)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

o Applications:
Required stack size for evaluating arithmetic expressions
Branching complexity of river networks (e.g. Danube: 9)

© Asymptotic analysis:
of Flajolet, Raoult, Vuillemin (1979) Flajolet, Prodinger (1986)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

o Applications:
Required stack size for evaluating arithmetic expressions
Branching complexity of river networks (e.g. Danube: 9)

© Asymptotic analysis:
of Flajolet, Raoult, Vuillemin (1979)
Flajolet, Prodinger (1986)
or r-branches, Numerics: Yamamoto, Yamazaki (2009)

Local Structures - "r-branches"

110

Local Structures - "r-branches"

σ Number / Distribution of $(r$ - $)$ branches?

Local Structures - "r-branches"

* Number / Distribution of (r -) branches?
* Example: | r | 0 | 1 | 2 | 3 |
| ---: | :---: | :---: | :---: | :---: |
| $\# r$-branches | 14 | 5 | 2 | 1 |

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)
 In a random binary tree of size $n . .$.
 \# of r-branches is asymptotically normally distributed

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size n...
\# of r-branches is asymptotically normally distributed with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .
\# of r-branches is asymptotically normally distributed
\& with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

σ expected total \# of branches is

$$
\frac{4}{3} n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1} \log n\right)
$$

\& $C \approx 1.36190, \delta \ldots$ periodic fluctuation

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
\& If the path starts with \uparrow or \downarrow : rotate it
\& If the path ends with \rightarrow or \leftarrow : rotate the last step
© Consider the pairs of
 horizontal-vertical segments:

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
© If the path starts with \uparrow or \downarrow : rotate it
σ If the path ends with \rightarrow or \leftarrow : rotate the last step
ρ^{*} Consider the pairs of horizontal-vertical segments:

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
δ If the path starts with \uparrow or \downarrow : rotate it
б If the path ends with \rightarrow or \leftarrow : rotate the last step

- Consider the pairs of horizontal-vertical segments:

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
© If the path starts with \uparrow or \downarrow : rotate it
© If the path ends with \rightarrow or \leftarrow : rotate the last step
© Consider the pairs of horizontal-vertical segments:

* Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
σ If the path starts with \uparrow or \downarrow :
rotate it
\& If the path ends with \rightarrow or \leftarrow : rotate the last step

- Consider the pairs of horizontal-vertical segments:

$\boldsymbol{\sigma}$ Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
© If the path starts with \uparrow or \downarrow :
rotate it
σ If the path ends with \rightarrow or \leftarrow : rotate the last step

- Consider the pairs of horizontal-vertical segments:

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
σ If the path starts with \uparrow or \downarrow : rotate it
$\boldsymbol{\sigma}$ If the path ends with \rightarrow or \leftarrow :

rotate the last step

ρ^{*} Consider the pairs of horizontal-vertical segments:

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
σ If the path starts with \uparrow or \downarrow :
rotate it
σ If the path ends with \rightarrow or \leftarrow : rotate the last step

© Consider the pairs of horizontal-vertical segments:
\& Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow,

\& Rotate the entire path again

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):
σ If the path starts with \uparrow or \downarrow :
rotate it
σ If the path ends with \rightarrow or \leftarrow : rotate the last step
© Consider the pairs of horizontal-vertical segments:

Reduction - Example

110

Reduction - Example

Reduction degree and functional equation

\& Reduction degree: "age" of a lattice path w.r.t. reduction

Reduction degree and functional equation

\& Reduction degree: "age" of a lattice path w.r.t. reduction

Proposition

The generating function of simple two-dimensional lattice paths of length $\geq 1, L(z)=\frac{4 z}{1-4 z}$, satisfies the functional equation

$$
L(z)=4 z+4 L\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

Reduction degree and functional equation

\& Reduction degree: "age" of a lattice path w.r.t. reduction

Proposition

The generating function of simple two-dimensional lattice paths of length $\geq 1, L(z)=\frac{4 z}{1-4 z}$, satisfies the functional equation

$$
L(z)=4 z+4 L\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

Can be checked directly-or proven combinatorially!

Modeling the Reduction Degree

$\delta_{r} L_{r}^{=}(z) \ldots$ OGF for paths with degree r

Modeling the Reduction Degree

$L_{r}^{=}(z) \ldots$ OGF for paths with degree r
$X_{n} \ldots$ reduction degree of (unif. random) path, length n

$$
\Rightarrow \mathbb{P}\left(X_{n}=r\right)=\frac{\left[z^{n}\right] L_{r}^{=}(z)}{4^{n}}
$$

Modeling the Reduction Degree

$L_{r}^{=}(z) \ldots$ OGF for paths with degree r
\& $X_{n} \ldots$ reduction degree of (unif. random) path, length n

$$
\Rightarrow \mathbb{P}\left(X_{n}=r\right)=\frac{\left[z^{n}\right] L_{r}^{=}(z)}{4^{n}}
$$

© Probability densities of X_{1} up to X_{512} :

III

Reduction Degree - Expectation

* Analyze $G(z)=\sum_{r \geq 0} r L_{r}^{=}(z)$

Reduction Degree - Expectation

© Analyze $G(z)=\sum_{r \geq 0} r L_{r}^{=}(z)$
© Substitutions $z=\frac{u}{(1+u)^{2}}$ and $u=e^{-t}$ yield

$$
G(z)=\sum_{r, \lambda \geq 0} r 4^{r+1}(-1)^{\lambda-1} \lambda e^{-t \lambda \lambda^{r}}
$$

Reduction Degree - Expectation

* Analyze $G(z)=\sum_{r \geq 0} r L_{r}^{=}(z)$
© Substitutions $z=\frac{u}{(1+u)^{2}}$ and $u=e^{-t}$ yield

$$
G(z)=\sum_{r, \lambda \geq 0} r 4^{r+1}(-1)^{\lambda-1} \lambda e^{-t \lambda 2^{r}}
$$

- Mellin transform

$$
G^{*}(s)=\Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}}
$$

Reduction Degree - Expectation

\& Analyze $G(z)=\sum_{r \geq 0} r L_{r}^{=}(z)$
© Substitutions $z=\frac{u}{(1+u)^{2}}$ and $u=e^{-t}$ yield

$$
G(z)=\sum_{r, \lambda \geq 0} r 4^{r+1}(-1)^{\lambda-1} \lambda e^{-t \lambda 2^{r}}
$$

Mellin transform

$$
G^{*}(s)=\Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}}
$$

Poles: $s=2$ (order 2), $s=2+\frac{2 \pi i}{\log 2} k$ (order 1) for $k \in \mathbb{Z} \backslash\{0\}$

Reduction Degree - Expectation

Theorem (H.-Heuberger-Prodinger)

The expected compactification degree among all simple 2D

- lattice paths of length n admits the asymptotic expansion

$$
\mathbb{E} X_{n}=\log _{4} n+\frac{\gamma+2-3 \log 2}{2 \log 2}+\delta_{1}\left(\log _{4} n\right)+O\left(n^{-1}\right)
$$

where

$$
\delta_{1}(x)=\frac{1}{\log 2} \sum_{k \neq 0} \frac{\Gamma\left(2+\chi_{k}\right) \zeta\left(1+\chi_{k}\right)}{\Gamma\left(1+\chi_{k} / 2\right)} e^{2 k \pi i x}
$$

is a small 1-periodic fluctuation.

Reduction Degree - Variance

Theorem (H.-Heuberger-Prodinger)

The corresponding variance is given by

$$
\begin{aligned}
& \mathbb{V} X_{n}=\frac{\pi^{2}-24 \log ^{2} \pi-48 \zeta^{\prime \prime}(0)-24}{24 \log ^{2} 2}-\frac{2 \log \pi}{\log 2}-\frac{11}{12} \\
& +\delta_{2}\left(\log _{4} n\right)+\frac{\gamma+2-3 \log 2}{\log 2} \delta_{1}\left(\log _{4} n\right) \\
& \quad+\delta_{1}^{2}\left(\log _{4} n\right)+O\left(\frac{1}{\log n}\right)
\end{aligned}
$$

where $\delta_{1}(x)$ is defined as above and $\delta_{2}(x)$ is a small 1-periodic fluctuation as well.

