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Example: Deterministic Plane Tree Reduction

» Remove all leaves!
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Example: Deterministic Plane Tree Reduction

» Remove all leaves!

Parameter of Interest:
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Example: Deterministic Plane Tree Reduction

» Remove all leaves!

Parameter of Interest:
» Size of rth reduction «+— # of removed nodes
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Reduction — Expansion

» modelling reduction directly: not suitable
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» modelling reduction directly: not suitable

> instead: see inverse operation, growing trees
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Expansion operators

> F...family of plane trees; bivariate generating function f

> expansion operator ® = ®(f) counts expanded trees
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Expansion operators

> F...family of plane trees; bivariate generating function f

> expansion operator ® = ®(f) counts expanded trees

Leaf expansion ®

> inverse operation to leaf reduction
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Expansion operators

> F...family of plane trees; bivariate generating function f

> expansion operator ® = ®(f) counts expanded trees

Leaf expansion ®

> inverse operation to leaf reduction

> attach leaves to all current leaves (required)
> attach leaves to inner nodes (optional)

LN

Iterative Tree Reductions — Benjamin Hackl

l.l ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ




Expansion operators

> F...family of plane trees; bivariate generating function f

> expansion operator ® = ®(f) counts expanded trees

Leaf expansion ®

> inverse operation to leaf reduction

> attach leaves to all current leaves (required)
> attach leaves to inner nodes (optional)

o = + - + o

O2t, QO2z = O(t)=zt+zt? +z25+---
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Reductions on Plane Trees

Leaves
n
E~ i
r(r+2)
Vi~ 6(r+1)2 n
limit law: v/
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Reductions on Plane Trees

Leaves Paths
n
E~ 2 B~ ey
o r(r+2) ortl(2r—1)
Vo~ s Vo~ S o
limit law: v limit law: v :
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Reductions on Plane Trees

Leaves Paths

n
E ~ or+l_1q

22—y S
Vi~ Somioyen R

limit law: v/

n
B~

r(r+2)
Vi~ 6(r+1)>2 n

limit law: v/

Old leaves

E ~ @-8,_1(1/4)n
V =0(n)
limit law: v
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Reductions on Plane Trees

Leaves Paths
E~ 2 B~ gty
r(r+2) 2rti(2r—1
Vi~ 6(r+1)2" Vi~ 3(2~£T—1)?)” TS
limit law: v limit law: v/ :
Old leaves Old paths
E ~ 20

E ~ (2-8,_1(1/4)n 12

— 2r(r+1)
V N @(n.) Vo~ Sirsapn
limit law: v* limit law: v
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Reductions on Plane Trees

Leaves Paths
E~ 2 B~ gty
r(r+2) 2rtl(or—1)
Vi~ 6(r+1)2" Vi~ 3oz o i T
limit law: v’ i limit law: v :
Question
What can be done for other tree classes?
Old leaves Old paths
E ~ 20
E ~ (2-8,_1(1/4)n 12
— 2r(r+1)
V= @(n.) Vo~ 3empe
limit law: v* limit law: v
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Additive Tree Parameters
T...rooted trees. F: T — R ... additive tree parameter, if

» 77T tree; 11, T, ..., Tk branches of T
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Additive Tree Parameters
T...rooted trees. F: T — R ... additive tree parameter, if
> 7T tree; 11, T, ..., T branches of 7
> F(r) = F(m) + F(m) + -+ F(n) + £(7),
» with toll function f: T — R
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Additive Tree Parameters
T...rooted trees. F: T — R ... additive tree parameter, if
» 77T tree; 11, T, ..., Tk branches of T
> F(r) = F(r) + F(r2) + -+ F(n) + 7(7),
» with toll function f: T — R
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Additive Tree Parameters
T...rooted trees. F: T — R ... additive tree parameter, if
> 7T tree; 11, T, ..., T branches of 7
> F(r) = F(n) + F(r2) 4 -+ F(r) + £(7),
» with toll function f: T — R

» Wagner (2015), Janson (2016), Wagner et al. (2018)...:

» 7, random tree, size n; f suitable '.l
~ F(7,) asymptotically Gaussian
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Example: Removed Leaves

» a,(7) ~ # of removed nodes when cutting leaves r times
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Example: Removed Leaves

» a,(7) ~ # of removed nodes when cutting leaves r times

> Example: r =3

N
N
(R N R G
P
,
\

(g

[ R i
T

“Cutting Leaves” — Toll Function

0 if 7 has height > r,
f(r) = ) )
1 if 7 has height <.
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Simply Generated Trees /Q<
17273
O

Plane Trees:
P rooted: designated root node O/

» ordered: order of children matters \?

1 2

d ©
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Simply Generated Trees /Q<
O

Plane Trees:
P rooted: designated root node O/ \Q
» ordered: order of children matters 1
Generalization:

> weight sequence: w = (wy)k>0 C R>g 1 92
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Simply Generated Trees

Plane Trees:
P rooted: designated root node
» ordered: order of children matters
Generalization:
> weight sequence: w = (wy)k>0 C R>g
> weight of tree T:

w(r) = H W(# children of v)

v node in 7
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Simply Generated Trees

Plane Trees:
P rooted: designated root node
» ordered: order of children matters
Generalization:
> weight sequence: w = (wy)k>0 C R>g
> weight of tree T:

w(r) = H W(# children of v)

v node in 7

o

a7

1

12
¢ o

w(T) = wywiwaws
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Simply Generated Trees }<
Plane Trees:
P rooted: designated root node ./1 i 3\?
» ordered: order of children matters 1

Generalization:
> weight sequence: w = (wy)k>0 C R>g
> weight of tree T: ‘ %

— 4
W(T) = H W(# children of v) W(T) = Wp Wi waw3
v node in T

» partition function and probability distribution:
Zn = Zn(W) = Z W(T) = ]P(T,, = 7') = W(T)

TE€TH
'.lﬂLPEN |
ONVERST
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Simply Generated Trees: Examples

Plane Trees

I
I
[y

Wo = Wi
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Simply Generated Trees: Examples

Plane Trees Unary-Binary Trees

I
I
[y

W0=W1 W0:W1:W2:1
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Simply Generated Trees: Examples
Plane Trees Unary-Binary Trees
Wp = wp = W0:W1:W2:1
d-ary Trees

m

wp = wy =1
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Simply Generated Trees: Examples

Plane Trees Unary-Binary Trees
wo=wp =---=1 wo=w; =wp =1

d-ary Trees k-colored leaves

WoZWd:]. W():k,W1:~--:1
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
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» T(z,u)...BWGF (z...tree size, u...removed nodes)
> O(t)... GF of w, ®(t) = 3,0 wit"
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
> O(t)... GF of w, ®(t) = 3,0 wit"
» T.(z)... WGF of trees of height < r
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
> O(t)... GF of w, ®(t) = 3,0 wit"
» T.(z)... WGF of trees of height < r
Then:
1
T(z,u) = z0(T(z.u)) + (1= ) T(zu)
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
> O(t)... GF of w, ®(t) = 3,0 wit"
» T.(z)... WGF of trees of height < r
Then:
1
T(z,u) = z0(T(z.u)) + (1= ) T(zu)

Observation. 7. ..w-simply generated trees, GF T(z) = T(z,1)
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
> &(t)...GF of w, ®(t) = > 450 wy t
» T.(z)... WGF of trees of height < r
Then:
1
T(z,u) = z0(T(z.u)) + (1= ) T(zu)

Observation. 7. ..w-simply generated trees, GF T(z) = T(z,1)

D

T = >0
wm#0 T T - T

k branches l.lnLPEN-nDRm
UNIVERSITAT
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Recursive Characterization

» T(z,u)...BWGF (z...tree size, u...removed nodes)
> &(t)...GF of w, ®(t) = > 450 wy t
» T.(z)... WGF of trees of height < r
Then:
1
T(z,u) = z0(T(z.u)) + (1= ) T(zu)

Observation. 7. ..w-simply generated trees, GF T(z) = T(z,1)

7' = k>0 = T(Z) = Z¢(T(Z))
w0 T T - T
k branch
ranches e
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Recursive Characterization — Proof

Functional Equation

T(z,u) = z®(T(z,u)) + (1 — %) T, (zu)

Proof. 7;...trees with height less than r
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Recursive Characterization — Proof

Functional Equation

1
T(z,u) = z®(T(z,u)) + (1 — E) T, (zu)
Proof. 7;...trees with height less than r

T(z,u) = Z w(r)z! ™y (")

TeT
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Recursive Characterization — Proof

T(z,u) = z®(T(z,u)) + (1 — %) T, (zu)

Proof. 7;...trees with height less than r

T(z,u) = Z w(r)z! ™y (")

TET
S wy 3 (H w(r; ) 143217 3 ar(7y)
k>0 T1 Tk
+ Z G A =T
7T,
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Recursive Characterization — Proof

PR )
T(z,u) = z®(T(z,u)) + (1 — %) T, (zu)

Proof. 7;...trees with height less than r

T(z,u) = Z w(r)z! ™y (")

T€T
- ST ([T vt e
k>0 T1 Tk
+ ) w(n)Z Nl = W
TET,
— ... = z(D(T(Z, U)) + (1 — 1) Tr(ZU)-
u | | [
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Singular Expansion

» Goal: extract information from functional equation

'.l ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

Iterative Tree Reductions — Benjamin Hackl



Singular Expansion

» Goal: extract information from functional equation
» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)

'.l ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

Iterative Tree Reductions — Benjamin Hackl



Singular Expansion

» Goal: extract information from functional equation

» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)
» Via implicit differentiation:

zT'(2)T,(2)

OuT(z,1) = ()
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Singular Expansion

» Goal: extract information from functional equation
» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)
» Via implicit differentiation:

zT'(2)T,(2)

OuT(z,1) = ()

> T(z) satisfies T(z) = z®(T(z)) ~~ singular inversion!
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Singular Expansion

» Goal: extract information from functional equation
» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)
» Via implicit differentiation:

zT'(2)T,(2)

OuT(z,1) = ()

> T(z) satisfies T(z) = z®(T(z)) ~~ singular inversion!
» fundamental constant T > 0: solution of 7¢'(7) — ®(7) =0
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Singular Expansion

» Goal: extract information from functional equation
» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)
» Via implicit differentiation:

zT'(2)T,(2)

OuT(z,1) = ()

> T(z) satisfies T(z) = z®(T(z)) ~~ singular inversion!
» fundamental constant T > 0: solution of 7®'(7) — ®(7) =0
» T has square root singularity at p = 7/®(7)
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Singular Expansion

» Goal: extract information from functional equation
» In particular: partial derivatives 9, T(z,1), Oy, T(2,1)
» Via implicit differentiation:

zT'(2)T,(2)

OuT(z,1) = ()

> T(z) satisfies T(z) = z®(T(z)) ~~ singular inversion!

» fundamental constant T > 0: solution of 7®'(7) — ®(7) =0
» T has square root singularity at p = 7/®(7)

T(z) 2 7 - ¢”( \/ /p+ O —z/p)
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Result — Simply Generated Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> weight sequence w, fundamental constant T, p = 7/®(7)

» X.r...7# of removed nodes after cutting leaves r times

Then:
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Result — Simply Generated Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> weight sequence w, fundamental constant T, p = 7/®(7)
» X.r...7# of removed nodes after cutting leaves r times

Then:
» X, is asymptotically normally distributed for n — oo
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Result — Simply Generated Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> weight sequence w, fundamental constant T, p = 7/®(7)

» X.r...7# of removed nodes after cutting leaves r times

Then:

» X, - is asymptotically normally distributed for n — oo with
mean and variance

Tr(p) )

EX,, = n+0(1), VX,, =02 n+0(1)
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Result — Simply Generated Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> weight sequence w, fundamental constant T, p = 7/®(7)

» X.r...7# of removed nodes after cutting leaves r times

Then:

» X, - is asymptotically normally distributed for n — oo with
mean and variance

EX,, = Tile) +0(1), VX,,=02-n+0(1)
T
» and for r — oo we have
Fr(p) 2 -1 -1 2 L
B = 1).
T pTCD”(T)r el o 3p7d" (1) +o(1)
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Result — Simply Generated Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> weight sequence w, fundamental constant T, p = 7/®(7)

» X.r...# of removed nodes after cutting leaves r times

Then:

» X, - is asymptotically normally distributed for n — oo with
mean and variance

EXo, = 100 1 0(1), VXp, =02 n+ O(1)
T

» and for r — oo we have

F-(p) 2 -1 -1 2 1
—_ = 1 _— = ————C 1 .
T pTCD”(T)r +ol(r™), o 3p7®"(T) +o(l)
Technical Detail. w periodic ~ parity! [ | | s
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Iterative Tree Reductions — Benjamin Hackl



Pélya Trees

» Rooted trees, order of children is irrelevant!
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Pélya Trees

» Rooted trees, order of children is irrelevant!

"~k

» T...Pdlya trees, T(z)...generating function

= T(z) = zexp (Z % T(zk)>

k=21 l.lﬂLPEN—nDRIQ
UNIVERSITAT
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Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)

uuuuuuuuuuuuuuu

Iterative Tree Reductions — Benjamin Hackl



Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)
» T.(z)...GF of trees of height < r
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Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)
» T.(z)...GF of trees of height < r
Then: 1 1
_ (K ok _ L
T(z,u) = zexp <Z P T(z",u )) + (1 u) Tr(zu)

k>1
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Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)
» T.(z)...GF of trees of height < r
Then: 1 1
_ (K ok _ L
T(z,u) = zexp <Z P T(z",u )) + (1 u) Tr(zu)

k>1

Key Observations.
> R(z,u) =3 4>r $T(z%, u¥). Then: R(z) = R(z,1) has
larger RoC than T(z)
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Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)
» T,(z)...GF of trees of height < r

Then: 1 1
T(z,u) = zexp <Z ;T(zk, uk)) 4 (1 - E) Tr(zu)

k>1

Key Observations.
> R(z,u) =3 4oy £ T(z5, uk). Then: R(z) = R(z,1) has
larger RoC than T(z)
T(2)0uR(z,1) + T,(2)
1-T(2)

» implicit differentiation: 9, T(z,1) =
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Recursive Characterization / Functional Equation

» T(z,u)...BGF (z...tree size, u...removed nodes)
» T,(z)...GF of trees of height < r

Then:

T(z,u) = zexp (Z%T(zk, uk)) 4 (1 - %) Tr(zu)

k>1

Key Observations.
> R(z,u) =3 ko $T(z%, u¥). Then: R(z) = R(z,1) has
larger RoC than T(z)
T(2)0uR(z,1) + T,(2)
1-T(2)
» T(z) ~» dominant singularity for z — p ~ 0.338322 l.l”"PEN RIA

UNIVERS I AT
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Result — Pdlya Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> p~0.338322 ... radius of convergence of T(z)

» X.r...7# of removed nodes after cutting leaves r times

Then:
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Result — Pdlya Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> p~0.338322 ... radius of convergence of T(z)

» X.r...7# of removed nodes after cutting leaves r times

Then:

» for n — oo, X, , has mean and variance

IE)<n,r = Wr- N+ O(l), VXn,r = O'E -n+ O(].)
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Result — Pdlya Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> p~0.338322 ... radius of convergence of T(z)

» X.r...# of removed nodes after cutting leaves r times

Then:

» for n — oo, X, , has mean and variance
EXn, = pir-n+O(1), VX,, =02 -n+ 0(1)

» and for r — oo we have
2

=1 TR )

rido(r), o= 30T R 0) +o(1).
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Result — Pdlya Trees

Theorem (H.—Heuberger—Prodinger—Wagner, '18+)

> p~0.338322 ... radius of convergence of T(z)

» X.r...# of removed nodes after cutting leaves r times

Then:

» for n — oo, X, , has mean and variance
EXpr=pr-n+ 0(1), VX,, —0‘ -n+ O(1)

» and for r — oo we have

—2 rido(rt 02——1 o
Gror() TR e

3(1+ pR'(p))
2 ~ ~
Note. y % ~ 1.644731 ~ 0.274122

1
'+ 3+PR () l.lnLPEN-nDRln
UNIVERSITAT
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