

Cutting Down and Growing Trees

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Benjamin Hackl

May 28, 2018

ALPEN-ADRIA

Cutting Down and Growing Trees

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

- No. But Trees!
- What do large trees look like?

- No. But Trees!
- What do large trees look like?
- How do they grow?

- No. But Trees!
- What do large trees look like?
- How do they grow?

"Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths"

... deals with enumeration

... deals with enumeration of discrete objects

Ο

... deals with enumeration of discrete objects

 \ldots deals with enumeration of discrete objects by using analytic methods.

- Remove Leaves
- Merge single children with their corresponding parent

- ► Remove Leaves
- Merge single children with their corresponding parent

- Remove Leaves
- Merge single children with their corresponding parent

- Remove Leaves
- Merge single children with their corresponding parent

- Remove Leaves
- Merge single children with their corresponding parent

- Remove Leaves
- Merge single children with their corresponding parent

- Leaves $\rightarrow 0$
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: maximum of children

- Leaves $\rightarrow 0$
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: maximum of children

- Leaves $\rightarrow 0$
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: maximum of children

- Leaves $\rightarrow 0$
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: maximum of children

- Leaves $\rightarrow 0$
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: maximum of children

Introduction	Motivation	Research Questions and Results
	000	

Label in root node: Register function (Horton-Strahler-Index)

Register function ... maximum number of reductions

Introduction	Motivation	Research Questions and Results
	000	

- Register function ... maximum number of reductions
- Applications:

Introduction	Motivation	Research Questions and Results
	000	

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:

Required stack size for evaluating arithmetic expressions

- Register function ... maximum number of reductions
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Register function ... maximum number of reductions
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Register function ... maximum number of reductions
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Register function ... maximum number of reductions
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Register function ... maximum number of reductions
- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Flajolet, Prodinger (1986)
- r-Branches, Numerics: Yamamoto, Yamazaki (2009)

Introduction 00	Motivation 000	Research Questions and Results •0000
Local Structure	es – " <i>r</i> -branches": ch	ains with same label
	3	
2		2
0		
(2	0 (1)	
(1)		

Introduction 00		Motivation 000					Research Questions and Results		
					,,			5.1	

Local Structures – "r-branches": chains with same label

▶ Number / Distribution of (*r*-)branches?

 Number / Distribution of (r-)branches?
Example: r = 0 1 2 3 # r-branches 14 5 2 1

"r-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

"r-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

▶ # of r-branches is asymptotically normally distributed

"*r*-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = rac{n}{4^r} + rac{1}{6} \Big(1 + rac{5}{4^r} \Big) + O(n^{-1}), \qquad \mathbb{V} = rac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

"*r*-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

expected total # of branches is

$$\frac{4}{3}n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1}\log n),$$

"*r*-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- # of r-branches is asymptotically normally distributed
- with mean and variance

$$\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r} \right) + O(n^{-1}), \qquad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$

expected total # of branches is

$$\frac{4}{3}n + \frac{1}{6}\log_4 n + C + \delta(\log_4 n) + O(n^{-1}\log n),$$

• $C \approx 1.36190, \delta...$ periodic fluctuation

Trees can be partitioned into branches:

Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

Trees can be partitioned into branches:

Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).

Trees can be partitioned into branches:

Observation

Total # of branches $\triangleq \#$ of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).

Research Questions and Results

More about my thesis? ©

Defense @ 30.5., 11:00 / E.1.05

