Benjamin HackI

Cutting Down and Growing Trees

KARL
POPPER
KOLLEG

Der Wissenschaftsfonds.

Is this about Gardening?

ALPEN-ADRIA UNIVERSITAT

Is this about Gardening?

- No. But Trees!

Is this about Gardening?

- No. But Trees!
- What do large trees
look like?

Is this about Gardening?

- No. But Trees!
- What do large trees look like?
- How do they grow?

Is this about Gardening?

- No. But Trees!
- What do large trees look like?
- How do they grow?
"Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths"

Analytic Combinatorics. . .

...deals with enumeration

ALPEN-ADRIA UNIVERSITAT

Analytic Combinatorics. . .

... deals with enumeration of discrete objects

Analytic Combinatorics. . .

... deals with enumeration of discrete objects

Analytic Combinatorics. . .

... deals with enumeration of discrete objects by using analytic methods.

$$
\frac{1-\sqrt{1-4 z}}{2}=1 z+1 z^{2}+2 z^{3}+5 z^{4}+14 z^{5}+42 z^{6}+\ldots
$$

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Which nodes „survive"?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

Which nodes „survive"?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

Which nodes „survive"?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

Which nodes „survive"?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

Which nodes „survive"?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Asymptotic analysis:

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)

The Register Function

Label in root node: Register function (Horton-Strahler-Index)

- Register function ... maximum number of reductions
- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of rivers (e.g. Mur: 7, Drau: 8, Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)
- r-Branches, Numerics: Yamamoto, Yamazaki (2009)

Local Structures - "r-branches": chains with same label

Local Structures - "r-branches" : chains with same label

- Number / Distribution of (r -)branches?

Local Structures - "r-branches" : chains with same label

- Number / Distribution of (r -) branches?
 UNIVERSITAT KLAGENFURT I WIEN GRAZ

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)
 In a random binary tree of size n. . .

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)
 In a random binary tree of size $n .$. .
 - \# of r-branches is asymptotically normally distributed

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

- \# of r-branches is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

- \# of r-branches is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

- expected total \# of branches is

$$
\frac{4}{3} n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1} \log n\right)
$$

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

- \# of r-branches is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

- expected total \# of branches is

$$
\frac{4}{3} n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1} \log n\right)
$$

- $C \approx 1.36190, \delta \ldots$ periodic fluctuation

Size of r-fold reduced plane trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Size of r-fold reduced plane trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Size of r-fold reduced plane trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Size of r-fold reduced plane trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves

Old paths

$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$

limit law: \checkmark
Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark
limit law: \checkmark

Size of r-fold reduced plane trees

Leaves

$$
\begin{aligned}
& \mathbb{E} \sim \frac{n}{r+1} \\
& \mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n
\end{aligned}
$$

limit law:

Disclaimer

Results are not always that nice!

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: \checkmark

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages

Branches in a Tree

- Trees can be partitioned into branches:

Observation

Total \# of branches \triangleq \# of leaves in all reduction stages
Proof: all branches end in exactly one leaf (at some point).

Branches in a Tree

- Trees can be partitioned into branches:

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages
Proof: all branches end in exactly one leaf (at some point).

- Q: How many branches are there?

Branches in a Tree - Result

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)
Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \quad \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& \alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& \alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669 \\
& -C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811,
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

- $\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669$,
- $C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811$,
- δ. . . periodic fluctuation:

$$
\delta(x):=\frac{1}{\log 2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \quad \chi_{k}=\frac{2 \pi i k}{\log 2}
$$

More about my thesis? © ${ }^{-}$

- Defense @ 30.5., 11:00 / E.1.05

Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths
 PhD Thesis / Defense

