

Remove all leaves!

► Remove all leaves!

► Remove all leaves!

► Remove all leaves!

Remove all leaves!

Parameter of Interest:

Remove all leaves!

Parameter of Interest:

▶ Size of *r*th reduction \longleftrightarrow # of removed nodes

$\mathsf{Reduction} \to \mathsf{Expansion}$

modelling reduction directly: not suitable

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees

L	

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- ▶ instead: see inverse operation, growing trees

- F...family of plane trees; bivariate generating function f
- ightharpoonup expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

- F... family of plane trees; bivariate generating function f
- ightharpoonup expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

inverse operation to leaf reduction

- \triangleright F... family of plane trees; bivariate generating function f
- \blacktriangleright expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
 - attach leaves to all current leaves (required)
 - attach leaves to inner nodes (optional)

- F... family of plane trees; bivariate generating function f
- ightharpoonup expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
 - attach leaves to all current leaves (required)
 - attach leaves to inner nodes (optional)

$$\Box \triangleq t, \ \bigcirc \triangleq z \quad \Rightarrow \quad \Phi(t) = zt + zt^2 + zt^3 + \cdots$$

Leaves

$$\mathbb{E} \sim rac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2} n$$

limit law: ✓

Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n$$

limit law: ✓

Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n$$

limit law: ✓

Old leaves

$$\mathbb{E} \sim (2-B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: √

Leaves

Motivation / Preliminaries

000000

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: ✓

Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n$$

limit law: ✓

Old leaves

$$\mathbb{E} \sim (2 - B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: √

Old paths

$$\mathbb{E} \sim \frac{2n}{r+2}$$

$$\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$$

limit law: √

ALPEN-ADRI UNIVERSITA

Leaves

$$\mathbb{E} \sim \frac{n}{r+1}$$

$$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$$

limit law: √

Paths

$$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$$

$$\mathbb{V} \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} r$$

limit law: ✓

Question

What can be done for other tree classes?

Old leaves

$$\mathbb{E} \sim (2-B_{r-1}(1/4))n$$

$$\mathbb{V} = \Theta(n)$$

limit law: ✓

Old paths

$$\mathbb{E} \sim \frac{2n}{r+2}$$

$$\mathbb{V} \sim \frac{2r(r+1)}{3(r+2)^2}n$$

limit law: ✓

 \mathcal{T} ...rooted trees. $F: \mathcal{T} \to \mathbb{R}$... additive tree parameter, if

 $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- ► $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau)$,
 - ightharpoonup with *toll function f* : $\mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - ightharpoonup with toll function $f: \mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- ► $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau)$,
 - ightharpoonup with toll function $f: \mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- ► $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau)$,
 - ightharpoonup with *toll function f* : $\mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - ightharpoonup with *toll function f* : $\mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- ► $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau)$,
 - ightharpoonup with *toll function f* : $\mathcal{T} \to \mathbb{R}$

- $ightharpoonup au \in \mathcal{T}$ tree; au_1, au_2, \ldots, au_k branches of au
- ► $F(\tau) = F(\tau_1) + F(\tau_2) + \cdots + F(\tau_k) + f(\tau),$
 - ▶ with *toll function* $f: \mathcal{T} \to \mathbb{R}$

- ► Wagner (2015), Janson (2016), Wagner et al. (2018)...:
 - ► τ_n random tree, size n; f suitable $\rightsquigarrow F(\tau_n)$ asymptotically Gaussian

 $ightharpoonup a_r(\tau) \leadsto \#$ of removed nodes when cutting leaves r times

- ▶ $a_r(\tau) \rightsquigarrow \#$ of removed nodes when cutting leaves r times
- **Example:** r = 3

- ▶ $a_r(\tau) \leadsto \#$ of removed nodes when cutting leaves r times
- **Example:** r = 3

- $ightharpoonup a_r(\tau) \leadsto \#$ of removed nodes when cutting leaves r times
- **Example:** r = 3

- $ightharpoonup a_r(\tau) \leadsto \#$ of removed nodes when cutting leaves r times
- **Example:** r = 3

- ▶ $a_r(\tau) \rightsquigarrow \#$ of removed nodes when cutting leaves r times
- **Example:** r = 3

"Cutting Leaves" - Toll Function

$$f(\tau) = \begin{cases} 0 & \text{if } \tau \text{ has height } > r, \\ 1 & \text{if } \tau \text{ has height } \le r. \end{cases}$$

Simply Generated Trees Plane Trees:

- rooted: designated root node
- ordered: order of children matters

Simply Generated Trees

Plane Trees:

- rooted: designated root node
- ordered: order of children matters

Generalization:

• weight sequence: $\mathbf{w} = (w_k)_{k \geq 0} \subseteq \mathbb{R}_{\geq 0}$

Simply Generated Trees

Plane Trees:

- rooted: designated root node
- ordered: order of children matters

Generalization:

- weight sequence: $\mathbf{w} = (w_k)_{k \geq 0} \subseteq \mathbb{R}_{\geq 0}$
- weight of tree τ:

$$w(\tau) := \prod_{v \text{ node in } \tau} w_{(\# \text{ children of } v)}$$

Simply Generated Trees

Plane Trees:

- rooted: designated root node
- ordered: order of children matters

Generalization:

- weight sequence: $\mathbf{w} = (w_k)_{k \geq 0} \subseteq \mathbb{R}_{\geq 0}$
- weight of tree τ:

$$w(\tau) := \prod_{v \text{ node in } \tau} w_{(\# \text{ children of } v)}$$

$$w(\tau) = w_0^4 w_1 w_2 w_3$$

Simply Generated Trees

Plane Trees:

- rooted: designated root node
- ordered: order of children matters

Generalization:

- weight sequence: $\mathbf{w} = (w_k)_{k>0} \subseteq \mathbb{R}_{>0}$
- \blacktriangleright weight of tree τ :

$$w(\tau) := \prod_{\substack{v \text{ node in } \tau}} w_{(\# \text{ children of } v)} \qquad w(\tau) = w_0^{4} w_1 w_2 w_3$$

$$w(\tau) = w_0^4 w_1 w_2 w_3$$

partition function and probability distribution:

$$Z_n = Z_n(\mathbf{w}) := \sum_{\tau \in \mathcal{T}_n} w(\tau) \quad \Rightarrow \quad \mathbb{P}(\tau_n = \tau) = \frac{w(\tau)}{Z_n}$$

Plane Trees

$$w_0=w_1=\cdots=1$$

Plane Trees

 $w_0=w_1=\cdots=1$

Unary-Binary Trees

$$w_0 = w_1 = w_2 = 1$$

Plane Trees

 $w_0=w_1=\cdots=1$

d-ary Trees

Unary-Binary Trees

$$w_0 = w_1 = w_2 = 1$$

Plane Trees

 $w_0=w_1=\cdots=1$

d-ary Trees

Unary-Binary Trees

$$w_0 = w_1 = w_2 = 1$$

k-colored leaves

$$w_0 = k, \ w_1 = \cdots = 1$$

Proposition

 $ightharpoonup T(z, u) \dots BWGF (z \dots tree size, u \dots removed nodes)$

Proposition

- ightharpoonup T(z,u)...BWGF(z...tree size, u...removed nodes)
- $\blacktriangleright \Phi(t) \dots GF \text{ of } \mathbf{w}, \Phi(t) = \sum_{k>0} w_k t^k$

Proposition

- $ightharpoonup T(z, u) \dots BWGF(z \dots tree size, u \dots removed nodes)$
- $\blacktriangleright \Phi(t)$... GF of \mathbf{w} , $\Phi(t) = \sum_{k>0} w_k t^k$
- $ightharpoonup T_r(z)...WGF$ of trees of height < r

Proposition

- $ightharpoonup T(z, u) \dots BWGF(z \dots tree size, u \dots removed nodes)$
- $\blacktriangleright \Phi(t) \dots GF \text{ of } \mathbf{w}, \Phi(t) = \sum_{k>0} w_k t^k$
- $ightharpoonup T_r(z)...WGF$ of trees of height < r

Then:

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

Proposition

- ightharpoonup T(z,u)...BWGF(z...tree size, u...removed nodes)
- $\blacktriangleright \Phi(t) \dots GF \text{ of } \mathbf{w}, \Phi(t) = \sum_{k>0} w_k t^k$
- $ightharpoonup T_r(z)...WGF$ of trees of height < r

Then:

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

Observation. $T \dots \mathbf{w}$ -simply generated trees, GF T(z) = T(z,1)

Proposition

- $ightharpoonup T(z, u) \dots BWGF(z \dots tree size, u \dots removed nodes)$
- $\blacktriangleright \Phi(t) \dots GF \text{ of } \mathbf{w}, \Phi(t) = \sum_{k>0} w_k t^k$
- $ightharpoonup T_r(z)...WGF$ of trees of height < r

Then:

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

Observation. \mathcal{T} ... **w**-simply generated trees, GF T(z) = T(z,1)

$$\mathcal{T} = \sum_{\substack{k \geq 0 \\ w_k \neq 0}} \underbrace{\mathcal{T} \mathcal{T} \cdots \mathcal{T}}_{k \text{ branches}}$$

Proposition

- ightharpoonup T(z,u)...BWGF(z...tree size, u...removed nodes)
- $\blacktriangleright \Phi(t) \dots GF \text{ of } \mathbf{w}, \Phi(t) = \sum_{k>0} w_k t^k$
- $ightharpoonup T_r(z)...WGF$ of trees of height < r

Then:

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

Observation. \mathcal{T} ... **w**-simply generated trees, GF T(z) = T(z,1)

$$\mathcal{T} = \sum_{\substack{k \geq 0 \\ w_k \neq 0}} \underbrace{\mathcal{T} \quad \mathcal{T} \quad \cdots \quad \mathcal{T}}_{\substack{k \text{ branches}}} \quad \Rightarrow \quad T(z) = z\Phi(T(z))$$

Functional Equation

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

Functional Equation

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

$$T(z, u) = \sum_{\tau \in \mathcal{T}} w(\tau) z^{|\tau|} u^{\mathsf{a}_r(\tau)}$$

Functional Equation

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

$$T(z, u) = \sum_{\tau \in \mathcal{T}} w(\tau) z^{|\tau|} u^{a_r(\tau)}$$

$$= \sum_{k \ge 0} w_k \sum_{\tau_1} \cdots \sum_{\tau_k} \left(\prod_{j=1}^k w(\tau_j) \right) z^{1+\sum |\tau_j|} u^{\sum a_r(\tau_j)}$$

$$+ \sum_{\tau \in \mathcal{T}_r} w(\tau) z^{|\tau|} (u^{|\tau|} - u^{|\tau|-1})$$

Functional Equation

$$T(z,u) = z\Phi(T(z,u)) + \left(1 - \frac{1}{u}\right)T_r(zu)$$

$$T(z,u) = \sum_{\tau \in \mathcal{T}} w(\tau) z^{|\tau|} u^{a_r(\tau)}$$

$$= \sum_{k \geq 0} w_k \sum_{\tau_1} \cdots \sum_{\tau_k} \left(\prod_{j=1}^k w(\tau_j) \right) z^{1+\sum |\tau_j|} u^{\sum a_r(\tau_j)}$$

$$+ \sum_{\tau \in \mathcal{T}_r} w(\tau) z^{|\tau|} (u^{|\tau|} - u^{|\tau|-1})$$

$$= \cdots = z \Phi(T(z,u)) + \left(1 - \frac{1}{u}\right) T_r(zu).$$

► Goal: extract information from functional equation

- ► Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$

- ► Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$
- ► Via implicit differentiation:

$$\partial_u T(z,1) = \frac{zT'(z)T_r(z)}{T(z)}$$

- ► Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$
- ► Via implicit differentiation:

$$\partial_u T(z,1) = \frac{zT'(z)T_r(z)}{T(z)}$$

T(z) satisfies T(z) = zΦ(T(z)) singular inversion!

- Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$
- ► Via implicit differentiation:

$$\partial_u T(z,1) = \frac{zT'(z)T_r(z)}{T(z)}$$

- T(z) satisfies $T(z) = z\Phi(T(z)) \rightsquigarrow \text{ singular inversion!}$
 - fundamental constant $\tau > 0$: solution of $\tau \Phi'(\tau) \Phi(\tau) = 0$

- Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$
- ► Via implicit differentiation:

$$\partial_u T(z,1) = \frac{zT'(z)T_r(z)}{T(z)}$$

- T(z) satisfies $T(z) = z\Phi(T(z)) \rightsquigarrow \text{ singular inversion!}$
 - fundamental constant $\tau > 0$: solution of $\tau \Phi'(\tau) \Phi(\tau) = 0$
 - ▶ T has square root singularity at $\rho = \tau/\Phi(\tau)$

- Goal: extract information from functional equation
- ▶ In particular: partial derivatives $\partial_u T(z,1)$, $\partial_{uu} T(z,1)$
- ► Via implicit differentiation:

$$\partial_u T(z,1) = \frac{zT'(z)T_r(z)}{T(z)}$$

- ► T(z) satisfies $T(z) = z\Phi(T(z)) \rightsquigarrow$ singular inversion!
 - fundamental constant $\tau > 0$: solution of $\tau \Phi'(\tau) \Phi(\tau) = 0$
 - ► T has square root singularity at $\rho = \tau/\Phi(\tau)$

$$T(z) \stackrel{z \to \rho}{=} \tau - \sqrt{\frac{2\tau}{\rho \Phi''(\tau)}} \sqrt{1 - z/\rho} + O(1 - z/\rho)$$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- weight sequence **w**, fundamental constant τ , $\rho = \tau/\Phi(\tau)$
- \triangleright $X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- weight sequence **w**, fundamental constant τ , $\rho = \tau/\Phi(\tau)$
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

 $ightharpoonup X_{n,r}$ is asymptotically normally distributed for $n \to \infty$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- weight sequence **w**, fundamental constant τ , $\rho = \tau/\Phi(\tau)$
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

▶ $X_{n,r}$ is asymptotically normally distributed for $n \to \infty$ with mean and variance

$$\mathbb{E}X_{n,r} = \frac{T_r(\rho)}{\tau} \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- weight sequence **w**, fundamental constant τ , $\rho = \tau/\Phi(\tau)$
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

▶ $X_{n,r}$ is asymptotically normally distributed for $n \to \infty$ with mean and variance

$$\mathbb{E}X_{n,r} = \frac{T_r(\rho)}{\tau} \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

ightharpoonup and for $r o \infty$ we have

$$\frac{F_r(\rho)}{\tau} = 1 - \frac{2}{\rho \tau \Phi''(\tau)} r^{-1} + o(r^{-1}), \quad \sigma_r^2 = \frac{1}{3\rho \tau \Phi''(\tau)} + o(1).$$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- weight sequence **w**, fundamental constant τ , $\rho = \tau/\Phi(\tau)$
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

▶ $X_{n,r}$ is asymptotically normally distributed for $n \to \infty$ with mean and variance

$$\mathbb{E}X_{n,r} = \frac{T_r(\rho)}{\tau} \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

ightharpoonup and for $r o \infty$ we have

$$\frac{F_r(\rho)}{\tau} = 1 - \frac{2}{\rho \tau \Phi''(\tau)} r^{-1} + o(r^{-1}), \quad \sigma_r^2 = \frac{1}{3\rho \tau \Phi''(\tau)} + o(1).$$

Technical Detail. w periodic → parity!

Pólya Trees

► Rooted trees, order of children is irrelevant!

Pólya Trees

Rooted trees, order of children is irrelevant!

Proposition

 $ightharpoonup \mathcal{T}\dots P$ ólya trees, $\mathcal{T}(z)\dots g$ enerating function

$$\Rightarrow T(z) = z \exp \Big(\sum_{k \geq 1} \frac{1}{k} T(z^k) \Big)$$

Proposition

 $ightharpoonup T(z, u) \dots BGF(z \dots tree size, u \dots removed nodes)$

Proposition

- ightharpoonup T(z,u)...BGF(z...tree size, u...removed nodes)
- $ightharpoonup T_r(z)$... GF of trees of height < r

Proposition

- $ightharpoonup T(z, u) \dots BGF(z \dots tree size, u \dots removed nodes)$
- $ightharpoonup T_r(z)$... GF of trees of height < r

Then:

$$T(z,u) = z \exp\left(\sum_{k>1} \frac{1}{k} T(z^k, u^k)\right) + \left(1 - \frac{1}{u}\right) T_r(zu)$$

Proposition

- ightharpoonup T(z,u)...BGF(z...tree size, u...removed nodes)
- $ightharpoonup T_r(z)$... GF of trees of height < r

Then:

$$T(z,u) = z \exp\left(\sum_{k>1} \frac{1}{k} T(z^k, u^k)\right) + \left(1 - \frac{1}{u}\right) T_r(zu)$$

Key Observations.

▶ $R(z,u) := \sum_{k\geq 2} \frac{1}{k} T(z^k, u^k)$. Then: R(z) = R(z,1) has larger RoC than T(z)

Proposition

- $ightharpoonup T(z, u) \dots BGF(z \dots tree size, u \dots removed nodes)$
- $ightharpoonup T_r(z)$... GF of trees of height < r

Then:

$$T(z, u) = z \exp\left(\sum_{k\geq 1} \frac{1}{k} T(z^k, u^k)\right) + \left(1 - \frac{1}{u}\right) T_r(zu)$$

Key Observations.

- ▶ $R(z,u) := \sum_{k\geq 2} \frac{1}{k} T(z^k, u^k)$. Then: R(z) = R(z,1) has larger RoC than T(z)
- ▶ implicit differentiation: $\partial_u T(z,1) = \frac{T(z)\partial_u R(z,1) + T_r(z)}{1 T(z)}$

Proposition

- ightharpoonup T(z,u)...BGF(z...tree size, u...removed nodes)
- $ightharpoonup T_r(z)$... GF of trees of height < r

Then:

$$T(z, u) = z \exp\left(\sum_{k\geq 1} \frac{1}{k} T(z^k, u^k)\right) + \left(1 - \frac{1}{u}\right) T_r(zu)$$

Key Observations.

- ► $R(z, u) := \sum_{k \ge 2} \frac{1}{k} T(z^k, u^k)$. Then: R(z) = R(z, 1) has larger RoC than T(z)
- ▶ implicit differentiation: $\partial_u T(z,1) = \frac{T(z)\partial_u R(z,1) + T_r(z)}{1 T(z)}$
- ► $T(z) \rightsquigarrow$ dominant singularity for $z \rightarrow \rho \approx 0.338322$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- $ho \approx 0.338322 \dots$ radius of convergence of T(z)
- \triangleright $X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- $\rho \approx 0.338322 \dots$ radius of convergence of T(z)
- $ightharpoonup X_{n,r} \dots \#$ of removed nodes after cutting leaves r times

Then:

▶ for $n \to \infty$, $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \mu_r \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- $\rho \approx 0.338322 \dots$ radius of convergence of T(z)
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

▶ for $n \to \infty$, $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \mu_r \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

ightharpoonup and for $r o \infty$ we have

$$\mu_r = 1 - \frac{2}{(1 + \rho R'(\rho))} r^{-1} + o(r^{-1}), \quad \sigma_r^2 = \frac{1}{3(1 + \rho R'(\rho))} + o(1).$$

Theorem (H.-Heuberger-Prodinger-Wagner, '18+)

- $\rho \approx 0.338322 \dots$ radius of convergence of T(z)
- $ightharpoonup X_{n,r}...\#$ of removed nodes after cutting leaves r times

Then:

▶ for $n \to \infty$, $X_{n,r}$ has mean and variance

$$\mathbb{E}X_{n,r} = \mu_r \cdot n + O(1), \quad \mathbb{V}X_{n,r} = \sigma_r^2 \cdot n + O(1)$$

ightharpoonup and for $r o \infty$ we have

$$\mu_r = 1 - \frac{2}{(1 + \rho R'(\rho))} r^{-1} + o(r^{-1}), \quad \sigma_r^2 = \frac{1}{3(1 + \rho R'(\rho))} + o(1).$$

Note.
$$\frac{2}{1+\rho R'(\rho)} \approx 1.644731$$
, $\frac{1}{3(1+\rho R'(\rho))} \approx 0.274122$

