On Reductions of Plane Trees

Benjamin Hackl
joint work with
Clemens Heuberger, Sara Kropf, Helmut Prodinger

April 7, 2017

KARL
POPPER
KOLLEG

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=$ val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- val(left child) $=$ val(right child) \rightarrow increase by 1
- Otherwise: take the maximum

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings
- Applications:

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function = maximal number of tree trimmings
- Applications:
- Required stack size for evaluating an expression

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number

- Register function $=$ maximal number of tree trimmings
- Applications:
- Required stack size for evaluating an expression
- Branching complexity of river networks (e.g. Danube: 9)

(Rooted) Plane trees

Characterization:

- unlabeled

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

(Rooted) Plane trees

Characterization:

- unlabeled
- special node: root
- order of children matters

- $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ plane trees of size n

Growing plane trees

- How can we grow trees?

ALPEN-ADRIA UNIVERSITAT kLAGENFURT I WIEN GRAZ

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

- Growing trees:

Growing Trimming plane trees

- How can we grow trees?
- Easier question: what could be the inverse operation?
- Most straightforward: cut away all leaves!

- Growing trees:
- grow new leaves out of current leaves and inner nodes

11

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

reductions

- Algorithmic description

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow GF

"What?" and "How?"

- Aim: analysis of tree structure under iterated reduction

reductions

- Algorithmic description
- Investigation of "tree expansion" \rightsquigarrow GF
- Coefficient extraction; Parameter distribution

110

BGF for plane trees

Proposition

- \mathcal{T}... plane trees

ALPEN-ADRIA
UNIVERSITAT KLAGENFURT I WIEN GRAZ

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for \mathcal{T} ($z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+\underbrace{}_{\mathcal{T}} \cdots
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

$$
\mathcal{T}=\square+
$$

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

BGF for plane trees

Proposition

- \mathcal{T}... plane trees
- $T(z, t) \ldots$ BGF for $\mathcal{T}(z \rightsquigarrow$ inner nodes, $t \rightsquigarrow$ leaves)

$$
\Rightarrow T(z, t)=\frac{1-(z-t)-\sqrt{1-2(z+t)+(z-t)^{2}}}{2}
$$

Proof. Symbolic equation

translates into

$$
T(z, t)=t+z \cdot \frac{T(z, t)}{1-T(z, t)}
$$

which can be solved explicitly.

Narayana polynomials

- Generating function $T(z, t z): z \ldots$ tree size, $t \ldots$ leaves

110

Narayana polynomials

- Generating function $T(z, t z): z \ldots$ tree size, t. . leaves
- Expansion:

$$
T(z, t z)=z t+z^{2} t+z^{3}\left(t+t^{2}\right)+z^{4}\left(t+3 t^{2}+t^{3}\right)+\ldots
$$

Narayana polynomials

- Generating function $T(z, t z): z \ldots$ tree size, t. . leaves
- Expansion:

$$
\begin{aligned}
T(z, t z) & =z t+z^{2} t+z^{3}\left(t+t^{2}\right)+z^{4}\left(t+3 t^{2}+t^{3}\right)+\ldots \\
& =\sum_{n \geq 1} z^{n} N_{n-1}(t)
\end{aligned}
$$

Narayana polynomials

- Generating function $T(z, t z): z \ldots$ tree size, t. . leaves
- Expansion:

$$
\begin{aligned}
T(z, t z) & =z t+z^{2} t+z^{3}\left(t+t^{2}\right)+z^{4}\left(t+3 t^{2}+t^{3}\right)+\ldots \\
& =\sum_{n \geq 1} z^{n} N_{n-1}(t)
\end{aligned}
$$

- $N_{n-1}(t) \ldots$ Narayana polynomial, counts trees of size n (i.e. $n-1$ edges) w.r.t. number of leaves

Some combinatorial results

Proposition

$$
T(z, t z)-t z=T(t z, z)-z
$$

110

Some combinatorial results

Proposition

$$
T(z, t z)-t z=T(t z, z)-z
$$

Interpretation: for size $n \geq 2$, trees with k leaves are bijective to trees with k inner nodes.

Some combinatorial results

Proposition

$$
T(z, t z)-t z=T(t z, z)-z
$$

Interpretation: for size $n \geq 2$, trees with k leaves are bijective to trees with k inner nodes.

Proposition

$$
N_{n-1}^{\prime}(1)=\frac{1}{2}\binom{2 n-2}{n-1}
$$

Some combinatorial results

Proposition

$$
T(z, t z)-t z=T(t z, z)-z
$$

Interpretation: for size $n \geq 2$, trees with k leaves are bijective to trees with k inner nodes.

Proposition

$$
N_{n-1}^{\prime}(1)=\frac{1}{2}\binom{2 n-2}{n-1}
$$

Interpretation: half of all nodes among all trees of size n are leaves.

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- left leaves (binary tree) $\xrightarrow{*}$ leaves (plane tree)

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- left leaves (binary tree) $丸 \rightsquigarrow$ leaves (plane tree)
- right leaves (binary tree) $\underset{\rightarrow}{ } \boldsymbol{\rightarrow}$ inner nodes (plane tree)

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- left leaves (binary tree) $\leadsto \rightsquigarrow$ leaves (plane tree)
- right leaves (binary tree) $u \rightarrow$ inner nodes (plane tree)

Proofs:

- Proof 1: bijection: mirror binary tree, transform back

\square

Proof - Rotation correspondence

Construction of "Left-Child Right-Sibling"-tree:

Observations:

- left leaves (binary tree) $\leadsto \rightsquigarrow$ leaves (plane tree)
- right leaves (binary tree) $\rightsquigarrow \rightarrow$ inner nodes (plane tree)

Proofs:

- Proof 1: bijection: mirror binary tree, transform back
- Proof 2: symmetry: equally many left as right leaves

How do we cut our trees?

- Remove all leaves!

ARENOME UNIVERSITAT LLAGENFURT I WIEN GRAZ

How do we cut our trees?

- Remove all leaves!

How do we cut our trees?

- Remove all leaves!

How do we cut our trees?

- Remove all leaves!

Expansion operators

- F... family of plane trees; BGF $f(z, t)$

Reve mona UNIVERSITAT KLAGENFURT I WIEN GRAZ

Expansion operators

- F... family of plane trees; BGF $f(z, t)$
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Expansion operators

- F...family of plane trees; BGF $f(z, t)$
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Leaf expansion Φ_{L}

- inverse operation to leaf reduction

Expansion operators

- F... family of plane trees; BGF $f(z, t)$
- expansion operator $\Phi \Rightarrow \Phi(f(z, t))$ counts expanded trees

Leaf expansion Φ_{L}

- inverse operation to leaf reduction
- attach leaves to all current leaves (necessary)
- attach leaves to inner nodes (optional)

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=
$$

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} .
$$

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} .
$$

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

Leaf expansion operator Φ_{L}

Proposition

$$
\Phi_{L}(f(z, t))=(1-t) f\left(\frac{z}{(1-t)^{2}}, \frac{z t}{(1-t)^{2}}\right)
$$

- Tree with n inner nodes and k leaves $\rightsquigarrow z^{n} t^{k}$
- Expansion:
- inner nodes stay inner nodes
- attach a non-empty sequence of leaves to all current leaves
- there are $2 n+k-1$ positions where sequences of leaves can be inserted

- In total:

$$
\Phi_{L}\left(z^{n} t^{k}\right)=z^{n} \cdot\left(\frac{z t}{1-t}\right)^{k} \cdot \frac{1}{(1-t)^{2 n+k-1}}
$$

- As Φ_{L} is linear, this proves the proposition.

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$

ALPEN-ADRIA UNIVERSITAT kLAGENFURT I WIEN GRAZ

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

Properties of Φ_{L}

- Functional equation: $T(z, t)=\Phi_{L}(T(z, t))+t$
- With $z=u /(1+u)^{2}$ and by some manipulations

$$
\left.\Phi_{L}^{r}\left(z^{n} t^{k}\right)\right|_{t=z}=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)}\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{n}\left(\frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}}\right)^{k}
$$

- BGF $G_{r}(z, v)$ for size comparison: z tracks original size, v size of r-fold reduced tree
- Intuition: v "remembers" size while tree family is expanded

$$
G_{r}(z, v)=\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed

110

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right)
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

Cutting leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold leaf-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{r+1}-\frac{r(r-1)}{6(r+1)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{r(r+2)}{6(r+1)^{2}} n+O(1)
\end{gathered}
$$

and $X_{n, r}$ is asymptotically normally distributed.

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis

110

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- Asymptotic normality: $X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- Asymptotic normality: $X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)
- We can even get all factorial moments:

$$
\mathbb{E} X_{n, r}^{d}=\frac{1}{(r+1)^{d}} n^{d}+O\left(n^{d-1}\right)
$$

Cutting leaves - Some insights

- $\mathbb{E} X_{n, r}$ and $\mathbb{V} X_{n, r}$ follow via singularity analysis
- Asymptotic normality: $X_{n, r}$ is a tree parameter with small toll function, limit law by Wagner (2015)
- We can even get all factorial moments:

$$
\mathbb{E} X_{n, r}^{d}=\frac{1}{(r+1)^{d}} n^{d}+O\left(n^{d-1}\right)
$$

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$

ALPEN-ADRIA UNIVERSITAT kLAGENFURT I WIEN GRAZ

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$
\left.\sum_{d \geq 0} \frac{q^{d}}{d!} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}
$$

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$
\left.\sum_{d \geq 0} \frac{q^{d}}{d!} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}=G_{r}(z, 1+q)
$$

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$
\begin{aligned}
\left.\sum_{d \geq 0} \frac{q^{d}}{d!} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1} & =G_{r}(z, 1+q) \\
& =c \cdot T(a(1+q), b(1+q))
\end{aligned}
$$

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$
\begin{aligned}
\left.\sum_{d \geq 0} \frac{q^{d}}{d!} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1} & =G_{r}(z, 1+q) \\
& =c \cdot T(a(1+q), b(1+q)) \\
& =\delta+\Delta \cdot T(\alpha q, \beta q)
\end{aligned}
$$

Cutting leaves - factorial moments

- $C_{n-1} \mathbb{E} X_{n, r}^{d}$ is extracted from $\left.\frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1}$
- Problem: general derivative unknown
- Solution:

$$
\begin{aligned}
\left.\sum_{d \geq 0} \frac{q^{d}}{d!} \frac{\partial^{d}}{\partial v^{d}} G_{r}(z, v)\right|_{v=1} & =G_{r}(z, 1+q) \\
& =c \cdot T(a(1+q), b(1+q)) \\
& =\delta+\Delta \cdot T(\alpha q, \beta q)
\end{aligned}
$$

- This allows extracting the coefficient of $z^{n} q^{d}$

How do we cut our trees?

- Remove all paths that end in a leaf!

How do we cut our trees? (2)

- Remove all paths that end in a leaf!

Path expansions

- Append one path to leaf \rightsquigarrow longer path \downarrow

ALPEN-ADRIA UNIVERSITAT klagenfurt । Wien graz

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths
- Similar to before we obtain

$$
\Phi_{P}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} p^{2 k}}{(1-p)^{k}} \cdot \frac{1}{(1-p)^{2 n+k-1}}
$$

Path expansions

- Append one path to leaf \rightsquigarrow longer path \langle
- \Rightarrow at least two paths need to be appended
- Write $p=\frac{t}{1-z} \ldots$ BGF for paths
- Similar to before we obtain

$$
\Phi_{P}\left(z^{n} t^{k}\right)=z^{n} \cdot \frac{z^{k} p^{2 k}}{(1-p)^{k}} \cdot \frac{1}{(1-p)^{2 n+k-1}}
$$

Proposition

The linear operator given by

$$
\Phi_{P}(f(z, t))=(1-p) f\left(\frac{z}{(1-p)^{2}}, \frac{z p^{2}}{(1-p)^{2}}\right)
$$

is the path expansion operator.

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow r$-fold path reduced size) is

$$
\frac{1-u^{2^{r+1}}}{\left(1-u^{2^{r+1}-1}\right)(1+u)} T\left(\frac{u\left(1-u^{2^{r+1}-1}\right)^{2}}{\left(1-u^{2^{r+1}}\right)^{2}} v, \frac{u^{2^{r+1}-1}(1-u)^{2}}{\left(1-u^{2^{r+1}}\right)^{2}} v\right),
$$

where $z=u /(1+u)^{2}$.

Generating function for path reductions

Proposition

BGF for size comparison ($z \rightsquigarrow$ original size, $v \rightsquigarrow r$-fold path reduced size) is

$$
\frac{1-u^{2^{r+1}}}{\left(1-u^{2^{r+1}-1}\right)(1+u)} T\left(\frac{u\left(1-u^{r^{r+1}-1}\right)^{2}}{\left(1-u^{2^{r+1}}\right)^{2}} v, \frac{u^{2^{r+1}-1}(1-u)^{2}}{\left(1-u^{2^{r+1}}\right)^{2}} v\right),
$$

where $z=u /(1+u)^{2}$.
Observation. This is the BGF for leaf reductions

$$
\frac{1-u^{r+2}}{\left(1-u^{r+1}\right)(1+u)} T\left(\frac{u\left(1-u^{r+1}\right)^{2}}{\left(1-u^{r+2}\right)^{2}} v, \frac{u^{r+1}(1-u)^{2}}{\left(1-u^{r+2}\right)^{2}} v\right)
$$

with $r \mapsto 2^{r+1}-2$.

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right)
$$

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{gathered}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

- Factorial moments are known as well

Cutting paths - Pruning

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold path-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{aligned}
\mathbb{E} X_{n, r}= & \frac{n}{2^{r+1}-1}-\frac{\left(2^{r}-1\right)\left(2^{r+1}-3\right)}{3\left(2^{r+1}-1\right)}+O\left(n^{-1}\right) \\
& \mathbb{V} X_{n, r}=\frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n+O(1)
\end{aligned}
$$

Furthermore, $X_{n, r}$ is asymptotically normally distributed.

- Factorial moments are known as well
- Proof: subsequence of RV's from cutting leaves

Counting total number of paths

- Trees can be partitioned into paths (\rightsquigarrow branches)!

110

Counting total number of paths

- Trees can be partitioned into paths (\rightsquigarrow branches)!

Counting total number of paths

- Trees can be partitioned into paths (\rightsquigarrow branches)!

Counting total number of paths

- Trees can be partitioned into paths (\rightsquigarrow branches)!

Counting total number of paths

- Trees can be partitioned into paths (\rightsquigarrow branches)!
- Average number of paths?

Cutting paths - total number of paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2017)

- $P_{n} \ldots$ RV for number of paths in tree of size n

Cutting paths - total number of paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2017)

- $P_{n} \ldots \mathrm{RV}$ for number of paths in tree of size n

The expected number of paths is

$$
\mathbb{E} P_{n}=(\alpha-1) n+\frac{1}{6} \log _{4} n+\delta\left(\log _{4} n\right)+c+O\left(n^{-1 / 2}\right)
$$

Cutting paths - total number of paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2017)

- $P_{n} \ldots$ RV for number of paths in tree of size n

The expected number of paths is

$$
\begin{aligned}
& \mathbb{E} P_{n}=(\alpha-1) n+\frac{1}{6} \log _{4} n+\delta\left(\log _{4} n\right)+c+O\left(n^{-1 / 2}\right) . \\
& \delta(x):=\frac{1}{\log 2} \sum_{k \neq 0}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \\
& \alpha:=\sum_{k \geq 1} 1 /\left(2^{k}-1\right) \approx 1.606695 \\
& c \approx-0.118105 .
\end{aligned}
$$

Cutting paths - total number of paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2017)

- $P_{n} \ldots$ RV for number of paths in tree of size n

The expected number of paths is

$$
\begin{aligned}
& \mathbb{E} P_{n}=(\alpha-1) n+\frac{1}{6} \log _{4} n+\delta\left(\log _{4} n\right)+c+O\left(n^{-1 / 2}\right) . \\
& \delta(x):=\frac{1}{\log 2} \sum_{k \neq 0}\left(-1+\chi_{k}\right) \Gamma\left(\chi_{k} / 2\right) \zeta\left(-1+\chi_{k}\right) e^{2 k \pi i x}, \\
& \alpha:=\sum_{k \geq 1} 1 /\left(2^{k}-1\right) \approx 1.606695 \\
& c \approx-0.118105 .
\end{aligned}
$$

- Proof: Sum of leaves in all reductions, Mellin-transform, singularity analysis.
- Introduced by Chen, Deutsch, Elizalde (2006)

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006) Old leaves
- Remove all leaves that are leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

Old paths

- Remove all paths consisting of leftmost children

How do we cut our trees? (3)

- Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves

- Remove all leaves that are leftmost children

Old paths

- Remove all paths consisting of leftmost children

Preliminaries

Proposition

- \mathcal{L}... plane trees

ALPEN-ADRIA
UNIVERSITAT kLAGENFURT I WIEN GRAZ

Preliminaries

Proposition

- \mathcal{L}... plane trees
- L(z, w)...BGF ($w \rightsquigarrow$ old leaves, $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)

Preliminaries

Proposition

- L... plane trees
- L($z, w) \ldots$ BGF ($w \rightsquigarrow$ old leaves, $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

Preliminaries

Proposition

- L... plane trees
- L($z, w) \ldots$ BGF ($w \rightsquigarrow$ old leaves, $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)
Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

$$
\mathcal{L}=0
$$

Preliminaries

Proposition

- L... plane trees
- L($z, w) \ldots$ BGF ($w \rightsquigarrow$ old leaves, $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

Preliminaries

Proposition

- L... plane trees
- L($z, w)$...BGF ($w \rightsquigarrow$ old leaves, $z \rightsquigarrow$ all nodes that are neither old leaves nor parents thereof)

Then

$$
L(z, w)=\frac{1-\sqrt{1-4 z-4 w+4 z^{2}}}{2}
$$

and there are $C_{k-1}\binom{n-2}{n-2 k} 2^{n-2 k}$ trees of size n with k old leaves.
Proof. Symbolic equation

translation; series expansion of the root.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right),
$$

respectively.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right),
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Expansion operators

Proposition

The operators for "old leaf"- and "old path"-expansions are given by

$$
\Phi_{O L}(f(z, w))=f(z+w,(2 z+w) w)
$$

and

$$
\Phi_{O P}(f(z, w))=f\left(z+\frac{w}{1-z},\left(z+\frac{w}{1-z}\right) \frac{w}{1-z}\right)
$$

respectively.

Proof for old leaves.

Cutting old leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

110

Cutting old leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $B_{h}(z)$. . polynomial enumerating binary trees of height $\leq h$

Cutting old leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $B_{h}(z) \ldots$ polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$
\mathbb{E} X_{n, r}=\left(2-B_{r}(1 / 4)\right) n-\frac{B_{r}^{\prime}(1 / 4)}{8}+O\left(n^{-1}\right)
$$

Cutting old leaves

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $B_{h}(z) \ldots$ polynomial enumerating binary trees of height $\leq h$

Then the expected reduced tree size after r "old leaf"-reductions and the corresponding variance are given by

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\left(2-B_{r}(1 / 4)\right) n-\frac{B_{r}^{\prime}(1 / 4)}{8}+O\left(n^{-1}\right), \\
\mathbb{V} X_{n, r}=\left(B_{r}(1 / 4)-B_{r}(1 / 4)^{2}\right. \\
\left.+\frac{\left(2-B_{r}(1 / 4)\right) B_{r}^{\prime}(1 / 4)}{2}\right) n+O(1) .
\end{gathered}
$$

In addition, $X_{n, r}$ is asymptotically normally distributed.

Cutting old leaves - Details

$$
\mathbb{E} X_{n, r} \sim\left(2-B_{r}(1 / 4)\right) n
$$

ALPEN-ADRIA UNIVERSITAT KLAGENFURT । WIEN GRAZ

Cutting old leaves - Details

$$
\mathbb{E} X_{n, r} \sim\left(2-B_{r}(1 / 4)\right) n
$$

- Note. Via Flajolet, Odlyzko (1982):

$$
B_{r}(1 / 4)=2-\frac{4}{r}+\frac{4 \log r}{r^{2}}+O\left(r^{-3}\right), \quad r \rightarrow \infty
$$

Cutting old leaves - Details

$$
\mathbb{E} X_{n, r} \sim\left(2-B_{r}(1 / 4)\right) n
$$

- Note. Via Flajolet, Odlyzko (1982):

$$
B_{r}(1 / 4)=2-\frac{4}{r}+\frac{4 \log r}{r^{2}}+O\left(r^{-3}\right), \quad r \rightarrow \infty
$$

- Limiting distribution:
- $n-X_{n, r}$ is a local tree functional

Cutting old leaves - Details

$$
\mathbb{E} X_{n, r} \sim\left(2-B_{r}(1 / 4)\right) n
$$

- Note. Via Flajolet, Odlyzko (1982):

$$
B_{r}(1 / 4)=2-\frac{4}{r}+\frac{4 \log r}{r^{2}}+O\left(r^{-3}\right), \quad r \rightarrow \infty
$$

- Limiting distribution:
- $n-X_{n, r}$ is a local tree functional
- toll function can be evaluated from a fixed part of the tree

Cutting old leaves - Details

$$
\mathbb{E} X_{n, r} \sim\left(2-B_{r}(1 / 4)\right) n
$$

- Note. Via Flajolet, Odlyzko (1982):

$$
B_{r}(1 / 4)=2-\frac{4}{r}+\frac{4 \log r}{r^{2}}+O\left(r^{-3}\right), \quad r \rightarrow \infty
$$

- Limiting distribution:
- $n-X_{n, r}$ is a local tree functional
- toll function can be evaluated from a fixed part of the tree
- limit law then follows from a result by Janson (2016)

Cutting old paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed

Cutting old paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r... number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Cutting old paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\mathbb{E} X_{n, r}=\frac{2 n}{r+2}-\frac{r(r+1)}{3(r+2)}+O\left(n^{-1}\right)
$$

Cutting old paths

Theorem (H.-Heuberger-Kropf-Prodinger, 2016)

- r....number of reductions, fixed
- $X_{n, r} \ldots R V$ for size of r-fold "old path"-reduced tree with originally n nodes

Then the expected size of the reduced tree and the corresponding variance are

$$
\begin{gathered}
\mathbb{E} X_{n, r}=\frac{2 n}{r+2}-\frac{r(r+1)}{3(r+2)}+O\left(n^{-1}\right) \\
\mathbb{V} X_{n, r}=\frac{2 r(r+1)}{3(r+2)^{2}} n+O(1)
\end{gathered}
$$

Summary

Leaves
$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$

limit law: \checkmark
amena UNIVERSITAT kLAGENFURT । WIEN GRAZ

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law:
limit law:

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$

Paths
$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law:

Old leaves

$$
\begin{aligned}
& \mathbb{E} \sim\left(2-B_{r}(1 / 4)\right) n \\
& \mathbb{V}=\Theta(n)
\end{aligned}
$$

limit law: \checkmark

limit law: \checkmark

Summary

Leaves

$\mathbb{E} \sim \frac{n}{r+1}$
$\mathbb{V} \sim \frac{r(r+2)}{6(r+1)^{2}} n$

limit law:
limit law. \checkmark

Old leaves

$$
\begin{aligned}
& \mathbb{E} \sim\left(2-B_{r}(1 / 4)\right) n \\
& \mathbb{V}=\Theta(n)
\end{aligned}
$$

limit law: \checkmark

\vdots
\vdots
\vdots

Paths

$\mathbb{E} \sim \frac{n}{2^{r+1}-1}$
$\mathbb{V} \sim \frac{2^{r+1}\left(2^{r}-1\right)}{3\left(2^{r+1}-1\right)^{2}} n$
limit law: \checkmark

Old paths
$\mathbb{E} \sim \frac{2 n}{r+2}$
$\mathbb{V} \sim \frac{2 r(r+1)}{3(r+2)^{2}} n$
limit law: ???

