On a Reduction of Lattice Paths

Benjamin Hackl

joint work in progress with
Clemens Heuberger and Helmut Prodinger

March 4, 2016

Trimming binary trees

Binary trees can be "trimmed" by the following strategy:

- Remove all leaves
- Merge nodes with only one descendant

"Surviving" nodes

Label all nodes in the tree by the following rules:

- Leaves $\rightarrow 0$ (they do not survive a single reduction)
- $\operatorname{val}($ left child $)=\operatorname{val}($ right child $) \rightarrow$ increase by 1
- Otherwise: take the maximum

The register function

Number in the root of the tree: Register function, a.k.a. Horton-Strahler number.

- Register function = maximal number of tree trimmings
- Applications:
- Required stack size for evaluating an expression
- Branching complexity of river networks (e.g. Danube: 9)

Reduction of lattice paths

Reduction of a simple, two-dimensional lattice path (i.e. a sequence of $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$):

- If the path starts with \uparrow or \downarrow : rotate it
- If the path ends with \rightarrow or \leftarrow : rotate the last step
- Consider the pairs of horizontal-vertical segments:
- Replace $\rightarrow \ldots \uparrow \ldots$ by \nearrow,
$0 \rightarrow \ldots \downarrow \ldots$ by
- $\leftarrow \ldots \downarrow$,
- $\leftarrow \ldots \uparrow \ldots$ by \nwarrow
- Rotate the entire path again

Reduction - Example

Compactification degree and functional equation

- Compactification degree: number of reductions until a path is compactified to an atomic step $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$

Proposition

The generating function of simple two-dimensional lattice paths of length $\geq 1, L(z)=\frac{4 z}{1-4 z}$, fulfills the functional equation

$$
L(z)=4 z+4 L\left(\frac{z^{2}}{(1-2 z)^{2}}\right) .
$$

Can be checked directly-or proven combinatorially!

Functional equation (combinatorial proof)

Read the reduction backwards:

- Replace \rightarrow by $\rightarrow \ldots \uparrow \ldots$ and so on. . .
- Optionally rotate the entire path and/or the last step Regular expression for $\rightarrow \ldots \uparrow \ldots$:

$$
\rightarrow(\rightarrow \text { or } \leftarrow)^{*} \uparrow(\uparrow \text { or } \downarrow)^{*}
$$

\Rightarrow Replacement corresponds to $z \mapsto \frac{z^{2}}{(1-2 z)^{2}}$.
Optional rotations: factor 4.

$$
4 L\left(\frac{z^{2}}{(1-2 z)^{2}}\right)
$$

counts all reducible paths.
Adding $4 z($ for $\{\uparrow, \rightarrow, \downarrow, \leftarrow\})$ then counts all paths. \square

Compactification degree - Recursion

- $L_{r}^{=}(z) \ldots$ OGF for paths with compactification degree r
- Only $\{\uparrow, \rightarrow, \downarrow, \leftarrow\}$ have comp. deg. $0 \Rightarrow L_{0}(z)=4 z$
- Recursion:

$$
L_{r}^{=}(z)=4 L_{r-1}^{=}\left(\frac{z^{2}}{(1-2 z)^{2}}\right), \quad r \geq 1
$$

- "Magic substitution" $z=\frac{u}{(1+u)^{2}}: \quad z \mapsto \frac{z^{2}}{(1-2 z)^{2}}$ becomes $u \mapsto u^{2}$
- Overall:

$$
L_{r}^{=}(z)=\left.4^{r+1} \frac{u}{(1+u)^{2}}\right|_{u \mapsto u^{2^{r}}}=4^{r+1} \frac{u^{2^{r}}}{\left(1+u^{2^{r}}\right)^{2}}
$$

Compactification degree - Random variables

- X_{n}...compactification degree of a (uniformly) random lattice path of length n

$$
\Rightarrow \mathbb{P}\left(X_{n}=r\right)=\frac{\left[z^{n}\right] L_{r}^{=}(z)}{4^{n}}
$$

- Probability densities of X_{1} up to X_{512} :

Analysis of $\mathbb{E} X_{n}(1)$

- As we have $\mathbb{E} X_{n}=4^{-n}\left[z^{n}\right] \sum_{r \geq 0} r L_{r}^{=}(z)$, we analyze

$$
G(z)=\sum_{r \geq 0} r L_{r}^{=}(z)
$$

- With $z=\frac{u}{(1+u)^{2}}$ and $u=e^{-t}$, we have

$$
G(z)=\sum_{r, \lambda \geq 0} r 4^{r+1}(-1)^{\lambda-1} \lambda e^{-t \lambda 2^{r}}
$$

\rightsquigarrow Local expansion for $t \rightarrow 0\left(z \rightarrow \frac{1}{4}\right)$?

Mellin transformation

- Mellin transformation of $(0, \infty)$-integrable $f(x)$:

$$
\mathcal{M}(f)(s)=f^{*}(s):=\int_{0}^{\infty} x^{s-1} f(x) d x
$$

- Important properties:
- Harmonic sums:

$$
\mathcal{M}\left(\sum_{k \geq 0} \lambda_{k} f\left(x \mu_{k}\right)\right)(s)=\left(\sum_{k \geq 0} \lambda_{k} \mu_{k}^{-s}\right) f^{*}(s)
$$

- Asymptotic translation:

$$
\text { Asymptotic expansion of } f(x) \longleftrightarrow \text { Poles of } f^{*}(s)
$$

- Inversion formula:

$$
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f^{*}(s) x^{-s} d s
$$

Analysis of $\mathbb{E} X_{n}$ (2)

- By basic properties of the Mellin transform we find

$$
G^{*}(s)=\Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}}
$$

- Double pole at $s=2$, simple poles at $s=2+\frac{2 \pi i}{\log 2} k=2+\chi_{k}$ for $k \in \mathbb{Z} \backslash\{0\}$
- Mellin inversion:

$$
G(z)=\frac{1}{2 \pi i} \int_{3-i \infty}^{3+i \infty} \Gamma(s) \zeta(s-1) \frac{2^{2-s}}{1-2^{2-s}} t^{-s} d s
$$

- Basic idea: shift line of integration to the left, collect residues!

Analysis of $\mathbb{E} X_{n}$ (3)

- Residue at $s=2$:

$$
-\frac{4}{\log 2} t^{-2} \log t+\left(\frac{4}{\log 2}-2\right) t^{-2}
$$

- Substituting z back for t and expanding locally for $z \rightarrow \frac{1}{4}$ yields

$$
\begin{aligned}
-\frac{\log (1-4 z)}{\log 2(1-4 z)} & +\frac{2-3 \log 2}{\log 2(1-4 z)} \\
& +\frac{\log 2-1}{\log 2}+\frac{\log (1-4 z)}{3 \log 2}+O(1-4 z)
\end{aligned}
$$

Singularity Analysis

"Singularity Analysis" by Flajolet and Odlyzko: extract expansion for coefficients from the singularities.

In particular:

$$
\left[z^{n}\right](1-r z)^{-\alpha}\left(\frac{1}{r z} \log \left(\frac{1}{1-r z}\right)\right)^{\beta} \sim r^{n} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \log (n)^{\beta}
$$

more terms (inclusive error terms) are available.
Assumption: analyticity in a "Pacman region" (!)

Analysis of $\mathbb{E} X_{n}$ (4)

- After division by 4^{n}, the local expansion translates into

$$
\log _{4} n+\frac{\gamma+2-3 \log 2}{2 \log 2}+O\left(n^{-2}\right)
$$

- Plot against exact values (left: comparison, right: difference):

Analysis of $\mathbb{E} X_{n}$ (5)

Collecting the contributions at $s=2+\chi_{k}$ yields:

Theorem (H.-Heuberger-Prodinger, 2016)

The expected compactification degree among all simple 2D lattice paths of length n admits the asymptotic expansion

$$
\mathbb{E} X_{n}=\log _{4} n+\frac{\gamma+2-3 \log 2}{2 \log 2}+\delta_{1}\left(\log _{4} n\right)+O\left(n^{-1}\right)
$$

where

$$
\delta_{1}(x)=\frac{1}{\log 2} \sum_{k \neq 0} \frac{\Gamma\left(2+\chi_{k}\right) \zeta\left(1+\chi_{k}\right)}{\Gamma\left(1+\chi_{k} / 2\right)} e^{2 k \pi i x}
$$

is a small 1-periodic fluctuation.

Analysis of $\mathbb{V} X_{n}$

Similarly: variance $\mathbb{V} X_{n}$ can be determined.

Theorem (H.-Heuberger-Prodinger, 2016)

The corresponding variance is given by

$$
\begin{aligned}
& \mathbb{V} X_{n}=\frac{\pi^{2}-24 \log ^{2} \pi-48 \zeta^{\prime \prime}(0)-24}{24 \log ^{2} 2}-\frac{2 \log \pi}{\log 2}-\frac{11}{12} \\
& +\delta_{2}\left(\log _{4} n\right)+\frac{\gamma+2-3 \log 2}{\log 2} \delta_{1}\left(\log _{4} n\right) \\
& \quad+\delta_{1}^{2}\left(\log _{4} n\right)+O\left(\frac{1}{\log n}\right),
\end{aligned}
$$

where $\delta_{1}(x)$ is defined as above and $\delta_{2}(x)$ is a small 1-periodic fluctuation as well.

Expectation and Variance: exact vs. asymptotic

ALPEN-ADRIA

Fringes

- Size of r th fringe. . . length of r th lattice path reduction

- How large is the r th fringe and the entire fringe on average?

Bivariate generating function

- $H_{r}(z, v) \ldots$ BGF counting path length (with z) and r th fringe size (with v)
- Recursion:

$$
H_{0}(z, v)=\frac{4 z v}{1-4 z v}, \quad H_{r}(z, v)=4 H_{r-1}\left(\left(\frac{z}{1-2 z}\right)^{2}, v\right)
$$

- Explicit solution with $z=\frac{u}{(1+u)^{2}}$:

$$
H_{r}(z, v)=\frac{4^{r+1} u^{2^{r}} v}{\left(1+u^{2 r}\right)^{2}-4 u^{2^{r}} v}
$$

Size of r th fringe

Theorem (H.-Heuberger-Prodinger, 2016)

The expectation $E_{n ; r}^{L}$ and variance $V_{n ; r}^{L}$ of the r th fringe size of a random path of length n have the asymptotic expansions

$$
\begin{gathered}
E_{n ; r}^{L}=\frac{n}{4^{r}}+\frac{1-4^{-r}}{3}+O\left(n^{3} \theta_{r}^{-n}\right) \\
V_{n ; r}^{L}=\frac{4^{r}-1}{3 \cdot 16^{r}} n+\frac{-2 \cdot 16^{r}-5 \cdot 4^{r}+7}{45 \cdot 16^{r}}+O\left(n^{5} \theta_{r}^{-n}\right),
\end{gathered}
$$

where $\theta_{r}^{-n}=\frac{4}{2+2 \cos \left(2 \pi / 2^{r}\right)}>1$.
For $r>0$, the random variables modeling the r th fringe size of lattice paths of length n are asymptotically normally distributed.

Overall fringe size

Strategy: sum over $H_{r}(z, v)$, expansion via Mellin transform, singularity analysis.

Theorem (H.-Heuberger-Prodinger, 2016)

The expected fringe size E_{n}^{L} for a random path of length n admits the asymptotic expansion

$$
E_{n}^{L}=\frac{4}{3} n+\frac{1}{3} \log _{4} n+\frac{5+3 \gamma-11 \log 2}{18 \log 2}+\delta\left(\log _{4} n\right)+O\left(n^{-1} \log n\right)
$$

where $\delta(x)$ is a 1-periodic fluctuation of mean zero with

$$
\delta(x)=\frac{2}{3 \sqrt{\pi} \log 2} \sum_{k \neq 0} \Gamma\left(\frac{3+\chi_{k}}{2}\right)\left(2 \zeta\left(\chi_{k}-1\right)+\zeta\left(\chi_{k}+1\right)\right) e^{2 k \pi i x}
$$

