On Reductions of Plane Trees

Benjamin Hackl

joint work with Clemens Heuberger, Sara Kropf, Helmut Prodinger

April 7, 2017

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

- Remove all leaves
- Merge nodes with only one descendant

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
00000				000000

- Remove all leaves
- Merge nodes with only one descendant

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
00000				000000

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
00000				000000

- Remove all leaves
- Merge nodes with only one descendant

- Remove all leaves
- Merge nodes with only one descendant

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

- Leaves \rightarrow 0 (they do not survive a single reduction)
- ▶ val(left child) = val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
00000	0000	0000000	000000	000000

Number in the root of the tree: *Register function*, a.k.a. *Horton–Strahler* number

Register function = maximal number of tree trimmings

- Register function = maximal number of tree trimmings
- Applications:

- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression

- Register function = maximal number of tree trimmings
- Applications:
 - Required stack size for evaluating an expression
 - Branching complexity of river networks (e.g. Danube: 9)

Motivation and Strategy 000€00	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths
(Rooted) Plan	e trees			
Characterization:				
 unlabeled 		- Alexandre		
			Y	

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths	
(Rooted) Plan	e trees				
Characterization:					
 unlabeled 					
special no	ode: root	74.1			
			Y		

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths	
(Rooted) Plane trees					
Characterization:					

- unlabeled
- special node: root
- order of children matters

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths
				N. A.

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

Motivation and Strategy 000●00	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths	
				Ster Al - 1	

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

•
$$C_n = \frac{1}{n+1} {2n \choose n}$$
 plane trees of size n

Motivation and Strategy 0000●0	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Growing plane trees

▶ How can we grow trees?

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000				

- How can we grow trees?
- Easier question: what could be the inverse operation?

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

► Growing trees:

- How can we grow trees?
- Easier question: what could be the inverse operation?
 - Most straightforward: cut away all leaves!

Growing trees:

grow new leaves out of current leaves and inner nodes

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

► Aim: analysis of tree structure under iterated reduction

Motivation and Strategy 00000●	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

► Aim: analysis of tree structure under iterated reduction

Motivation and Strategy 00000●	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

► Aim: analysis of tree structure under iterated reduction

Algorithmic description

Motivation and Strategy 00000●	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

> Aim: analysis of tree structure under iterated reduction

- Algorithmic description
- Investigation of "tree expansion" ~> GF

Motivation and Strategy 00000●	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

> Aim: analysis of tree structure under iterated reduction

- Algorithmic description
- Investigation of "tree expansion" ~> GF
- Coefficient extraction; Parameter distribution

Motivation and Strateg	y Preliminaries •000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Proposition

► *T*... plane trees

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	0000000	000000	000000

Proposition

- ► *T*... plane trees
- T(z, t)...BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

000000 0000 000000 000000 000000	Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	000000	0000	000000	000000	000000

Proposition

•
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

000000 0000 000000 000000 000000	Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	000000	0000	000000	000000	000000

Proposition

•
$$T(z,t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	000000	000000	000000

Proposition

•
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

	d Leaves and Paths
000000 0000 0000 0000 000	0000

Proposition

•
$$T(z,t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	000000	000000	000000

Proposition

•
$$T(z, t)$$
... BGF for T ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

$$\mathcal{T} = \Box + \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T}$$

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	000000	000000	000000

Proposition

•
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

000000 0000 000000 000000 000000	Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	000000	0000	000000	000000	000000

Proposition

•
$$T(z, t)...BGF$$
 for $T(z \rightsquigarrow inner nodes, t \rightsquigarrow leaves)$

$$\Rightarrow T(z,t) = \frac{1 - (z - t) - \sqrt{1 - 2(z + t) + (z - t)^2}}{2}$$

Proof. Symbolic equation

translates into

$$T(z,t) = t + z \cdot \frac{T(z,t)}{1 - T(z,t)}$$

which can be solved explicitly.

Motivation and Strategy	Preliminaries ○●○○	Cutting Leaves	Pruning 000000	Old Leaves and Paths

• Generating function T(z, tz): z...tree size, t... leaves

Motivation and Strategy	Preliminaries ○●○○	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- Generating function T(z, tz): z...tree size, t... leaves
- Expansion:

$$T(z, tz) = zt + z^{2}t + z^{3}(t + t^{2}) + z^{4}(t + 3t^{2} + t^{3}) + \dots$$

Motivation and Strategy	Preliminaries ○●○○	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- Generating function T(z, tz): z... tree size, t... leaves
- Expansion:

$$T(z, tz) = zt + z^{2}t + z^{3}(t + t^{2}) + z^{4}(t + 3t^{2} + t^{3}) + \dots$$
$$= \sum_{n \ge 1} z^{n} N_{n-1}(t)$$

Motivation and Strategy	Preliminaries ○●○○	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- Generating function T(z, tz): z...tree size, t... leaves
- Expansion:

$$T(z, tz) = zt + z^{2}t + z^{3}(t + t^{2}) + z^{4}(t + 3t^{2} + t^{3}) + \dots$$
$$= \sum_{n \ge 1} z^{n} N_{n-1}(t)$$

► N_{n-1}(t)... Narayana polynomial, counts trees of size n (i.e. n-1 edges) w.r.t. number of leaves

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	0000			

Proposition

$$T(z,tz) - tz = T(tz,z) - z$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	0000			

Proposition

$$T(z,tz)-tz=T(tz,z)-z$$

Interpretation: for size $n \ge 2$, trees with k leaves are bijective to trees with k inner nodes.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	0000			

Proposition

$$T(z,tz)-tz=T(tz,z)-z$$

Interpretation: for size $n \ge 2$, trees with k leaves are bijective to trees with k inner nodes.

Proposition

$$N'_{n-1}(1) = \frac{1}{2} \binom{2n-2}{n-1}$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
	0000			

Proposition

$$T(z,tz)-tz=T(tz,z)-z$$

Interpretation: for size $n \ge 2$, trees with k leaves are bijective to trees with k inner nodes.

Proposition

$$N_{n-1}'(1) = \frac{1}{2} \binom{2n-2}{n-1}$$

Interpretation: half of all nodes among all trees of size *n* are leaves.

Motivation and Strategy	Preliminaries 000●	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Construction of "Left-Child Right-Sibling"-tree:

Construction of "Left-Child Right-Sibling"-tree:

Construction of "Left-Child Right-Sibling"-tree:

Construction of "Left-Child Right-Sibling"-tree:

Observations:

left leaves (binary tree) + leaves (plane tree)

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- left leaves (binary tree) + leaves (plane tree)
- ▶ right leaves (binary tree) ↔ inner nodes (plane tree)

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- ► left leaves (binary tree) ↔ leaves (plane tree)
- ▶ right leaves (binary tree) ↔ inner nodes (plane tree)

Proofs:

▶ Proof 1: bijection: mirror binary tree, transform back

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- ► left leaves (binary tree) ↔ leaves (plane tree)
- ▶ right leaves (binary tree) ↔ inner nodes (plane tree)

Proofs:

- ▶ Proof 1: bijection: mirror binary tree, transform back
- Proof 2: symmetry: equally many left as right leaves

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
		000000		

Remove all leaves!

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
		000000		

Remove all leaves!

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
		000000		

► Remove all leaves!

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
		000000		

► Remove all leaves!

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
		000000		

• F... family of plane trees; BGF f(z, t)

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

- F... family of plane trees; BGF f(z, t)
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- F... family of plane trees; BGF f(z, t)
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Leaf expansion Φ_L

inverse operation to leaf reduction

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	000000	000000	000000

- F... family of plane trees; BGF f(z, t)
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Leaf expansion Φ_L

- inverse operation to leaf reduction
 - attach leaves to all current leaves (necessary)
 - attach leaves to inner nodes (optional)

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

Motivation and Strategy 000000	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with n inner nodes and k leaves ~> zⁿt^k
- Expansion:

$$\Phi_L(z^n t^k) =$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes

In total:

$$\Phi_L(z^n t^k) = z^n$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves

In total:

$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Leaf expansion operator Φ_L

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- Tree with *n* inner nodes and *k* leaves $\rightsquigarrow z^n t^k$
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k 1 positions where sequences of leaves can be inserted

In total:

$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Leaf expansion operator Φ_L

Proposition

$$\Phi_L(f(z,t)) = (1-t)f\left(\frac{z}{(1-t)^2}, \frac{zt}{(1-t)^2}\right)$$

- ► Tree with n inner nodes and k leaves → zⁿt^k
- Expansion:
 - inner nodes stay inner nodes
 - attach a non-empty sequence of leaves to all current leaves
 - ► there are 2n + k 1 positions where sequences of leaves can be inserted

In total:

$$\Phi_L(z^n t^k) = z^n \cdot \left(\frac{zt}{1-t}\right)^k \cdot \frac{1}{(1-t)^{2n+k-1}}$$

• As Φ_L is linear, this proves the proposition.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths
Properties of <	Þ _L			

• Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths
_				

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

▶ BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths
_				

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1 + u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

- ▶ BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree
- ▶ Intuition: v "remembers" size while tree family is expanded

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

- Functional equation: $T(z,t) = \Phi_L(T(z,t)) + t$
- With $z = u/(1+u)^2$ and by some manipulations

$$\Phi_L^r(z^n t^k)|_{t=z} = \frac{1 - u^{r+2}}{(1 - u^{r+1})(1 + u)} \Big(\frac{u(1 - u^{r+1})^2}{(1 - u^{r+2})^2}\Big)^n \Big(\frac{u^{r+1}(1 - u)^2}{(1 - u^{r+2})^2}\Big)^k$$

- ▶ BGF G_r(z, v) for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$G_r(z,v) = \frac{1-u^{r+2}}{(1-u^{r+1})(1+u)} T\left(\frac{u(1-u^{r+1})^2}{(1-u^{r+2})^2}v, \frac{u^{r+1}(1-u)^2}{(1-u^{r+2})^2}v\right)$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

▶ r...number of reductions, fixed

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X_{n,r}...RV for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{r+1} - \frac{r(r-1)}{6(r+1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{r(r+2)}{6(r+1)^2}n + O(1),$$

and $X_{n,r}$ is asymptotically normally distributed.

Motivation and Strategy	Preliminaries	Cutting Leaves 00000●0	Pruning 000000	Old Leaves and Paths

Cutting leaves - Some insights

• $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis

Cutting leaves – Some insights

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- ► Asymptotic normality: X_{n,r} is a tree parameter with small toll function, limit law by Wagner (2015)

Cutting leaves – Some insights

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- ► Asymptotic normality: X_{n,r} is a tree parameter with small toll function, limit law by Wagner (2015)
- We can even get all factorial moments:

$$\mathbb{E}X_{n,r}^d = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

Cutting leaves – Some insights

- $\mathbb{E}X_{n,r}$ and $\mathbb{V}X_{n,r}$ follow via singularity analysis
- ► Asymptotic normality: X_{n,r} is a tree parameter with small toll function, limit law by Wagner (2015)
- We can even get all factorial moments:

$$\mathbb{E}X_{n,r}^d = \frac{1}{(r+1)^d}n^d + O(n^{d-1})$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves 000000●	Pruning 000000	Old Leaves and Paths

•
$$C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$$
 is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves 000000●	Pruning 000000	Old Leaves and Paths

- $C_{n-1} \mathbb{E} X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d} G_r(z,v)|_{v=1}$
- Problem: general derivative unknown

Motivation and Strategy	Preliminaries	Cutting Leaves 000000●	Pruning 000000	Old Leaves and Paths

- $C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$\sum_{d\geq 0} \frac{q^d}{d!} \frac{\partial^d}{\partial v^d} G_r(z,v)|_{v=1}$$

Motivation and Strategy	Preliminaries	Cutting Leaves 000000●	Pruning 000000	Old Leaves and Paths

- $C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$\sum_{d\geq 0}\frac{q^d}{d!}\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}=G_r(z,1+q)$$

 Motivation and Strategy
 Preliminaries
 Cutting Leaves
 Pruning
 Old Leaves and Paths

 000000
 0000
 000000
 000000
 000000
 000000

- $C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$\sum_{d\geq 0} \frac{q^d}{d!} \frac{\partial^d}{\partial v^d} G_r(z,v)|_{v=1} = G_r(z,1+q)$$
$$= c \cdot T(a(1+q), b(1+q))$$

 Motivation and Strategy
 Preliminaries
 Cutting Leaves
 Pruning
 Old Leaves and Paths

 000000
 0000
 000000
 000000
 000000
 000000

- $C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$\begin{split} \sum_{d\geq 0} \frac{q^d}{d!} \frac{\partial^d}{\partial v^d} G_r(z,v)|_{v=1} &= G_r(z,1+q) \\ &= c \cdot T(a(1+q),b(1+q)) \\ &= \delta + \Delta \cdot T(\alpha q,\beta q) \end{split}$$

 Motivation and Strategy
 Preliminaries
 Cutting Leaves
 Pruning
 Old Leaves and Paths

 000000
 000000
 000000
 000000
 000000
 000000

Cutting leaves – factorial moments

- $C_{n-1}\mathbb{E}X_{n,r}^{\underline{d}}$ is extracted from $\frac{\partial^d}{\partial v^d}G_r(z,v)|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$\begin{split} \sum_{d\geq 0} \frac{q^d}{d!} \frac{\partial^d}{\partial v^d} G_r(z,v)|_{v=1} &= G_r(z,1+q) \\ &= c \cdot T(a(1+q),b(1+q)) \\ &= \delta + \Delta \cdot T(\alpha q,\beta q) \end{split}$$

This allows extracting the coefficient of zⁿq^d

 Motivation and Strategy
 Preliminaries
 Cutting Leaves
 Pruning
 Old Leaves and Paths

 000000
 0000
 000000
 000000
 000000
 000000

How do we cut our trees? (2)

 Motivation and Strategy
 Preliminaries
 Cutting Leaves
 Pruning
 Old Leaves and Paths

 000000
 000000
 000000
 000000
 000000

How do we cut our trees? (2)

Remove all paths that end in a leaf!

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 0●0000	Old Leaves and Paths

► Append one path to leaf ~→ longer path 4

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 0●0000	Old Leaves and Paths 000000

- Append one path to leaf \rightsquigarrow longer path 4
- $\blacktriangleright\,\Rightarrow$ at least two paths need to be appended

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 0●0000	Old Leaves and Paths

- Append one path to leaf \rightsquigarrow longer path 4
- \blacktriangleright \Rightarrow at least two paths need to be appended

• Write
$$p = \frac{t}{1-z} \dots$$
 BGF for paths

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 0●0000	Old Leaves and Paths

- Append one path to leaf \rightsquigarrow longer path 4
- $\blacktriangleright\,\Rightarrow$ at least two paths need to be appended
- Write $p = \frac{t}{1-z} \dots$ BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 0●0000	Old Leaves and Paths 000000

- ► Append one path to leaf ~→ longer path 4
- \blacktriangleright \Rightarrow at least two paths need to be appended
- Write $p = \frac{t}{1-z} \dots$ BGF for paths
- Similar to before we obtain

$$\Phi_P(z^n t^k) = z^n \cdot \frac{z^k p^{2k}}{(1-p)^k} \cdot \frac{1}{(1-p)^{2n+k-1}}$$

Proposition

The linear operator given by

$$\Phi_P(f(z,t)) = (1-p)f\left(\frac{z}{(1-p)^2}, \frac{zp^2}{(1-p)^2}\right)$$

is the path expansion operator.

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 00●000	Old Leaves and Paths

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow$ r-fold path reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where $z = u/(1+u)^2$.

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow$ r-fold path reduced size) is

$$\frac{1-u^{2^{r+1}}}{(1-u^{2^{r+1}-1})(1+u)}T\Big(\frac{u(1-u^{2^{r+1}-1})^2}{(1-u^{2^{r+1}})^2}v,\frac{u^{2^{r+1}-1}(1-u)^2}{(1-u^{2^{r+1}})^2}v\Big),$$

where $z = u/(1+u)^2$.

Observation. This is the BGF for leaf reductions

$$\frac{1-u^{r+2}}{(1-u^{r+1})(1+u)}T\Big(\frac{u(1-u^{r+1})^2}{(1-u^{r+2})^2}v,\frac{u^{r+1}(1-u)^2}{(1-u^{r+2})^2}v\Big)$$

with
$$r \mapsto 2^{r+1} - 2$$
.

Cutting paths – Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

r...number of reductions, fixed

Pruning 000●00 Old Leaves and Pat 000000

Cutting paths – Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Cutting paths – Pruning

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$

Cutting paths – Pruning

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Cutting paths – Pruning

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

Cutting paths – Pruning

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

Factorial moments are known as well

Cutting paths – Pruning

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ► X_{n,r}... RV for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{n}{2^{r+1}-1} - \frac{(2^r-1)(2^{r+1}-3)}{3(2^{r+1}-1)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2^{r+1}(2^r-1)}{3(2^{r+1}-1)^2}n + O(1).$$

Furthermore, $X_{n,r}$ is asymptotically normally distributed.

- Factorial moments are known as well
- Proof: subsequence of RV's from cutting leaves

Motivation and Strategy
00000Preliminaries
000000Cutting Leaves
0000000Pruning
000000Old Leaves and Paths
000000

Counting total number of paths

► Trees can be partitioned into paths (~→ branches)!

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
000000	0000	000000	000000	000000

Counting total number of paths

► Trees can be partitioned into paths (~→ branches)!

Motivation and Strategy
00000Preliminaries
00000Cutting Leaves
000000Pruning
000000Old Leaves and Paths
000000

Counting total number of paths

▶ Trees can be partitioned into paths (~→ branches)!

Motivation and Strategy
00000Preliminaries
00000Cutting Leaves
000000Pruning
000000Old Leaves and Paths
000000

Counting total number of paths

▶ Trees can be partitioned into paths (~→ branches)!

Motivation and Strategy
00000Preliminaries
00000Cutting Leaves
000000Pruning
000000Old Leaves and Paths
000000

Counting total number of paths

▶ Trees can be partitioned into paths (~→ branches)!

Average number of paths?

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 00000●	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2017)

• $P_n \ldots RV$ for number of paths in tree of size n

Theorem (H.–Heuberger–Kropf–Prodinger, 2017)

• $P_n \dots RV$ for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2})$$

Theorem (H.–Heuberger–Kropf–Prodinger, 2017)

• $P_n \dots RV$ for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2}).$$

•
$$\delta(x) := \frac{1}{\log 2} \sum_{k \neq 0} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x}$$

•
$$\alpha := \sum_{k \ge 1} 1/(2^k - 1) \approx 1.606695$$

▶ $c \approx -0.118105$.

Theorem (H.–Heuberger–Kropf–Prodinger, 2017)

• $P_n \dots RV$ for number of paths in tree of size n

The expected number of paths is

$$\mathbb{E}P_n = (\alpha - 1)n + \frac{1}{6}\log_4 n + \delta(\log_4 n) + c + O(n^{-1/2}).$$

$$\bullet \ \delta(x) := \frac{1}{\log 2} \sum_{k \neq 0} (-1 + \chi_k) \Gamma(\chi_k/2) \zeta(-1 + \chi_k) e^{2k\pi i x},$$

•
$$\alpha := \sum_{k \ge 1} 1/(2^k - 1) \approx 1.606695$$

- ▶ $c \approx -0.118105$.
- Proof: Sum of leaves in all reductions, Mellin-transform, singularity analysis.

Motivation and Strategy

OOOO

Cutting Leav

Pruning

Old Leaves and Paths •00000

How do we cut our trees? (3)

Introduced by Chen, Deutsch, Elizalde (2006)

How do we cut our trees? (3) Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

 Remove all leaves that are leftmost children

Old Leaves and Paths

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006) Old leaves
- Remove all leaves that are leftmost children

OOOO OOO

Cutting Leave

Pruning

Old Leaves and Paths •00000

How do we cut our trees? (3)

Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

 Remove all leaves that are leftmost children

Old paths

 Remove all paths consisting of leftmost children

How do we cut our trees? (3)

Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

Remove all leaves that are leftmost children

Old paths

Remove all paths consisting of leftmost children

Growing and Reducing Trees - Benjamin Hackl (AAU Klagenfurt / Austria)

Old Leaves and Paths

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
				00000

Proposition

► *L*... plane trees

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths 00000

Proposition

- ► *L*... plane trees
- L(z, w)...BGF ($w \rightsquigarrow old leaves$,
 - $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Proposition

- ► *L*... plane trees
- L(z, w)...BGF (w → old leaves, z → all nodes that are neither old leaves nor parents thereof)

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Proposition

- *L*... plane trees
- L(z, w)... BGF (w → old leaves,
 z → all nodes that are neither old leaves nor parents thereof)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

 $\mathcal{L} = igodot$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Proposition

- ► *L*... plane trees
- L(z, w)...BGF (w → old leaves,
 z → all nodes that are neither old leaves nor parents thereof)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

$$\mathcal{L} = \mathbf{O} + \mathcal{L} \cdots \mathcal{L}$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000

Proposition

- ► *L*... plane trees
- L(z, w)...BGF (w → old leaves,
 z → all nodes that are neither old leaves nor parents thereof)

Then

$$L(z,w) = \frac{1 - \sqrt{1 - 4z - 4w + 4z^2}}{2}$$

and there are $C_{k-1}\binom{n-2}{n-2k}2^{n-2k}$ trees of size n with k old leaves.

Proof. Symbolic equation

$$\mathcal{L} = \mathbf{O} + \mathcal{L} \cdots \mathcal{L}$$

translation; series expansion of the root.

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigcap \xrightarrow{\Phi_{OL}} + \bigcap + \bigcap + \bigcap = zw + zw + w^{2}$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$\Phi_{OL}(f(z,w)) = f(z+w,(2z+w)w)$$

and

$$\Phi_{OP}(f(z,w)) = f\left(z + \frac{w}{1-z}, \left(z + \frac{w}{1-z}\right)\frac{w}{1-z}\right),$$

respectively.

$$w \triangleq \bigwedge^{\Phi_{OL}} \xrightarrow{\Phi_{OL}} + \bigwedge^{\Phi_{OL}} + \bigwedge^{\Phi_{OL}} + \bigwedge^{\Phi_{OL}} = zw + zw + w^{2}$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

▶ r...number of reductions, fixed

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$...polynomial enumerating binary trees of height $\leq h$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_r(1/4))n - \frac{B'_r(1/4)}{8} + O(n^{-1}),$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r...number of reductions, fixed
- ▶ $B_h(z)$... polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$\mathbb{E}X_{n,r} = (2 - B_r(1/4))n - \frac{B_r'(1/4)}{8} + O(n^{-1}),$$

$$\mathbb{V}X_{n,r} = \left(B_r(1/4) - B_r(1/4)^2 + \frac{(2 - B_r(1/4))B_r'(1/4)}{2}\right)n + O(1).$$

In addition, $X_{n,r}$ is asymptotically normally distributed.

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning	Old Leaves and Paths
				000000

Cutting old leaves - Details

 $\mathbb{E}X_{n,r} \sim (2 - B_r(1/4))n$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

$$\mathbb{E}X_{n,r} \sim (2 - B_r(1/4))n$$

▶ Note. Via Flajolet, Odlyzko (1982): $B_r(1/4) = 2 - \frac{4}{r} + \frac{4\log r}{r^2} + O(r^{-3}), \quad r \to \infty$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

$$\mathbb{E}X_{n,r} \sim (2 - B_r(1/4))n$$

▶ Note. Via Flajolet, Odlyzko (1982): $B_r(1/4) = 2 - \frac{4}{r} + \frac{4\log r}{r^2} + O(r^{-3}), \quad r \to \infty$

Limiting distribution:

• $n - X_{n,r}$ is a local tree functional

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

$$\mathbb{E}X_{n,r} \sim (2 - B_r(1/4))n$$

▶ Note. Via Flajolet, Odlyzko (1982): $B_r(1/4) = 2 - \frac{4}{r} + \frac{4\log r}{r^2} + O(r^{-3}), \quad r \to \infty$

Limiting distribution:

- $n X_{n,r}$ is a local tree functional
- toll function can be evaluated from a fixed part of the tree

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths

$$\mathbb{E}X_{n,r} \sim (2 - B_r(1/4))n$$

▶ Note. Via Flajolet, Odlyzko (1982): $B_r(1/4) = 2 - \frac{4}{r} + \frac{4\log r}{r^2} + O(r^{-3}), \quad r \to \infty$

Limiting distribution:

- $n X_{n,r}$ is a local tree functional
- toll function can be evaluated from a fixed part of the tree
- Iimit law then follows from a result by Janson (2016)

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths 00000●

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

r...number of reductions, fixed

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 00000●

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 00000●

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$

Motivation and Strategy	Preliminaries	Cutting Leaves	Pruning 000000	Old Leaves and Paths 00000●

Theorem (H.–Heuberger–Kropf–Prodinger, 2016)

- r...number of reductions, fixed
- X_{n,r}...RV for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$\mathbb{E}X_{n,r} = \frac{2n}{r+2} - \frac{r(r+1)}{3(r+2)} + O(n^{-1}),$$
$$\mathbb{V}X_{n,r} = \frac{2r(r+1)}{3(r+2)^2}n + O(1).$$

Motivation and Strategy	Preliminaries 0000	Cutting Leaves	Pruning 000000	Old Leaves and Paths 000000
Summary				
Leaves $\mathbb{E} \sim \frac{n}{r+1}$ $\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^2}n$ limit law: \checkmark				

