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Procedural Tree Generation

» Computer Graphics: “How to generate trees that look like
trees efficiently?”
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Procedural Tree Generation

» Computer Graphics: “How to generate trees that look like
trees efficiently?”

» Procedural Generation:

> grow the tree, '.lnLPEN-nDRm
» apply fancy graphics. UNIVERSITAT

uuuuuuuuuuuuuuu




Growing binary trees
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Growing Trimming binary trees
» How can we grow binary trees?

» Consider the inverse operation!

Binary trees can be “trimmed” by the following strategy:
» Remove all leaves

» Merge nodes with only one descendant

i : ALPEN-ADRIA
» Growing trees: attach paths to all leaves. l.lumvsRsnm
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“What?" and “How?”

> Analysis of tree structure: how do trees change by repeated
reduction?
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“What?" and “How?”

> Analysis of tree structure: how do trees change by repeated
reduction?

@] reduction
e 6

» Algorithmic description

l.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuu




“What?" and “How?”

> Analysis of tree structure: how do trees change by repeated
reduction?

reduction ﬁ
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» Algorithmic description
» Investigation of “tree expansion” ~~ GF
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“What?" and “How?”

> Analysis of tree structure: how do trees change by repeated
reduction?

reduction ﬂ
@]

» Algorithmic description
» Investigation of “tree expansion” ~~ GF
» Coefficient extraction; Parameter distribution '.l
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» Remove all leaves!
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Leaf expansion
» F...family of rooted plane trees; BGF f(z, t)
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Leaf expansion
» F...family of rooted plane trees; BGF f(z, t)
» ®... “expansion operator’ = ®(f(z,t)) is BGF for expanded

trees
» Leaf expansion: inverse operation to leaf reduction

Proposition
The linear operator

®u(f(2.0) = (0 = O (2 Trog)

is the leaf expansion operator.
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Leaf expansion — Proof

» Tree with n inner nodes and k leaves ~» z"tk
» Expansion:

> inner nodes stay inner nodes
» attach a non-empty sequence of leaves to
all current leaves PN X
1

> |n total:

o, (2"tF) = 2"
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Leaf expansion — Proof

» Tree with n inner nodes and k leaves ~» z"tk

» Expansion: v
> inner nodes stay inner nodes i
» attach a non-empty sequence of leaves to iy
all current leaves SN !
» there are 2n+ k — 1 positions where ."‘I \.‘" I_'.

sequences of leaves can be inserted

> |n total:
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Leaf expansion — Proof

» Tree with n inner nodes and k leaves ~» z"tk

» Expansion: R
> inner nodes stay inner nodes i
» attach a non-empty sequence of leaves to iy
all current leaves SN !
» there are 2n+ k — 1 positions where ."‘I \.‘" I_'.

sequences of leaves can be inserted
> In total:

zk ek 1
(1—t)k (1 — )2tk

o, (2"tF) = 2"

» Linear extension of ®; proves the proposition.
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Properties of ¢,

» Functional equation: T(z,t) = ®,(T(z,t)) + ¢t
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» With z = u/(1 + u)? and by some manipulations

O (2"t9)|e—z =

1—ut? u(l — u™ )2\ L — u)?\ &
(]_ _ ur+1)(1 + u) ( (]_ _ ur+2)2 ) ( (1 _ ur+2)2 >

» BGF G,(z,v) for size comparison: z tracks original size, v size
of r-fold reduced tree

> Intuition: v “remembers” size while tree family is expanded
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» Functional equation: T(z,t) = ®,(T(z,t)) + ¢t
» With z = u/(1 + u)? and by some manipulations

1—ut? (u(l—u’+1)2>"(ur+1(1—u)2>k

¢£(zntk)|t=z = (1— o)1+ u)\ (1 - urt2)2 (1— urt2)2

» BGF G,(z,v) for size comparison: z tracks original size, v size
of r-fold reduced tree

> Intuition: v “remembers” size while tree family is expanded
1— ur+2 (u(l _ ur+1)2 ur+1(1 _ u)2 )

Gr(z,v) = 1o )1 +u) \(1—ut22 " (1 ur2)?
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Cutting leaves

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed

eeeeeeeeeeeeeeeeeee



Cutting leaves

Theorem (H.—Kropf-Prodinger, 2016)
> r...number of reductions, fixed

> Xnr...RV for size of r-fold leaf-reduced tree with
originally n nodes

eeeeeeeeeeeeeeeeeee



Cutting leaves

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed

> Xnr...RV for size of r-fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are
n r(r—1)

EX,, = -
T re1l 6(r+1)

+0(n™1),

AAAAAAAAAAAAAAAAAAA



Cutting leaves

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
> Xnr...RV for size of r-fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

. n  r(r—1) _1
EX,, = T 6(r+1)+o(n ),
_r(r+2)
VXn,r - 6(r T 1)2n -+ O(l),

AAAAAAAAAAAAAAAAAAA



Cutting leaves

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
> Xnr...RV for size of r-fold leaf-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

. n  r(r—1) _1
EX,, = T 6(r+1)+o(n ),
_r(r+2)
VXn,r - 6(r T 1)2n -+ O(].),

and X, . is asymptotically normally distributed.
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Cutting leaves — Some insights

» EX, , and VX, , follow via singularity analysis

» We can do even better: all factorial moments:

1
EXZ, = ———n?+0(n"?)

(r+1)

» This requires identities like

Z (n) u"4(1 — ux)?ntI-1(1 — y)d-t N, (X(l—_u)2> = Ny_1(x)

= d (1 — u?x)?n—1 (1—ux)?

» Asymptotic normality: X, , is a tree parameter with small toll
function, limit law by Wagner (2015) l.l
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How do we cut our trees? (2)

» Remove all paths that end in a leaf!
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» Remove all paths that end in a leaf!

d Y
e Y
4 Y
I—l \I—
\ ) \ )
r r
| VRN | =
1 ’ N 1
7 AY
Lo + A
’ ) | 1 1 1 I 1
\ - - -
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Path expansions
> Append one path to leaf ~~ longer path %
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Path expansions
Append one path to leaf ~~ longer path 4

v

v

v

= at least two paths need to be appended

Write p =

. BGF for paths

Similar to before we obtain

dp(2"tF) = 2"

ka2k

1

(1—p)k (1—p)2rkt

-~

.~

.~
T |
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Path expansions
> Append one path to leaf ~~ longer path %
» = at least two paths need to be appended
> Write p = . BGF for paths
» Similar to before we obtain
7K p2k 1 S

) ntk " .
A e e

-~

N

o
The linear operator given by {
2 2p? 0l
®p(f(2: 1) = (1= ) (=5 T pp2)
is the path expansion operator. l.lﬁh?\fgégPTR&?
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Generating function for path reductions

BGF for size comparison (z ~ original size, v ~~ r-fold path
reduced size) is

1 . u2r+1 T(U(l _ u2r+1_1)2 . u2r+1_1(1 . U)2 V>
(1 _ u2r+1_1)(1 + u) (1 _ u2r+1)2 Y (1 _ u2r+1)2 ?

where z = u/(1 + u)?.
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Generating function for path reductions

BGF for size comparison (z ~ original size, v ~~ r-fold path
reduced size) is

1— 2 T(u(l - u2r+1_1)2 , u2r+1_1(1 - u)2 >
(1 _ u2r+1_1)(1 + u) (1 _ u2r+1)2 ’ (1 _ u2r+1)2 ?

where z = u/(1 + u)?.

Observation. This is the BGF for leaf reductions

1— ur+2 u(1 _ ur+1)2 ur+1(1 _ u)2
1— o)1+ u) ( (1—ur2)2 " (1= urt?)2 )

i r+1 _ l.lnLPEN-nDRm
with r — 2 2. ALPEN-ADRIA
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Cutting paths — Pruning
Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
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Cutting paths — Pruning
Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed

> Xn,r...RV for size of r-fold path-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

_on (2r —1)(2r+1 - 3) L
EXn’r— 2r+1_1 - 3(2r+1_1) +O(n )7
2rtl(2r — 1)

VXn,r = mn I O(].)

Furthermore, X, . is asymptotically normally distributed.

» Factorial moments are known as well l.l
y . L - b
» Proof: subsequence of RV'’s from cutting leaves UNIVERSITRD



Counting total number of paths

» Trees can be partitioned into paths!
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Counting total number of paths

» Trees can be partitioned into paths!

ALPEN-ADRIA
> Average number of paths? '.lUNIVERSIT'ﬂT
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Cutting paths — total number of paths

Theorem (H.—Kropf-Prodinger, 2017)

» P, ...RV for number of paths in tree of size n
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Theorem (H.—Kropf-Prodinger, 2017)

» P, ...RV for number of paths in tree of size n

The expected number of paths is

EP,=(a—1)n+ % logy n + 8(logy n) + c + O(n~Y/?).
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Cutting paths — total number of paths

Theorem (H.—Kropf-Prodinger, 2017)

» P, ...RV for number of paths in tree of size n

The expected number of paths is
1
EP,=(a—1)n+ 6 logy n + 8(logy n) + c + O(n~Y/?).

> 3(x) = ez Lokl —1 + k)T (xk/2)¢(=1 + xx)e* ™™,
> =5, 1/(2K - 1) = 1.606695,
» ¢~ —0.118105.
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Cutting paths — total number of paths

Theorem (H.—Kropf-Prodinger, 2017)

» P, ...RV for number of paths in tree of size n

The expected number of paths is

EP,=(a—1)n+ é logy n + 0(logs n) + ¢ + O(n_1/2)_

v

8(x) = gz Zoksol =1 + XK (Xk/2)¢(=1 + xx)e* ™™,
a:=)511/(2 — 1) ~ 1.606695,
» ¢~ —0.118105.

v

v

Proof: Sum of leaves in all reductions, Mellin-transform,
singularity analysis.

AAAAAAAAAAAAAAAAAAA



How do we cut our trees? (3)

» Introduced by Chen, Deutsch, Elizalde (2006)
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» Remove all leaves that are
leftmost children
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» Introduced by Chen, Deutsch, Elizalde (2006)
Old leaves Old paths

» Remove all leaves that are » Remove all paths consisting
leftmost children of leftmost children




How do we cut our trees? (3)

» Introduced by Chen, Deutsch, Elizalde (2006)

Old leaves Old paths
» Remove all leaves that are » Remove all paths consisting
leftmost children of leftmost children
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Preliminaries

> L...rooted plane trees
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> L...rooted plane trees

» L(z,w)...BGF (w ~» old leaves together with parent,
z ~~ all other nodes)
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Preliminaries
> L...rooted plane trees
» L(z,w)...BGF (w ~» old leaves together with parent,

z ~~ all other nodes)

Then

1—+V1—4z— 4w + 422
2

and there are Ck_l(n”__22k)2"_2k trees of size n with k old leaves.

L(z,w) =

Proof. Symbolic equation
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eeeeeeeeeeeeeeeeeee



Preliminaries

Proposition

> L...rooted plane trees
» L(z,w)...BGF (w ~» old leaves together with parent,
z ~~ all other nodes)

Then

1—+V1—4z— 4w + 422
2

and there are Ck_l(n”__22k)2"_2k trees of size n with k old leaves.

L(z,w) =

Proof. Symbolic equation

eeeeeeeeeeeeeeeeeee




Preliminaries

Proposition
> L...rooted plane trees

» L(z,w)...BGF (w ~» old leaves together with parent,
z ~~ all other nodes)

Then

1—+V1—4z— 4w + 422
2

and there are Ck_l(n”__22k)2"_2k trees of size n with k old leaves.

L(z,w) =

Proof. Symbolic equation

EzD-l—A/O + /) ,
L£-0

translation; Lagrange inversion. ~ BE@UNVE RSITE]




Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
CDOL(f(zv W)) = f(Z + w, (22 + W)W)
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Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
Pou(F(z,w)) = F(z + w, (22 + w)w)

“)13)
1—z/1—2z/)’

and

w

®op(f(z, w)) = f(z e <z +
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Proof for old leaves.

A
W :z
i
UN

eeeeeeeeeeeeeeeeeee



Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
Pou(F(z,w)) = F(z + w, (22 + w)w)

“)13)
1—z/1—2z/)’

and

w

®op(f(z, w)) = f(z e <z +

respectively.

Proof for old leaves.

eeeeeeeeeeeeeeeeeee




Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
Pou(F(z,w)) = F(z + w, (22 + w)w)

and

Sop(f(z,w)) = F(z+ TWZ (z+ - V_Vz) - i’z)

respectively.

Proof for old leaves.

eeeeeeeeeeeeeeeeeee




Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
Pou(F(z,w)) = F(z + w, (22 + w)w)

and

Sop(f(z,w)) = F(z+ TWZ (z+ - V_Vz) - i’z)

respectively.

Proof for old leaves.

A

eeeeeeeeeeeeeeeeeee




Expansion operators

The operators for “old leaf”- and “old path”-expansions are given
by
Pou(F(z,w)) = F(z + w, (22 + w)w)

“)13)
1—z/1—2z/)’

and

w

®op(f(z, w)) = f(z e <z +

respectively.

Proof for old leaves.

eeeeeeeeeeeeeeeeeee




Expansion operators

The operators for “old leaf”- and “old path”-expansions are given

by
So(f(z,w)) =Ff(z+w, (22 + w)w)

“)13)
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and
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respectively.
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Cutting old leaves
Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
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Cutting old leaves
Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
» Bp(z)...polynomial enumerating binary trees of height < h

Then the expected reduced tree size after r “old leaf”-reductions
and the corresponding variance are given by

B 1(1/4)

EXy, = (2= By-1(1/4))n — =4

O(n_l),
VX, = (B,_1(1/4) ~ B,_1(1/4)2

2— B, 1(1/4))B._,(1/4
L QBB 0,
Note. Via Flajolet, Odlyzko (1982):
4 4lo
B(1/4) =2~ — =5+ 0(). r—oo Ml



Cutting old paths

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed
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Cutting old paths

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed

> Xn,r...RV for size of r-fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are
2n r(r+1)

IE:)<nr: -
Toor+2 3(r+2)

+0(n™Y),
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Cutting old paths

Theorem (H.—Kropf-Prodinger, 2016)

> r...number of reductions, fixed

> Xn,r...RV for size of r-fold “old path”-reduced tree with
originally n nodes

Then the expected size of the reduced tree and the corresponding
variance are

_2n r(r+1) 1
BXor =32 " 3012 T O )
~2r(r+1)
VXn,r = 30+ 2)2n + O(1).
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Summary

Leaves
n
E ~ r+1

r(r+2)
V ~ W n

limit law: v

'.l ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

22



Summary
Leaves Paths
n
E~i E~ 51
_ rrt2) oty L
v 6(r+1)2 " Vi~ EICEas ) AL O
limit law: v/ limit law: v :
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Summary
Leaves Paths
r(r+2) 2rhr—1) oS
Vo~ s Vi~ Srtogen C it
limit law: v limit law: v :
Old leaves
E ~ @-8,_1(1/4)n
V =0(n)

limit law: 777
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Summary
Leaves Paths
E~h E~ 5
r(r+2) 2r+1(2r_1)
Vo~ Sy Vi~ Sprtoqen i i
limit law: v limit law: v :
0Old leaves Old paths
E ~ 20

E ~ (2-8B,_1(1/4)n r+2

_ 2r(r+1)
V= 6(n) Vo~ S
limit law: 777 limit law: 777
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