Benjamin HackI

Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths

KARL
POPPER
KOLLEG

Thesis Overview

(1) Reductions of Binary Trees and Lattice Paths induced by the Register Function

- Joint work with Clemens Heuberger, Helmut Prodinger
- Published: Theoret. Comput. Sci. 705 (2018), 31-57.

2) Fringe Analysis of Plane Trees Related to Cutting and Pruning

- Joint work with Clemens Heuberger, Sara Kropf, Helmut Prodinger
- Published: Aequationes Math. 92 (2018), 311-353.
(3) Growing and Destroying Catalan-Stanley Trees
- Joint work with Helmut Prodinger
- Published: Discrete Math. Theor. Comput. Sci. 20 (2018).

4. Ascents in Non-Negative Lattice Paths

- Joint work with Clemens Heuberger, Helmut Prodinger
- arXiv:1801.02996 [math.CO]

Example: Deterministic Tree Reduction

- Remove all leaves!

Example: Deterministic Tree Reduction

- Remove all leaves!

Example: Deterministic Tree Reduction

- Remove all leaves!

Example: Deterministic Tree Reduction

- Remove all leaves!

Example: Deterministic Tree Reduction

- Remove all leaves!

Parameters of Interest:

Example: Deterministic Tree Reduction

- Remove all leaves!

Parameters of Interest:

- Size of r th reduction

Example: Deterministic Tree Reduction

- Remove all leaves!

Parameters of Interest:

- Size of r th reduction
- Age: \# of possible reductions

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable

ALPEN-ADRIA UNIVERSITAT

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees
\square

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees

Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees

Expansion operators

- F...family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Expansion operators

- F...family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction

Expansion operators

- F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
- attach leaves to all current leaves (required)
- attach leaves to inner nodes (optional)

Expansion operators

- F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
- attach leaves to all current leaves (required)
- attach leaves to inner nodes (optional)

$$
\square \triangleq t, \bigcirc \triangleq z \quad \Rightarrow \quad \Phi(t)=z t+z t^{2}+z t^{3}+\cdots
$$

Reductions on Plane Trees

Leaves

Reductions on Plane Trees

Leaves

Reductions on Plane Trees

Reductions on Plane Trees

Reductions on Plane Trees

Old leaves

Reductions on Plane Trees

Old leaves

Reductions on Plane Trees

Reductions on Plane Trees

Old paths

Reductions on Plane Trees

Paths \bigcirc

Old paths

Parameters of Interest:

- tree size after r reductions

Reductions on Plane Trees

Parameters of Interest:

- tree size after r reductions
- cumulative reduction size

Bivariate Generating Function

Proposition

- \mathcal{T}. . . rooted plane trees

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots B G F$ for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{}_{\mathcal{T}} \underbrace{}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}}^{\cdots}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}} \underbrace{}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\mathcal{T}_{\mathcal{T}} \overbrace{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{\ldots}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Bivariate Generating Function

Proposition

- \mathcal{T}. . rooted plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves $)$

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{}_{\mathcal{T}} \underbrace{}_{\mathcal{T}}
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} .
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
\rightarrow there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

Leaf expansion operator Φ

Proposition

$$
\Phi(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
\rightarrow there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}=(1-t)\left(\frac{z}{(1-t)^{2}}\right)^{n}\left(\frac{z t}{(1-t)^{2}}\right)^{k}
$$

- As Φ is linear, this proves the proposition.

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

Properties of Φ

- Functional equation: $T(z, t)=\Phi(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi^{r}(T(z, t))\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$
G_{r}(z, v)=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right)
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Proof insights:

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n, r}$ has mean and variance

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Proof insights:

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- Asymptotic normality: $n-X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

Pruning

- Remove all paths that end in a leaf!

Pruning

- Remove all paths that end in a leaf!

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages

Branches in a Tree

- Trees can be partitioned into branches:
- Q: How many branches are there?

Observation

Total \# of branches $\triangleq \#$ of leaves in all reduction stages
Proof: all branches end in exactly one leaf (at some point).

Branches in a Tree - Result

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)
Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \quad \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& \alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\begin{aligned}
& \alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right), \\
& \alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669 \\
& \\
& C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811,
\end{aligned}
$$

Branches in a Tree - Result

Theorem (H.-Heuberger-Kropf-Prodinger)

Average \# of branches in a random plane tree of size n is

$$
\alpha n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1 / 4}\right)
$$

- $\alpha=\sum_{k \geq 2} \frac{1}{2^{k}-1} \approx 0.60669$,
- $C=-\frac{\gamma+4 \alpha \log 2+\log 2+24 \zeta^{\prime}(-1)+2}{12 \log 2} \approx-0.11811$,
- δ. . . periodic fluctuation:

$$
\delta(x):=\frac{1}{\log 2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \quad \chi_{k}=\frac{2 \pi i k}{\log 2} .
$$

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark
-

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law: \checkmark

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law:

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$

limit law: (\checkmark)

Summary: Reductions on Plane Trees

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$
limit law:

Disclaimer

Results are not always that nice!

Old leaves
$\mathbb{E} \sim\left(2-B_{r-1}(1 / 4)\right) n$
$\mathbb{V}=\Theta(n)$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: (\checkmark)

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$ limit law: \checkmark

\square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent/grandparent (except root) of \square

Counterexample: Catalan-Stanley trees

- Motivation: Stanley's Catalan interpretation \#26
- Rightmost leaves in all branches of root have odd distance
- Reduction: remove parent/grandparent (except root) of \square

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Age

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Age

- $\mathbb{E}=\Theta(1)$

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Size of r th Reduction

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Age

- $\mathbb{E}=\Theta(1)$
- $\mathbb{V}=\Theta(1)$
- LLT: \checkmark
$\bigcirc \quad \mapsto \quad \mapsto$

Size of r th Reduction

- $\mathbb{E} \sim \frac{1}{4} n$

Counterexample: Results

- Reduction with different parameter behavior \checkmark

Age

- $\mathbb{E}=\Theta(1)$
- $\mathbb{V}=\Theta(1)$
- LLT: \checkmark
$\bigcirc \quad \mapsto \quad \cdots \quad \mapsto$

Size of r th Reduction

- $\mathbb{E} \sim \frac{1}{4^{\prime}} n$
$-\mathbb{V} \sim \frac{\left(2^{r}+1\right)\left(2^{r}-1\right)}{16^{r}} n^{2}$

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Corollary

$$
B(z)=1+\frac{z}{1-2 z} B\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

111

Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Corollary

$$
B(z)=1+\frac{z}{1-2 z} B\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

How "old" do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- age $($ left child $)=$ age $($ right child $) \rightarrow$ increase by 1
- Otherwise: maximum of children

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)

The Register Function

Age \rightsquigarrow Register function (Horton-Strahler-Index)

- Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
- Flajolet, Raoult, Vuillemin (1979)
- Flajolet, Prodinger (1986)
- r-branches, Numerics: Yamamoto, Yamazaki (2009)

Local Structures - "r-branches"

Local Structures - "r-branches"

- Number / Distribution of (r -)branches?

Local Structures - "r-branches"

- Number / Distribution of (r - $)$ branches?
- Example: | r | 0 | 1 | 2 | 3 |
| ---: | :---: | :---: | :---: | :---: |$\#$-branches $14 \begin{array}{ll}5 & 2\end{array} 1$

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)
 In a random binary tree of size $n .$. .

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)
 In a random binary tree of size $n .$. .
 - \# of r-branches is asymptotically normally distributed

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

- \# of r-branches is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

"r-branches" - Results

Theorem (H.-Heuberger-Prodinger)

In a random binary tree of size $n .$. .

- \# of r-branches is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E}=\frac{n}{4^{r}}+\frac{1}{6}\left(1+\frac{5}{4^{r}}\right)+O\left(n^{-1}\right), \quad \mathbb{V}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+O(1)
$$

- expected total \# of branches is

$$
\frac{4}{3} n+\frac{1}{6} \log _{4} n+C+\delta\left(\log _{4} n\right)+O\left(n^{-1} \log n\right)
$$

- $C \approx 1.36190, \delta \ldots$ periodic fluctuation

Non-Negative Lattice Paths

Dyck Paths:

- Sequences of $\{-1,1\} \triangleq\{\searrow, \nearrow\}$,
- Never below axis, end on axis.

Non-Negative Lattice Paths

Dyck Paths:

- Sequences of $\{-1,1\} \triangleq\{\searrow, \nearrow\}$,
- Never below axis, end on axis.

Łukasiewicz Excursions:

- Sequences of $\mathcal{S}=\{-1\} \cup N, N \subseteq \mathbb{N}_{0}$,
- Never below axis, end on axis.

Ascents

Ascents

- Ascent: maximal sequence of non-negative steps,

Ascents

- Ascent: maximal sequence of non-negative steps,
- r-Ascent: ascent of length r.

Bijection: Excursions \longleftrightarrow Trees

Ascents and Generating Functions
 - $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
 $>z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$ $>z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents

Consequences of recursive tree structure:

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
$>z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents
Consequences of recursive tree structure:
- relevant quantities are expressable via $V(z):=V(z, 1)$

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
$\rightarrow z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents
Consequences of recursive tree structure:
- relevant quantities are expressable via $V(z):=V(z, 1)$
- $V(z)$ satisfies $V(z)=z V(z) S(V(z))$,

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
$>z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents
Consequences of recursive tree structure:
- relevant quantities are expressable via $V(z):=V(z, 1)$
- $V(z)$ satisfies $V(z)=z V(z) S(V(z))$,
- $S(u) \ldots \mathrm{GF}$ of $\mathcal{S}: \mathcal{S}=\{-1,2,3\} \Rightarrow S(u)=u^{-1}+u^{2}+u^{3}$.

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
$\checkmark z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents
Consequences of recursive tree structure:
- relevant quantities are expressable via $V(z):=V(z, 1)$
- $V(z)$ satisfies $V(z)=z V(z) S(V(z))$,
- $S(u) \ldots$ GF of $\mathcal{S}: \mathcal{S}=\{-1,2,3\} \Rightarrow S(u)=u^{-1}+u^{2}+u^{3}$.
- functional equation type $V=z \varphi(V) \rightsquigarrow$ singular inversion

Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane $\operatorname{Trees}(\mathcal{S}+1)$
$>z \rightsquigarrow$ tree size, $t \rightsquigarrow \#$ of r-ascents
Consequences of recursive tree structure:
- relevant quantities are expressable via $V(z):=V(z, 1)$
- $V(z)$ satisfies $V(z)=z V(z) S(V(z))$,
- $S(u) \ldots$ GF of $\mathcal{S}: \mathcal{S}=\{-1,2,3\} \Rightarrow S(u)=u^{-1}+u^{2}+u^{3}$.
- functional equation type $V=z \varphi(V) \rightsquigarrow$ singular inversion

Proposition

- $\tau \ldots$...structural constant, unique $\tau>0$ with $S^{\prime}(\tau)=0$
- $p=\operatorname{gcd}(\mathcal{S}+1) \ldots$ period, $\zeta^{p}=1$
$V(z)$ has radius of convergence $\rho=1 / S(\tau)$, singularities at $\zeta \rho$ and

$$
V(z) \stackrel{z \rightarrow \zeta \rho}{=} \zeta \tau-\zeta \sqrt{\frac{2 S(\tau)}{S^{\prime \prime}(\tau)}}\left(1-\frac{z}{\zeta \rho}\right)^{1 / 2}+O\left(1-\frac{z}{\zeta \rho}\right)
$$

Analysis of r-Ascents in Excursions

Theorem (H.-Heuberger-Prodinger)

- $p \ldots$ period of $\mathcal{S}, \tau \ldots$ structural constant, $c:=\tau S(\tau)$

Analysis of r-Ascents in Excursions

Theorem (H.-Heuberger-Prodinger)

- $p \ldots$ period of $\mathcal{S}, \tau \ldots$ structural constant, $c:=\tau S(\tau)$
(1) If $p \nmid n$, there are no excursions of length n,

Analysis of r-Ascents in Excursions

Theorem (H.-Heuberger-Prodinger)

- $p \ldots$ period of $\mathcal{S}, \tau \ldots$ structural constant, $c:=\tau S(\tau)$
(1) If $p \nmid n$, there are no excursions of length n,
(2) Otherwise, \# of r-ascents has mean and variance

Analysis of r-Ascents in Excursions

Theorem (H.-Heuberger-Prodinger)

- $p \ldots$ period of $\mathcal{S}, \tau \ldots$ structural constant, $c:=\tau S(\tau)$
(1) If $p \nmid n$, there are no excursions of length n,
(2) Otherwise, \# of r-ascents has mean and variance

$$
\mathbb{E}=\frac{(c-1)^{r}}{c^{r+2}} n+O(1)
$$

Analysis of r-Ascents in Excursions

Theorem (H.-Heuberger-Prodinger)

- $p \ldots$ period of $\mathcal{S}, \tau \ldots$ structural constant, $c:=\tau S(\tau)$
(1) If $p \nmid n$, there are no excursions of length n,
(2) Otherwise, \# of r-ascents has mean and variance

$$
\mathbb{E}=\frac{(c-1)^{r}}{c^{r+2}} n+O(1)
$$

$$
\begin{aligned}
\mathbb{V}=\left(\frac{(c-1)^{r}}{c^{r+2}}+\right. & \frac{(2 c-2 r-3)(c-1)^{2 r}}{c^{2 r+4}} \\
& \left.-\frac{(c-1)^{2 r-2}(2 c-r-2)^{2}}{c^{2 r+3} \tau^{3} S^{\prime \prime}(\tau)}\right) n+O\left(n^{1 / 2}\right)
\end{aligned}
$$

Excursions - Example

Example (r-Ascents in Dyck paths)

- $\mathcal{S}=\{-1,1\}, p=2, \tau=1$.

Excursions - Example

Example (r-Ascents in Dyck paths)

- $\mathcal{S}=\{-1,1\}, p=2, \tau=1$.
- Explicit $V(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z} \Rightarrow$ higher precision!

Excursions - Example

Example (r-Ascents in Dyck paths)

- $\mathcal{S}=\{-1,1\}, p=2, \tau=1$.
- Explicit $V(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z} \Rightarrow$ higher precision!

$$
\begin{aligned}
& \mathbb{E} D_{2 n, r}=\frac{n}{2^{r+1}}-\frac{(r+1)(r-4)}{2^{r+3}} \\
& \quad+\frac{\left(r^{2}-11 r+22\right)(r+1) r}{2^{r+6}} n^{-1}+O\left(n^{-2}\right)
\end{aligned}
$$

Excursions - Example

Example (r-Ascents in Dyck paths)

- $\mathcal{S}=\{-1,1\}, p=2, \tau=1$.
- Explicit $V(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z} \Rightarrow$ higher precision!

$$
\begin{aligned}
\mathbb{E} D_{2 n, r}= & \frac{n}{2^{r+1}}-\frac{(r+1)(r-4)}{2^{r+3}} \\
& +\frac{\left(r^{2}-11 r+22\right)(r+1) r}{2^{r+6}} n^{-1}+O\left(n^{-2}\right) \\
& \mathbb{V} D_{2 n, r}=\left(\frac{1}{2^{r+1}}-\frac{r^{2}-2 r+3}{2^{2 r+3}}\right) n+O(1)
\end{aligned}
$$

Summary
 Bijection

Summary
 Bijection

Summary
 Bijection

Summary
 Bijection

Summary Bijection

Lagrange Inversion

- $y, \Phi, H \ldots$ formal power series with $y=x \Phi(y)$ and $\Phi(0) \neq 0$

Then:

$$
\left[x^{n}\right] H(y)=\frac{1}{n}\left[y^{n-1}\right] H^{\prime}(y) \Phi(y)^{n}
$$

Singularity Analysis - Standard Scale

- $\alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$
- $f(z)=(1-z)^{-\alpha}$

Then:

$$
\left[z^{n}\right] f(z) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+\frac{e_{1}(\alpha)}{n}+\frac{e_{2}(\alpha)}{n^{2}}+\ldots\right),
$$

where

$$
\begin{aligned}
& e_{1}(\alpha)=\frac{\alpha(\alpha-1)}{2} \\
& e_{2}(\alpha)=\frac{\alpha(\alpha-1)(\alpha-2)(3 \alpha-1)}{24} \\
& e_{3}(\alpha)=\frac{\alpha^{2}(\alpha-1)^{2}(\alpha-2)(\alpha-3)}{48} .
\end{aligned}
$$

Singularity Analysis - Logarithmic Scale

- $\alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$
- $f(z)=(1-z)^{-\alpha}\left(\frac{1}{z} \log \frac{1}{1-z}\right)^{\beta}$

Then:

$$
\left[z^{n}\right] f(z) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+\frac{C_{1}}{\log n}+\frac{C_{2}}{\log ^{2} n}+\ldots\right)
$$

where

$$
C_{k}=\left.\binom{\beta}{k} \Gamma(\alpha) \frac{d^{k}}{d s^{k}} \frac{1}{\Gamma(s)}\right|_{s=\alpha}
$$

Mellin Transform - Properties

$$
\mathcal{M}\left(e^{-x}\right)(s)=\Gamma(s), \quad \mathcal{M}\left(e^{-x^{2}}\right)(s)=\frac{1}{2} \Gamma\left(\frac{s}{2}\right), \quad \mathcal{M}(\llbracket 0 \leq s \leq 1 \rrbracket)(s)=\frac{1}{s}
$$

$$
\mathcal{M}(\log (1+x))(s)=\frac{\pi}{s \sin (\pi s)}, \quad \mathcal{M}\left(\frac{1}{e^{x}-1}\right)=\zeta(s) \Gamma(s)
$$

$$
\begin{aligned}
& f^{*}(s)=\int_{0}^{\infty} f(x) x^{s-1} d x \quad f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f^{*}(s) x^{-s} d s \\
& \text { lin. comb. lin. comb. } \\
& x^{k} f(x) \quad f^{*}(s+k) \quad\langle\alpha-k, \beta-k\rangle \\
& f\left(x^{\rho}\right) \quad \frac{1}{\rho} f^{*}\left(\frac{s}{\rho}\right) \quad\langle\rho \alpha, \rho \beta\rangle \\
& f(\mu x) \quad \mu^{-s} f^{*}(s) \quad\langle\alpha, \beta\rangle(\mu>0) \\
& f(x) \log x \quad \frac{d}{d s} f^{*}(s) \quad\langle\alpha, \beta\rangle \\
& x \frac{d}{d x} f(x) \quad-s f^{*}(s)
\end{aligned}
$$

Mellin Transform - Correspondence

$f(x)$	$f^{*}(s)$
$f(x)=O\left(x^{\alpha}\right), x \rightarrow 0$	$-\alpha$ left border of FS
$f(x)=O\left(x^{\beta}\right), x \rightarrow \infty$	$-\beta$ right border of FS
Expansion up to $O\left(x^{\gamma}\right), x \rightarrow 0$	Meromorph. Cont. up to Re $s>-\gamma$
Expansion up to $O\left(x^{\delta}\right), x \rightarrow \infty$	Meromorph. Cont. up to Re $s<-\delta$
Growth $x^{k} \log ^{\ell} x, x \rightarrow 0$	Pole with expansion $\frac{(-1)^{\ell} \ell!}{(s+k)^{\ell+1}}$
Growth $x^{k} \log ^{\ell} x, x \rightarrow \infty$	Pole with expansion $-\frac{(-1)^{\ell} \ell!}{(s+k)^{\ell+1}}$

Hurwitz Zeta Function - Estimate

$$
\zeta(s, \alpha):=\sum_{n>-\alpha} \frac{1}{(n+\alpha)^{s}}, \quad \operatorname{Re} s>1
$$

- $s=\sigma+i t, \sigma_{0} \leq \sigma \leq \sigma_{1}$
- $|t| \rightarrow \infty$

$$
|\zeta(s, \alpha)|=O\left(|t|^{\tau(\sigma)} \log |t|\right), \quad \tau(\sigma)= \begin{cases}\frac{1}{2}-\sigma, & \sigma \leq 0 \\ 1 / 2, & 0 \leq \sigma \leq \frac{1}{2} \\ 1-\sigma, & \frac{1}{2} \leq \sigma \leq 1 \\ 0, & \sigma \geq 1\end{cases}
$$

The logarithmic factor is only necessary in a neighborhood of $\sigma=0, \sigma=1$.

ALPEN-ADRIQ Aness

Gamma Function - Estimate

$$
\Gamma(z):=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

- $z \rightarrow \infty$ with $|\arg z| \leq \pi-\delta, \delta>0$

$$
\Gamma(z) \sim e^{-z} z^{z}\left(\frac{2 \pi}{z}\right)^{1 / 2}\left(1+\frac{1}{12 z}+\frac{1}{288 z^{2}}+\ldots\right)
$$

