Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths
Thesis Overview

1. **Reductions of Binary Trees and Lattice Paths induced by the Register Function**
 - Joint work with Clemens Heuberger, Helmut Prodinger

2. **Fringe Analysis of Plane Trees Related to Cutting and Pruning**
 - Joint work with Clemens Heuberger, Sara Kropf, Helmut Prodinger

3. **Growing and Destroying Catalan–Stanley Trees**
 - Joint work with Helmut Prodinger

4. **Ascents in Non-Negative Lattice Paths**
 - Joint work with Clemens Heuberger, Helmut Prodinger
 - arXiv:1801.02996 [math.CO]
Example: Deterministic Tree Reduction

- Remove all leaves!
Example: Deterministic Tree Reduction

- Remove all leaves!
Example: Deterministic Tree Reduction

- Remove all leaves!

![Diagram of tree reduction process]
Example: Deterministic Tree Reduction

- Remove all leaves!

\[
\begin{array}{c}
\text{Original Tree} \\
\Rightarrow \\
\text{Reduced Tree} \\
\Rightarrow \\
\Rightarrow \\
\end{array}
\]
Example: Deterministic Tree Reduction

▶ Remove all leaves!

Parameters of Interest:
Example: Deterministic Tree Reduction

- Remove all leaves!

Parameters of Interest:
- Size of rth reduction
Example: Deterministic Tree Reduction

- Remove all leaves!

Parameters of Interest:
- Size of rth reduction
- Age: $\#$ of possible reductions
Reduction \rightarrow Expansion

- modelling reduction directly: not suitable
Reduction → Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees
Reduction → Expansion

- modelling reduction directly: not suitable
- instead: see inverse operation, growing trees

\[
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

\[
\ldots
\]
Reduction → Expansion

▶ modelling reduction directly: not suitable
▶ instead: see inverse operation, growing trees

\[
\begin{align*}
\text{Reduction} \quad &\quad \text{Expansion} \\
\text{modelling reduction directly: not suitable} \\
\text{instead: see inverse operation, growing trees}
\end{align*}
\]
Expansion operators

- F . . . family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees
Expansion operators

- F... family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ
- inverse operation to leaf reduction
Expansion operators

- $F \ldots$ family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
 - attach leaves to all current leaves (required)
 - attach leaves to inner nodes (optional)

\[
\begin{array}{ccccc}
\square & \Phi & \Rightarrow & \square & + \\
 & & & \square & + \\
 & & & \square & + \\
\end{array}
\]

\[\Phi(t) = zt + zt^2 + zt^3 + \cdots\]
Expansion operators

- F family of plane trees; bivariate generating function f
- expansion operator $\Phi \Rightarrow \Phi(f)$ counts expanded trees

Leaf expansion Φ

- inverse operation to leaf reduction
- attach leaves to all current leaves (required)
- attach leaves to inner nodes (optional)

$\square \xrightarrow{\Phi} \bigcirc + \bigcirc + \bigcirc + \cdots$

$\square \triangleq t$, $\bigcirc \triangleq z \Rightarrow \Phi(t) = zt + zt^2 + zt^3 + \cdots$
Reductions on Plane Trees

Leaves

Analysis of Shape Parameters – Benjamin Hackl
Reductions on Plane Trees

Leaves

Parameters of Interest:
- tree size after r reductions
- cumulative reduction size
Reductions on Plane Trees

Leaves

Paths

Parameters of Interest:

▶ tree size after \(r \) reductions

▶ cumulative reduction size
Reductions on Plane Trees

Leaves

Paths
Reductions on Plane Trees

Leaves

Paths

Old leaves
Reductions on Plane Trees

Leaves

Paths

Old leaves
Reductions on Plane Trees

Leaves

Paths

Old leaves

Old paths
Reductions on Plane Trees

Leaves

Old leaves

Paths

Old paths
Reductions on Plane Trees

Parameters of Interest:

- tree size after r reductions
Reductions on Plane Trees

Parameters of Interest:
- tree size after r reductions
- cumulative reduction size
Bivariate Generating Function

Proposition

\[T \text{... rooted plane trees} \]
Bivariate Generating Function

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t)$... BGF for \mathcal{T} ($z \sim$ inner nodes, $t \sim$ leaves)
Bivariate Generating Function

Proposition

- \mathcal{T} \ldots rooted plane trees
- $T(z, t)$ \ldots BGF for \mathcal{T} (z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)

\[T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2} \]

Proof. Symbolic equation

\[\mathcal{T} = \square + \frac{T(z, t)}{1 - T(z, t)} \]

translates into

\[T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)} \]

which can be solved explicitly.
Bivariate Generating Function

Proposition

- T ... rooted plane trees
- $T(z, t)$... BGF for T (z \sim inner nodes, t \sim leaves)

$$
\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}
$$

Proof. Symbolic equation

$$
T = \square + \frac{T(z, t)}{1 - T(z, t)}
$$

translates into

$$
T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)}
$$

which can be solved explicitly.
Bivariate Generating Function

Proposition

- $\mathcal{T} \ldots$ rooted plane trees
- $T(z, t) \ldots$ BGF for \mathcal{T} ($z \sim$ inner nodes, $t \sim$ leaves)

\[T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2} \]

Proof. Symbolic equation

\[T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)} \]

which can be solved explicitly.
Bivariate Generating Function

Proposition

- \(\mathcal{T} \ldots \text{rooted plane trees} \)
- \(T(z, t) \ldots \text{BGF for } \mathcal{T} \ (z \leadsto \text{inner nodes}, t \leadsto \text{leaves}) \)

\[T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2} \]

Proof. Symbolic equation

\[\mathcal{T} = \square + \mathcal{T} \mathcal{T} \ldots \mathcal{T} \]

translates into

\[T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)} \]

which can be solved explicitly.
Bivariate Generating Function

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t)$. . . BGF for \mathcal{T} (z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)

$$\Rightarrow \ T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

$$\mathcal{T} = \square + \frac{T(z, t)}{1 - \mathcal{T}(z, t)}$$

translates into

$$T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)}$$

which can be solved explicitly.
Bivariate Generating Function

Proposition

- \mathcal{T}...rooted plane trees
- $T(z, t)$...BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

\[T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2} \]

Proof. Symbolic equation

\[\mathcal{T} = \square + \mathcal{T} \cdot \mathcal{T} \cdots \mathcal{T} \]

translates into

\[T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)} \]

which can be solved explicitly.
Bivariante Generating Function

Proposition

- \mathcal{T}... rooted plane trees
- $T(z, t)$... BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

\[
\Rightarrow T(z, t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}
\]

Proof. Symbolic equation

\[
\mathcal{T} = \square + \sum \mathcal{T}
\]

translates into

\[
T(z, t) = t + z \cdot \frac{T(z, t)}{1 - T(z, t)}
\]

which can be solved explicitly.
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t)f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t)f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$

- Tree with n inner nodes and k leaves $\leadsto z^n t^k$
- **Expansion:**

- In total:

$$\Phi(z^n t^k) =$$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t)f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$

- Tree with n inner nodes and k leaves $\leadsto z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes

- In total:
 $$
 \Phi(z^n t^k) = z^n.
 $$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with n inner nodes and k leaves $\leadsto z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves

- In total:
 $$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k.$$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t) f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$

- Tree with n inner nodes and k leaves $\leadsto z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - there are $2n + k - 1$ positions where sequences of leaves can be inserted
- In total:
 $$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1 - t}\right)^k \cdot \frac{1}{(1 - t)^{2n+k-1}}$$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t)f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - there are $2n + k - 1$ positions where sequences of leaves can be inserted

- In total:

$$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1 - t}\right)^k \cdot \frac{1}{(1 - t)^{2n+k-1}} = (1 - t)\left(\frac{z}{(1 - t)^2}\right)^n \left(\frac{zt}{(1 - t)^2}\right)^k$$
Leaf expansion operator Φ

Proposition

$$\Phi(f(z, t)) = (1 - t)f\left(\frac{z}{(1 - t)^2}, \frac{zt}{(1 - t)^2}\right)$$

- Tree with n inner nodes and k leaves $\leadsto z^n t^k$
- **Expansion:**
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - there are $2n + k - 1$ positions where sequences of leaves can be inserted
- In total:
 $$\Phi(z^n t^k) = z^n \cdot \left(\frac{zt}{1 - t}\right)^k \cdot \frac{1}{(1 - t)^{2n+k-1}} = (1-t)\left(\frac{z}{(1 - t)^2}\right)^n \left(\frac{zt}{(1 - t)^2}\right)^k$$
- As Φ is linear, this proves the proposition.
Properties of Φ

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
Properties of Φ

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi^r(T(z, t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)$$
Properties of Φ

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$
\Phi^r(T(z, t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)
$$

- BGF $G_r(z, \nu)$ for size comparison: z tracks original size, ν size of r-fold reduced tree
Properties of Φ

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi^r(T(z, t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)$$

- BGF $G_r(z, \nu)$ for size comparison: z tracks original size, ν size of r-fold reduced tree
- Intuition: ν “remembers” size while tree family is expanded
Properties of Φ

- Functional equation: $T(z, t) = \Phi(T(z, t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi^r(T(z, t))|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\right)$$

- BGF $G_r(z, \nu)$ for size comparison: z tracks original size, ν size of r-fold reduced tree
- Intuition: ν "remembers" size while tree family is expanded

$$G_r(z, \nu) = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} T\left(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2} \nu, \frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2} \nu\right)$$
Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$\mathbb{E} X_{n,r} = \frac{n}{r + 1} - \frac{r(r - 1)}{6(r + 1)} + O(n^{-1}),$$

and $X_{n,r}$ is asymptotically normally distributed.
Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After \(r \) reductions of a random tree of size \(n \), the remaining size \(X_{n,r} \) has mean and variance

\[
\mathbb{E} X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),
\]

\[
\text{Var} X_{n,r} = \frac{r(r+2)}{6(r+1)^2} n + O(1),
\]
Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has mean and variance

$$
\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),
$$

$$
\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2} n + O(1),
$$

and $X_{n,r}$ is asymptotically normally distributed.

Proof insights:

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis.
Cutting leaves

Theorem (H.–Heuberger–Kropf–Prodinger)

After r reductions of a random tree of size n, the remaining size $X_{n,r}$ has **mean** and **variance**

\[
E X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),
\]

\[
\nabla X_{n,r} = \frac{r(r+2)}{6(r+1)^2} n + O(1),
\]

and $X_{n,r}$ is **asymptotically normally distributed**.

Proof insights:

- $E X_{n,r}$ and $\nabla X_{n,r}$ follow via singularity analysis
- Asymptotic normality: $n - X_{n,r}$ is a tree parameter with small toll function, limit law by Wagner (2015)
Pruning

- Remove all paths that end in a leaf!
Pruning

- Remove all paths that end in a leaf!
Branches in a Tree

- Trees can be partitioned into branches:

\[
\text{Trees can be partitioned into branches:}
\]
Branches in a Tree

- Trees can be partitioned into branches:
Branches in a Tree

- Trees can be partitioned into branches:
Branches in a Tree

- Trees can be partitioned into branches:
Branches in a Tree

- Trees can be partitioned into branches:
- **Q**: How many branches are there?
Branches in a Tree

- Trees can be partitioned into branches:
- **Q**: How many branches are there?

Observation

Total # of branches \triangleq # of leaves in all reduction stages
Branches in a Tree

- Trees can be partitioned into branches:
- **Q:** How many branches are there?

Observation

Total # of branches \triangleq # of leaves in all reduction stages

Proof: all branches end in exactly one leaf (at some point).
Branches in a Tree – Result

Theorem (H.–Heuberger–Kropf–Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + 1 + \frac{C}{\log^4 n} + O\left(\frac{n}{\log n}\right),$$

$\alpha \approx 0.60669$, $C \approx -0.11811$, δ periodic fluctuation:

$$\delta(x) := \log 2 \sum_{k \in \mathbb{Z} \setminus \{0\}} \left(1 - \chi_k \right) \Gamma\left(\frac{\chi_k}{2}\right) \zeta\left(\frac{\chi_k}{2}\right) e^{2k\pi ix}, \chi_k = \frac{2\pi i k}{\log 2}.$$

Analysis of Shape Parameters – Benjamin Hackl
Branches in a Tree – Result

Theorem (H.–Heuberger–Kropf–Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$
Branches in a Tree – Result

Theorem (H.–Heuberger–Kropf–Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

where

$$\alpha = \sum_{k \geq 2} \frac{1}{2^k - 1} \approx 0.60669,$$

with

- α being a constant in the theorem,
- C is a constant,
- δ is a periodic fluctuation,
- $\log_4 n$ representing the logarithm of n to the base 4,
Branches in a Tree – Result

Theorem (H.–Heuberger–Kropf–Prodinger)

Average # of branches in a random plane tree of size n is

$$\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),$$

- $\alpha = \sum_{k \geq 2} \frac{1}{2^k - 1} \approx 0.60669,$

- $C = -\frac{\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2}{12 \log 2} \approx -0.11811,$
Theorem (H.‐Heuberger‐Kropf‐Prodinger)

Average # of branches in a random plane tree of size \(n \) is

\[
\alpha n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1/4}),
\]

- \(\alpha = \sum_{k \geq 2} \frac{1}{2^k - 1} \approx 0.60669, \)
- \(C = -\gamma + 4\alpha \log 2 + \log 2 + 24\zeta'(-1) + 2 \frac{12 \log 2}{12 \log 2} \approx -0.11811, \)
- \(\delta \ldots \text{periodic fluctuation:} \)

\[
\delta(x) := \frac{1}{\log 2} \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}, \quad \chi_k = \frac{2\pi ik}{\log 2}.
\]
Summary: Reductions on Plane Trees

Leaves

\[E \sim \frac{n}{r+1} \]
\[V \sim \frac{r(r+2)}{6(r+1)^2} n \]

limit law: ✓
Summary: Reductions on Plane Trees

Leaves

\[E \sim \frac{n}{r+1} \]
\[V \sim \frac{r(r+2)}{6(r+1)^2} n \]

limit law: ✓

Paths

\[E \sim \frac{n}{2r+1-1} \]
\[V \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n \]

limit law: ✓
Summary: Reductions on Plane Trees

Leaves
\[E \sim \frac{n}{r+1} \]
\[V \sim \frac{r(r+2)}{6(r+1)^2} n \]
limit law: √

Paths
\[E \sim \frac{n}{2r+1-1} \]
\[V \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n \]
limit law: √

Old leaves
\[E \sim (2 - B_{r-1}(1/4)) n \]
\[V = \Theta(n) \]
limit law: √
Summary: Reductions on Plane Trees

Leaves

\[E \sim \frac{n}{r+1}, \quad V \sim \frac{r(r+2)}{6(r+1)^2} n \]

Limit law: ✓

Paths

\[E \sim \frac{n}{2^{r+1}-1}, \quad V \sim \frac{2^{r+1}(2^r - 1)}{3(2^{r+1}-1)^2} n \]

Limit law: ✓

Old leaves

\[E \sim (2 - B_{r-1}(1/4)) n, \quad V = \Theta(n) \]

Limit law: ✓

Old paths

\[E \sim \frac{2n}{r+2}, \quad V \sim \frac{2r(r+1)}{3(r+2)^2} n \]

Limit law: ✓
Summary: Reductions on Plane Trees

Leaves
\[E \sim \frac{n}{r+1}, \quad V \sim \frac{r(r+2)}{6(r+1)^2} n \]
limit law: ✓

Old leaves
\[E \sim (2 - B_{r-1}(1/4))n, \quad V = \Theta(n) \]
limit law: ✓

Paths
\[E \sim \frac{n}{2^{r+1}-1}, \quad V \sim \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2} n \]
limit law: ✓

Old paths
\[E \sim \frac{2n}{r+2}, \quad V \sim \frac{2r(r+1)}{3(r+2)^2} n \]
limit law: ✓

Disclaimer
Results are not always that nice!
Counterexample: Catalan–Stanley trees

- Motivation: Stanley’s Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
Counterexample: Catalan–Stanley trees

- Motivation: Stanley’s Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- **Reduction:** remove parent/grandparent (except root) of □
Counterexample: Catalan–Stanley trees

- Motivation: Stanley’s Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- **Reduction:** remove parent/grandparent (except root) of ■
Cutting Down & Growing

Plane Trees

Register Function

Ascents

Counterexample: Catalan–Stanley trees

- Motivation: Stanley’s Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- **Reduction**: remove parent/grandparent (except root) of ■

![Diagram showing reduction process]
Counterexample: Catalan–Stanley trees

- Motivation: Stanley’s Catalan interpretation #26
- Rightmost leaves in all branches of root have odd distance
- **Reduction:** remove parent/grandparent (except root) of ■
Counterexample: Results

- Reduction with different parameter behavior ✓

<table>
<thead>
<tr>
<th>Age</th>
<th>Size of rth Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Counterexample: Results

- Reduction with different parameter behavior ✓

Age

- \(\# \text{ Generations} = \text{Age} \)

Size of \(r \)th Reduction

- \(E \sim \frac{1}{4^n} \)
- \(V \sim \frac{(2^r+1)(2^r-1)}{16r^2} \)
Counterexample: Results

- Reduction with different parameter behavior ✓

Age

- \(E = \Theta(1) \)

Size of \(r \)th Reduction

\[E \sim 1^{\frac{r}{n}} \]

\[V \sim \left(2^r + 1\right)\left(2^r - 1\right)\frac{1}{16r^2} \]
Counterexample: Results

- Reduction with different parameter behavior ✓

Age
- \(E = \Theta(1) \)
- \(V = \Theta(1) \)

Size of \(r \)th Reduction

\[
E \sim \frac{1}{4^r}
\]
\[
V \sim \left(2^r + 1\right)\left(2^r - 1\right) - \frac{1}{16^r}
\]

Generations = Age
Counterexample: Results

- Reduction with different parameter behavior ✓

Age
- $E = \Theta(1)$
- $V = \Theta(1)$
- LLT: ✓

Size of rth Reduction

Generations = Age

$\# \text{ Generations} = \text{Age}$
Counterexample: Results

- Reduction with different parameter behavior ✓

Age

- $E = \Theta(1)$
- $V = \Theta(1)$
- LLT: ✓

Generations = Age

Size of rth Reduction

- $E \sim 1/4^r$
- $V \sim (2^r + 1)(2^r - 1)/16^r$

Reduction size
Counterexample: Results

- Reduction with different parameter behavior

<table>
<thead>
<tr>
<th>Age</th>
<th>Size of rth Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{E} = \Theta(1)$</td>
<td>$\mathbb{E} \sim \frac{1}{4^r} n$</td>
</tr>
<tr>
<td>$\mathbb{V} = \Theta(1)$</td>
<td></td>
</tr>
<tr>
<td>LLT: ✓</td>
<td></td>
</tr>
</tbody>
</table>

Age

- # Generations = Age

Size of rth Reduction

- Reduction size

Analysis of Shape Parameters – Benjamin Hackl
Counterexample: Results

- Reduction with different parameter behavior ✓

<table>
<thead>
<tr>
<th>Age</th>
<th>Size of rth Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $E = \Theta(1)$</td>
<td>▶ $E \sim \frac{1}{4^r} n$</td>
</tr>
<tr>
<td>▶ $V = \Theta(1)$</td>
<td>▶ $V \sim \frac{(2^r+1)(2^r-1)}{16^r} n^2$</td>
</tr>
<tr>
<td>▶ LLT: ✓</td>
<td></td>
</tr>
</tbody>
</table>
Trimming Binary Trees

Cutting strategy:

► Remove Leaves
► Merge single children with their corresponding parent
Trimming Binary Trees

Cutting strategy:

▶ Remove Leaves
▶ Merge single children with their corresponding parent

\[B(z) = 1 + z - 2zB(z^2(1 - 2z^2)) \]
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

\[B(z) = 1 + z + 2z B(z) \]

Analysis of Shape Parameters – Benjamin Hackl
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

Analysis of Shape Parameters – Benjamin Hackl
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

\[
B(z) = 1 + z - 2zB(z^2(1 - 2z^2))z^{1 - 2z}
\]
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

$$B(z) = 1 + \frac{z}{1 - 2z} B\left(\frac{z^2}{(1 - 2z)^2}\right)$$
Trimming Binary Trees

Cutting strategy:

- Remove Leaves
- Merge single children with their corresponding parent

\[B(z) = 1 + \frac{z}{1 - 2z} B \left(\frac{z^2}{(1 - 2z)^2} \right) \]
How “old” do the nodes get?

We label the nodes according to the following rules:

- Leaves → 0
- age(left child) = age(right child) → increase by 1
- Otherwise: maximum of children
How “old” do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- $\text{age(left child)} = \text{age(right child)} \rightarrow$ increase by 1
- Otherwise: maximum of children
How “old” do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- $\text{age(left child)} = \text{age(right child)} \rightarrow$ increase by 1
- Otherwise: maximum of children
How “old” do the nodes get?

We label the nodes according to the following rules:

- Leaves $\rightarrow 0$
- $\text{age(left child)} = \text{age(right child)} \rightarrow$ increase by 1
- Otherwise: maximum of children

```
  1
 / \  \
0   1
 / \ / \  \
0 1 0 0 0
```
How “old” do the nodes get?

We label the nodes according to the following rules:

- Leaves → 0
- age(left child) = age(right child) → increase by 1
- Otherwise: maximum of children

```
      2
     / \
    1   1
   / \ / \ 
  0  1 0  0
 / \ / \ / \ 
0  0 0 0 0
```
The Register Function

Age \mapsto Register function (Horton-Strahler-Index)
The Register Function

Age \sim Register function (Horton-Strahler-Index)

- Applications:
The Register Function

Age \leadsto Register function (Horton-Strahler-Index)

- Applications:
 - Required stack size for evaluating arithmetic expressions

```
        +
       / \   /  /
      /   /  /
     /    /  a
    /    /  b
   /    /  
  /    /   
 /    /    
 a    1     
```

- Asymptotic analysis:
 - Flajolet, Raoult, Vuillemin (1979)
 - Flajolet, Prodinger (1986)
 - r-branches, Numerics: Yamamoto, Yamazaki (2009)
The Register Function

Age \sim Register function (Horton-Strahler-Index)

Applications:
- Required stack size for evaluating arithmetic expressions
- Branching complexity of river networks (e.g. Danube: 9)
The Register Function

Age \leadsto Register function (Horton-Strahler-Index)

- Applications:
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

- Asymptotic analysis:
The Register Function

Age ⇝ Register function (Horton-Strahler-Index)

- **Applications:**
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

- **Asymptotic analysis:**
 - Flajolet, Raoult, Vuillemin (1979)
The Register Function

Age \(\sim\) **Register function (Horton-Strahler-Index)**

- **Applications:**
 - Required stack size for evaluating arithmetic expressions
 - Branching complexity of river networks (e.g. Danube: 9)

\[
\begin{array}{c}
+ \\
\div \\
\times \\
/ \\
/ \\
/ \\
1 - a b \\
/ \\
/ \\
a 1
\end{array}
\]

- **Asymptotic analysis:**
 - Flajolet, Raoult, Vuillemin (1979)
 - Flajolet, Prodinger (1986)
The Register Function

Age \leadsto Register function (Horton-Strahler-Index)

► Applications:
 ► Required stack size for evaluating arithmetic expressions
 ► Branching complexity of river networks (e.g. Danube: 9)

+
 \[\div \times \]
 \[1 \quad a \quad b \]

► Asymptotic analysis:
 ► Flajolet, Raoult, Vuillemin (1979)
 ► Flajolet, Prodinger (1986)
 ► r-branches, Numerics: Yamamoto, Yamazaki (2009)
Local Structures – “r-branches”

Number / Distribution of (r-)branches?

Example:

$\begin{align*}
r & \quad \#r\text{-branches} \\
0 & \quad 14 \\
1 & \quad 5 \\
2 & \quad 2 \\
3 & \quad 1 \\
\end{align*}$

Analysis of Shape Parameters – Benjamin Hackl
Local Structures – “r-branches”

Number / Distribution of (r-)branches?
Local Structures – “r-branches”

- Number / Distribution of $(r\,)$branches?
- Example:

<table>
<thead>
<tr>
<th>r</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td># r-branches</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
“r-branches” – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...
Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size \(n \) ...

- # of \(r \)-branches is *asymptotically normally distributed*
“r-branches” – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n...

- The number of r-branches is asymptotically normally distributed.
- With mean and variance

$$E = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r}\right) + O(n^{-1}), \quad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)$$
"r-branches" – Results

Theorem (H.–Heuberger–Prodinger)

In a random binary tree of size n . . .

- # of *r-branches* is asymptotically normally distributed
- with mean and variance

$$
\mathbb{E} = \frac{n}{4^r} + \frac{1}{6} \left(1 + \frac{5}{4^r}\right) + O(n^{-1}), \quad \mathbb{V} = \frac{4^r - 1}{3 \cdot 16^r} n + O(1)
$$

- expected total # of branches is

$$
\frac{4}{3} n + \frac{1}{6} \log_4 n + C + \delta(\log_4 n) + O(n^{-1} \log n),
$$

- $C \approx 1.36190$, δ . . . periodic fluctuation
Non-Negative Lattice Paths

Dyck Paths:
- Sequences of \{-1, 1\} \triangleq \{\downarrow, \uparrow\},
- Never below axis, end on axis.
Non-Negative Lattice Paths

Dyck Paths:
- Sequences of $\{-1, 1\} \triangleq \{\downarrow, \uparrow\}$,
- Never below axis, end on axis.

Łukasiewicz Excursions:
- Sequences of $S = \{-1\} \cup N$, $N \subseteq \mathbb{N}_0$,
- Never below axis, end on axis.
Ascents
Ascents

Ascent: maximal sequence of non-negative steps,
Ascents

- **Ascent**: maximal sequence of non-negative steps,
- **r-Ascent**: ascent of length r.

Analysis of Shape Parameters – Benjamin Hackl
Bijection: Excursions \leftrightarrow Trees

$S = \{-1, 1, 2\}$

of children $\in \{0, 2, 3\}$
Bijection: Excursions \leftrightarrow Trees

$S = \{-1, 1, 2\}$

of children $\in \{0, 2, 3\}$
Bijection: Excursions \leftrightarrow Trees

$S = \{-1, 1, 2\}$

of children $\in \{0, 2, 3\}$
Bijection: Excursions \leftrightarrow Trees

\[S = \{-1, 1, 2\} \]

of children \(\in \{0, 2, 3\} \)
Ascents and Generating Functions

- $V(z, t) \ldots$ BGF for Plane Trees($S + 1$)
- $z \rightsquigarrow$ tree size, $t \rightsquigarrow$ # of r-ascents
Ascents and Generating Functions

- $V(z, t)$... BGF for Plane Trees ($S + 1$)
- $z \rightsquigarrow$ tree size, $t \rightsquigarrow$ # of r-ascents

Consequences of recursive tree structure:
Ascents and Generating Functions

- \(V(z, t) \)… BGF for Plane Trees\((S + 1)\)
 - \(z \mapsto \) tree size, \(t \mapsto \) \# of \(r \)-ascents

Consequences of **recursive tree structure**:

- relevant quantities are expressable via \(V(z) := V(z, 1) \)
Ascents and Generating Functions

- \(V(z, t) \ldots \) BGF for Plane Trees\((S + 1)\)
 - \(z \sim \) tree size, \(t \sim \# \) of \(r \)-ascents

Consequences of \textbf{recursive tree structure}:

- relevant quantities are expressable via \(V(z) := V(z, 1) \)
- \(V(z) \) satisfies \(V(z) = zV(z)S(V(z)) \),
Ascents and Generating Functions

- \(V(z, t) \) BGF for Plane Trees \(S + 1 \)
 - \(z \sim \) tree size, \(t \sim \# \) of \(r \)-ascents

Consequences of recursive tree structure:

- relevant quantities are expressable via \(V(z) := V(z, 1) \)
- \(V(z) \) satisfies \(V(z) = zV(z)S(V(z)) \),
 - \(S(u) \) GF of \(S \): \(S = \{-1, 2, 3\} \Rightarrow S(u) = u^{-1} + u^2 + u^3 \).
Ascents and Generating Functions

- \(V(z, t) \) ... BGF for Plane Trees \((S + 1)\)
 - \(z \mapsto \) tree size, \(t \mapsto \# \) of \(r \)-ascents

Consequences of \textit{recursive tree structure}:

- relevant quantities are expressable via \(V(z) := V(z, 1) \)
- \(V(z) \) satisfies \(V(z) = zV(z)S(V(z)) \),
 - \(S(u) \) ... GF of \(S\): \(S = \{-1, 2, 3\} \Rightarrow S(u) = u^{-1} + u^2 + u^3 \).
 - functional equation type \(V = z\varphi(V) \mapsto \text{singular inversion} \)
Ascents and Generating Functions

- \(V(z, t) \ldots \text{BGF for Plane Trees}(S + 1) \)
 - \(z \leadsto \text{tree size}, \ t \leadsto \# \text{ of } r\text{-ascents} \)

Consequences of \textit{recursive tree structure}:

- relevant quantities are expressable via \(V(z) := V(z, 1) \)
- \(V(z) \text{ satisfies } V(z) = zV(z)S(V(z)) \),
 - \(S(u) \ldots \text{GF of } S: S = \{-1, 2, 3\} \Rightarrow S(u) = u^{-1} + u^2 + u^3. \)
 - functional equation type \(V = z \varphi(V) \leadsto \text{singular inversion} \)

Proposition

- \(\tau \ldots \text{structural constant, unique } \tau > 0 \text{ with } S'(\tau) = 0 \)
- \(\rho = \gcd(S + 1) \ldots \text{period, } \zeta^\rho = 1 \)

\(V(z) \) has radius of convergence \(\rho = 1/S(\tau) \), singularities at \(\zeta \rho \) and

\[
V(z) \xrightarrow{z \to \zeta \rho} \zeta \tau - \zeta \sqrt{\frac{2S(\tau)}{S''(\tau)}} \left(1 - \frac{z}{\zeta \rho}\right)^{1/2} + O\left(1 - \frac{z}{\zeta \rho}\right).
\]
Analysis of r-Ascents in Excursions

Theorem (H.–Heuberger–Prodinger)

- p ... *period of* S, τ ... *structural constant*, $c := \tau S(\tau)$
Analysis of r-Ascents in Excursions

Theorem (H.–Heuberger–Prodinger)

- $p \ldots$ period of S, $\tau \ldots$ structural constant, $c := \tau S(\tau)$

1. If $p \nmid n$, there are no excursions of length n,
Theorem (H.–Heuberger–Prodinger)

1. If $p \nmid n$, there are no excursions of length n,
2. Otherwise, $\#$ of r-ascents has mean and variance

\[E = (c - 1) r c + 2 n + O(1) \]
\[V = (c - 1) r c + 2 + (2c - 2r - 3)(c - 1)^2 r + 4 - (c - 1)^2 r - 2(2c - r - 2)c^2 r + 3 \tau^3 S''(\tau) \]
\[n + O(n^{1/2}) \]
Analysis of \(r \)-Ascents in Excursions

Theorem (H.–Heuberger–Prodinger)

\(p \) \ldots period of \(S \), \(\tau \) \ldots structural constant, \(c := \tau S(\tau) \)

1. If \(p \nmid n \), there are no excursions of length \(n \),
2. Otherwise, \(\# \) of \(r \)-ascents has mean and variance

\[
\mathbb{E} = \frac{(c - 1)r}{c^{r+2}} n + O(1),
\]
Analysis of r-Ascents in Excursions

Theorem (H.–Heuberger–Prodinger)

- p ... period of S, τ ... structural constant, $c := \tau S(\tau)$

1. If $p \nmid n$, there are no excursions of length n,
2. Otherwise, # of r-ascents has mean and variance

$$\mathbb{E} = \frac{(c - 1)^r}{c^{r+2}} n + O(1),$$

$$\mathbb{V} = \left(\frac{(c - 1)^r}{c^{r+2}} + \frac{(2c - 2r - 3)(c - 1)^{2r}}{c^{2r+4}} - \frac{(c - 1)^{2r-2}(2c - r - 2)^2}{c^{2r+3}\tau^3 S''(\tau)} \right) n + O(n^{1/2}).$$
Excursions – Example

Example (r-Ascents in Dyck paths)

$S = \{-1, 1\}$, $p = 2$, $\tau = 1$.
Excursions – Example

Example (r-Ascents in Dyck paths)

- $S = \{-1, 1\}$, $p = 2$, $\tau = 1$.
- Explicit $V(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z} \Rightarrow \text{higher precision!}$
Excursions – Example

Example (r-Ascents in Dyck paths)

- $S = \{-1, 1\}$, $p = 2$, $\tau = 1$.
- Explicit $V(z) = \frac{1-\sqrt{1-4z^2}}{2z}$ ⇒ higher precision!

$$\mathbb{E}D_{2n,r} = \frac{n}{2r+1} - \frac{(r + 1)(r - 4)}{2r+3}$$
$$+ \frac{(r^2 - 11r + 22)(r + 1)r}{2r+6}n^{-1} + O(n^{-2})$$
Excursions – Example

Example (r-Ascents in Dyck paths)

- $S = \{-1, 1\}, \ p = 2, \ \tau = 1$.
- Explicit $V(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z} \Rightarrow$ higher precision!

$$\mathbb{E}D_{2n,r} = \frac{n}{2r+1} - \frac{(r + 1)(r - 4)}{2r+3} \frac{n^{-1}}{2} + O(n^{-2})$$

$$\nabla D_{2n,r} = \left(\frac{1}{2r+1} - \frac{r^2 - 2r + 3}{2^{2r+3}}\right)n + O(1)$$
Summary

Bijection

\[V(z, t) \mapsto F(z, t, v) \]

OGFs

Periodicity

\[\frac{1}{P(\tau)} \]

Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{(\tau S(\tau))^r + 2} n \]

Dispersed Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{(\tau S(\tau))^r + 2} n \]

Meanders

\[E_{n,r} \sim \frac{(S(1) - 1)^r}{S(1)^r + 2} n \]
Summary

Bijection

\[V(z, t) \Rightarrow F(z, t, v) \]

OGFs

Periodicity

\[\frac{1}{P(\tau)} \]

Excursions

\[E_{n,r} \sim \frac{\tau S(\tau) - 1}{\tau S(\tau)}^r n \]

Dispersed Excursions

\[E_{n,r} \sim \frac{\tau S(\tau) - 1}{\tau S(\tau)}^r n \]

Meanders

\[E_{n,r} \sim \frac{S(1) - 1}{S(1)}^r n \]

Analysis of Shape Parameters – Benjamin Hackl
Summary

Bijection

\[V(z, t) \implies F(z, t, v) \]

OGFs

Periodicity

Excursions

Dispersed Excursions

Meanders

Analysis of Shape Parameters – Benjamin Hackl
Summary

Bijection

\[V(z, t) \Rightarrow F(z, t, v) \]

Periodicity

\[\frac{1}{P(\tau)} \]

Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{(\tau S(\tau))^r + 2} n \]

Dispersed Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{(\tau S(\tau))^r + 2} n \]

Meanders

\[E_{n,r} \sim \frac{S(1) - 1)^r}{S(1)^r + 2} n \]

Analysis of Shape Parameters – Benjamin Hackl
Summary

Bijection

Periodicity

\[V(z, t) \equiv F(z, t, \nu) \]

Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{\tau S(\tau)^r} n \]

Dispersed Excursions

\[E_{n,r} \sim \frac{(\tau S(\tau) - 1)^r}{\tau S(\tau)^r + 2} n \]

Meanders

\[E_{n,r} \sim \frac{(S(1) - 1)^r}{S(1)^r + 2} n \]

OGFs

Analysis of Shape Parameters – Benjamin Hackl
Lagrange Inversion

\[y, \Phi, H \ldots \text{formal power series with } y = x\Phi(y) \text{ and } \Phi(0) \neq 0 \]

Then:

\[[x^n]H(y) = \frac{1}{n} [y^{n-1}]H'(y)\Phi(y)^n \]
Singularity Analysis – Standard Scale

\(\alpha \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0} \)

\(f(z) = (1 - z)^{-\alpha} \)

Then:

\[
[z^n]f(z) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \frac{e_1(\alpha)}{n} + \frac{e_2(\alpha)}{n^2} + \ldots \right),
\]

where

\[
e_1(\alpha) = \frac{\alpha(\alpha - 1)}{2},
\]

\[
e_2(\alpha) = \frac{\alpha(\alpha - 1)(\alpha - 2)(3\alpha - 1)}{24},
\]

\[
e_3(\alpha) = \frac{\alpha^2(\alpha - 1)^2(\alpha - 2)(\alpha - 3)}{48}.
\]
Singularity Analysis – Logarithmic Scale

\[\alpha \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0} \]

\[f(z) = (1 - z)^{-\alpha} \left(\frac{1}{z} \log \frac{1}{1 - z} \right)^\beta \]

Then:

\[[z^n] f(z) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \frac{C_1}{\log n} + \frac{C_2}{\log^2 n} + \ldots \right), \]

where

\[C_k = \binom{\beta}{k} \Gamma(\alpha) \frac{d^k}{ds^k} \frac{1}{\Gamma(s)} \bigg|_{s=\alpha}. \]
Mellin Transform – Properties

\[f^*(s) = \int_0^\infty f(x)x^{s-1} \, dx \quad f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f^*(s)x^{-s} \, ds \]

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f^*(s))</th>
<th>(\langle \alpha, \beta \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lin. comb.</td>
<td>lin. comb.</td>
<td>\langle \alpha - k, \beta - k \rangle</td>
</tr>
<tr>
<td>(x^k f(x))</td>
<td>(f^*(s + k))</td>
<td>\langle \alpha - k, \beta - k \rangle</td>
</tr>
<tr>
<td>(f(x^\rho))</td>
<td>(\frac{1}{\rho} f^*(\frac{s}{\rho}))</td>
<td>\langle \rho \alpha, \rho \beta \rangle</td>
</tr>
<tr>
<td>(f(\mu x))</td>
<td>(\mu^{-s} f^*(s))</td>
<td>\langle \alpha, \beta \rangle (\mu > 0)</td>
</tr>
<tr>
<td>(f(x) \log x)</td>
<td>(\frac{d}{ds} f^*(s))</td>
<td>\langle \alpha, \beta \rangle</td>
</tr>
<tr>
<td>(x \frac{d}{dx} f(x))</td>
<td>(-sf^*(s))</td>
<td></td>
</tr>
</tbody>
</table>

\[\mathcal{M}(e^{-x}) (s) = \Gamma(s), \quad \mathcal{M}(e^{-x^2}) (s) = \frac{1}{2} \Gamma\left(\frac{s}{2}\right), \quad \mathcal{M}(\lfloor 0 \leq s \leq 1 \rfloor) (s) = \frac{1}{s} \]

\[\mathcal{M}(\log(1 + x)) (s) = \frac{\pi}{s \sin(\pi s)}, \quad \mathcal{M}\left(\frac{1}{e^x - 1}\right) = \zeta(s) \Gamma(s) \]
Mellin Transform – Correspondence

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>$f^*(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = O(x^\alpha)$, $x \rightarrow 0$</td>
<td>$-\alpha$ left border of FS</td>
</tr>
<tr>
<td>$f(x) = O(x^\beta)$, $x \rightarrow \infty$</td>
<td>$-\beta$ right border of FS</td>
</tr>
<tr>
<td>Expansion up to $O(x^\gamma)$, $x \rightarrow 0$</td>
<td>Meromorph. Cont. up to Re $s > -\gamma$</td>
</tr>
<tr>
<td>Expansion up to $O(x^\delta)$, $x \rightarrow \infty$</td>
<td>Meromorph. Cont. up to Re $s < -\delta$</td>
</tr>
<tr>
<td>Growth $x^k \log^\ell x$, $x \rightarrow 0$</td>
<td>Pole with expansion $\frac{(-1)^{\ell} \ell!}{(s+k)^{\ell+1}}$</td>
</tr>
<tr>
<td>Growth $x^k \log^\ell x$, $x \rightarrow \infty$</td>
<td>Pole with expansion $-\frac{(-1)^{\ell} \ell!}{(s+k)^{\ell+1}}$</td>
</tr>
</tbody>
</table>
Hurwitz Zeta Function – Estimate

\[\zeta(s, \alpha) := \sum_{n > -\alpha} \frac{1}{(n + \alpha)^s}, \quad \text{Re} s > 1 \]

- \(s = \sigma + it, \sigma_0 \leq \sigma \leq \sigma_1 \)
- \(|t| \to \infty \)

\[|\zeta(s, \alpha)| = O(|t|^\tau(\sigma) \log |t|), \quad \tau(\sigma) = \begin{cases}
\frac{1}{2} - \sigma, & \sigma \leq 0 \\
1/2, & 0 \leq \sigma \leq \frac{1}{2} \\
1 - \sigma, & \frac{1}{2} \leq \sigma \leq 1 \\
0, & \sigma \geq 1
\end{cases} \]

The logarithmic factor is only necessary in a neighborhood of \(\sigma = 0, \sigma = 1 \).
Gamma Function – Estimate

\[\Gamma(z) := \int_{0}^{\infty} e^{-t} t^{z-1} \, dt \]

\[z \to \infty \text{ with } |\arg z| \leq \pi - \delta, \; \delta > 0 \]

\[\Gamma(z) \sim e^{-z} z^{z} \left(\frac{2\pi}{z} \right)^{1/2} \left(1 + \frac{1}{12z} + \frac{1}{288z^2} + \ldots \right) \]