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Abstract
This thesis belongs to the mathematical field of Analytic Combinatorics, which is concerned

with the asymptotic analysis of parameters of discrete structures (here, primarily trees and

lattice paths) using analytic methods. After modeling the parameter of interest as a random

variable, the properties brought to light by means of such a rigorous investigation include

high-precision asymptotic (sometimes even explicit) formulas for the expected value, the

corresponding variance—and, if possible, higher moments and the characterization of a

limiting distribution as well.

Predominantly, the shape parameters under investigation are associated to deterministic

reduction procedures defined on families of plane trees and lattice paths, respectively. To be

more precise, a suitable deterministic reduction naturally induces some sort of age on the

objects (in the sense that “older” objects require more reductions until they are “irreducible”).

A prominent example for a parameter that can be modeled in this way is the well-known

register function for binary trees. Both the age itself as well as the object size after a fixed

number of reductions are studied in different context within this thesis.

Another interesting shape parameter is defined for so-called Łukasiewicz paths, i.e., two-

dimensional simple lattice paths with a unique down step. These paths have a very nice

structure, as they are strongly related to plane trees whose node degrees are contained in a

predefined set. In this fairly general setting we are interested in ascents—maximal sequences

of non-negative steps.

Something all of our investigations have in common is that they all contain some compre-

hensive computational aspects. To this end, we make heavy use of the free open-source

computer mathematics software system SageMath and its included module for computations

with asymptotic expansions developed by Clemens Heuberger, Daniel Krenn, and the author.

For all results obtained with the help of this module, there is a corresponding worksheet

containing the computations available for download.
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Zusammenfassung
Die vorliegende Dissertation ist dem mathematischen Teilgebiet der analytischen Kombinatorik
zuzuordnen, welches sich mit der präzisen asymptotischen Analyse von Parametern diskreter

Strukturen (in dieser Arbeit konkret Bäumen und Gitterpfaden) mittels analytischer Methoden

beschäftigt. Die Ergebnisse der Untersuchungen dieser als Zufallsvariablen modellierten

Parameter umfassen asymptotische Ausdrücke hoher Präzision (sowie gegebenenfalls sogar

explizite Ausdrücke) für den Erwartungswert, die Varianz — und, sofern möglich, auch für

höhere Momente (was gegebenenfalls auch Rückschlüsse auf eine Grenzverteilung erlaubt).

Die in erster Linie untersuchten Parameter hängen mit deterministischen Reduktionsproze-

duren zusammen, die auf Familien von geordneten Wurzelbäumen, beziehungsweise auf

Familien von Gitterpfaden, definiert werden. Genauer gesagt induziert eine geeignete deter-

ministische Reduktion auf natürliche Art und Weise ein Alter auf den jeweiligen Objekten

(in dem Sinne, dass „ältere“ Objekte öfter reduziert werden müssen, bis sie „irreduzibel“

sind). Ein prominentes Beispiel für einen Parameter, der als ein solches Alter gesehen werden

kann, ist die wohlbekannte Registerfunktion binärer Bäume. Sowohl das Alter als auch die

Objektgröße nach einer festen Anzahl von Reduktionen werden im Rahmen dieser Arbeit in

verschiedenen Kontexten untersucht.

Ein weiterer Parameter von Interesse ist für sogenannte Łukasiewicz-Pfade definiert. Das

sind einfache zweidimensionale Gitterpfade, bei denen die Menge der erlaubten Schritte nur

einen einzigen Schritt nach unten enthält. Die Struktur von Łukasiewicz-Pfaden ist besonders

reichhaltig, weil sie stark mit jenen geordneten Wurzelbäumen, deren Knotengrade in

einer vorgegebenen Menge enthalten sind, zusammenhängen. In diesem relativ allgemeinen

Rahmen werden Aufstiege — das sind maximale Folgen nicht-negativer Schritte — untersucht.

Ein Aspekt, der allen Analysen in dieser Dissertation gleicherweise innewohnt, ist, dass immer

wieder rechentechnisch sehr aufwändige Berechnungen vorkommen. Aus diesem Grund

wird starker Gebrauch vom freien, quelloffenen Computermathematiksystem SageMath

und insbesondere dem darin enthaltenen Modul für asymptotische Entwicklungen, welches

von Clemens Heuberger, Daniel Krenn und dem Autor entwickelt wurde, gemacht. Für alle

Resultate, die mit Hilfe dieses Moduls erhalten wurden, steht ein SageMath-Worksheet mit

den zugehörigen Berechnungen zum Download zur Verfügung.
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1
Introduction

Maybe in our world there lives a happy little tree over there. . .

Bob Ross, The Joy of Painting

I may not have gone where I intended to go,

but I think I have ended up where I needed to be.

Douglas Adams, The Long Dark Tea-Time of the Soul

Trees and lattice paths are two fundamental, inherently connected, combinatorial structures

with a plethora of applications both within Mathematics as well as within other fields. As

an example, the concept of trees is particularly interesting in Computer Science, where

it has incarnations in the form of file systems, general data structures, and of course also

algorithms (see, e.g., [40, 58] for examples). Another (more or less) obvious application of

trees is within Biology and Life Sciences for the modeling of branching processes [38] such

as the development of some population. Similarly, applications of lattice paths can, amongst

others, be found in Biology, Chemistry, as well as Physics (see, e.g., [57, Chapter 5], [7]),

where, for example, they are used to model the motion of particles.

Given that trees and lattice paths are so fundamentally involved in a variety of applications,

it is (not only for the sake of mathematical satisfaction) of great interest to rigorously study

different aspects of their structure—which is, in a nutshell, the topic of this thesis.

To be more precise, this thesis is devoted to the analysis of certain shape parameters within

special families of trees and lattice paths, respectively.

In the scope of this thesis, we are particularly interested in parameters related to reduction

procedures. However, while cutting down trees according to some given probabilistic model

https://youtu.be/gMEZp47VKC0?t=19m16s
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until some condition is satisfied (e.g., until the root is isolated) has been a popular research

theme during the last decades (see, for example, [32, 44, 49]), this thesis features a different

approach. Here, the reductions are fully deterministic.

Think of the following example: Let T be the combinatorial class of plane trees (i.e., trees

with a special root node where the children of each node are ordered). Now, consider a

reduction operator acting on any non-trivial tree from T (i.e., any tree besides the one

consisting just of the root) by removing all of its leaves. Iterated application of this operator

to some given tree is illustrated in Figure 1.1.

7→ 7→ 7→

Figure 1.1: Iterated application of a simple deterministic tree reduction operator.

For such a given deterministic reduction, we declare two different parameters of interest.

On the one hand, we are interested in studying the number of iterated reductions required

to reduce a given object to a object that cannot be reduced any further—in the case of the

“removing leaves”-example, this would just be the trivial tree consisting of just the root. On

the other hand, we are interested in determining how “fast” a given procedure reduces an

object, which can be studied by investigating the object size after some fixed number of

reductions.

By inversion, a given deterministic reduction procedure induces a growth process on the

combinatorial family under investigation, where a given object can grow into one of many

(if not even infinitely many, depending on the reduction) different “successors”. Figure 1.2

illustrates the first few generations in the context of the “growing leaves” growth process

(which is induced by the “cutting leaves” operator discussed above).

In this alternate growth process-based view, the first parameter can be seen as the “age” of a

given object. The second parameter corresponds to the size of the ancestor from some given

number of generations ago.

It is not too difficult to see that in the context of the simple reduction introduced above,

the age of a tree corresponds to its height—an important parameter that has been studied,

e.g., in [8, 50]. A rigorous analysis of the tree size after iteratively reducing the tree a fixed

number of times, however, will be carried out within this thesis (cf. Chapter 3 for the analysis
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. . .

. . . . . .

Figure 1.2: Descendents of the trivial tree in the “growing leaves” procedure. Different

generations are separated by dotted lines.

of the “cutting leaves”-reduction). For these parameters, results of the following type can be

expected (see Theorems 3.2.13 and 3.2.14):

Theorem.

Let r ∈ N0 be fixed and let Xn,r be the random variable modeling the number of nodes left

after reducing a random tree with n nodes r times by cutting away all leaves. Then the

expected size and the corresponding variance behave for n→∞ according to the asymptotic

expansions

EXn,r = µn−
r(r − 1)
6(r + 1)

+O(n−1) and VXn,r = σ
2n+O(1),

where

µ=
1

r + 1
and σ2 =

r(r + 2)
6(r + 1)2

.

In addition, Xn,r is, after standardization, asymptotically normally distributed for n→∞.

To be more precise, for x ∈ R we have

P
�Xn,r − nµ
p
σ2n

≤ x
�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2).

All O-constants depend implicitly on r.

Throughout Chapters 2, 3, and 4, the analysis of the shape parameters can be seen in a

common framework. The dual interpretation of the setting (either based on a growth- or

a reduction procedure) plays an integral part. This is because first of all, we switch to
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the growth-based view and translate the procedure yielding a new generation from some

given family into the language of generating functions, resulting in a (for our setting) linear

operator Φ acting on the generating function.

The next step consists of finding an explicit formula for the iterated application of the

expansion operator Φ to some generating function. This allows us to determine explicit

representations of both the generating function enumerating objects of up to some certain

age as well as the bivariate generating function enumerating objects with respect to their

own size and the size of their rth predecessor.

These generating functions are the basis for the actual analysis of the shape parameters,

which can now be conducted by utilizing and/or combining different techniques from analytic

combinatorics (like, for example, singularity analysis [18] and the Mellin transform [16]).

In Chapter 2 we study two different reduction procedures and the corresponding shape

parameters: the first one, defined on the family of binary trees, cuts away all leaves and

repairs the resulting structure, such that once again a binary tree is obtained. It is noteworthy

that for this reduction the age parameter corresponds with the well-known register function.

The second reduction is defined on the family of two-dimensional lattice paths with step set

S = {→,↑,←,↓}; both the age as well as the ancestor size are analyzed.

Chapter 3 is devoted to the rigorous analysis of the ancestor size for four different reduction

procedures defined for plane trees. Apart from the “cutting leaves” example discussed above,

the reduction removing all leaves from a given plane tree, we consider the following variants:

• “Pruning” trees, which means that the reduction removes all linear graphs ending in

leaves,

• “Cutting old leaves”, where the reduction removes all leaves that are simultaneously

the leftmost children,

• “Cutting old paths”, where all linear graphs ending in leaves that also start as leftmost

children are removed.

In Chapter 4 we demonstrate that by restricting ourselves to a rather special subclass of plane

trees and defining a reduction procedure that is allowed to cut away very large substructures,

the behavior of the shape parameters is fundamentally different than in the previous chapters.

For both age and ancestor size, the limiting distribution degenerates to a discrete limiting

distribution.

Then, in Chapter 5 we shift the focus of our interest away from the deterministic reduction-

based parameters investigated in the previous chapters and concentrate on a new setting.

The combinatorial objects that we are interested in this chapter are so-called non-negative

Łukasiewicz paths, i.e., a family of one-dimensional lattice paths with a finite step set S ⊆ Z
such that −1 ∈ S is the unique negative allowed step.
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Łukasiewicz paths are particularly nice lattice paths, because there is a bijection inherently

linking the family of Łukasiewicz excursions with respect to the step set S (i.e., non-negative

paths ending on the starting altitude with steps in S) to the family of plane trees where

the nodes of the tree have outdegrees in 1+S. An example of this correspondence is the

well-known bijective relation between Dyck paths (which are Łukasiewicz excursions with

respect to the step set S = {−1,1}) and (plane) binary trees, where all nodes are either

leaves (outdegree 0) or internal nodes (outdegree 2). As a consequence of this bijection,

the recursive tree structure is, in some sense, carried over to the structure of Łukasiewicz

excursions.

The shape parameter we are interested in for these objects is the number of ascents of given

length. An ascent is an inclusion-wise maximal sequence of steps different from the down

step↘. If an ascent consists of precisely r non-negative steps, then it is called an r-ascent.

The special structure of Łukasiewicz paths enables us to carry out a precise analysis for the

number of r-ascents in three special subfamilies: meanders (i.e., all non-negative paths),

excursions, and dispersed excursions (i.e., excursions where horizontal steps are not allowed

except on the horizontal axis). It is interesting to note that deriving the corresponding

generating function allowing us to carry out this analysis is possible via two different

approaches. In a purely analytic manner by means of the so-called kernel method (see [1]
for a formal description and [52] for examples) combined with the “adding a new slice”

approach (see [54, Section 2.5]), and by following a more combinatorial approach based on

the recursive structure of the underlying plane trees.

Throughout this thesis, we often have to deal with extensive computations with asymptotic

expansions. This is why the computer mathematics system SageMath [59] with its module

for computing with asymptotic expansions implemented by Clemens Heuberger, Daniel

Krenn, and the author [23] also plays an integral part in this thesis.

Besides “trivial” arithmetic operations with asymptotic expansions like addition, multiplica-

tion, and inversion, this module also allows us to easily carry out more complex operations

(e.g. singularity analysis, or singular inversion [21, Chapter VI.7]) as well.

For all calculations in this thesis that were carried out with our asymptotic expansion module,

there is a corresponding worksheet that can be downloaded, which allows to easily reproduce

the results in this thesis. Details on where these worksheets can be found are given in the

introductory section of the respective chapters.





2
Reductions of Binary Trees and
Lattice Paths induced by the
Register Function

The register function (or Horton-Strahler number) of a binary tree is a well-known

combinatorial parameter. We study a reduction procedure for binary trees which offers a

new interpretation for the register function as the maximal number of reductions that can

be applied to a given tree. In particular, the precise asymptotic behavior of the number of

certain substructures (“branches”) that occur when reducing a tree repeatedly is

determined.

In the same manner we introduce a reduction for simple two-dimensional lattice paths

from which a complexity measure similar to the register function can be derived. We

analyze this quantity, as well as the (cumulative) size of an (iteratively) reduced lattice

path asymptotically.

This chapter is an adapted version of [26], which is joint work with Clemens Heuberger and

Helmut Prodinger.

2.1 Introduction
The aim of this chapter is to investigate local substructures that appear within discrete

objects after reducing according to, in some sense, intrinsic rules. In particular, there are

two reductions we focus on: a reduction for binary trees, as well as a reduction for simple

two-dimensional lattice paths.
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In order to give a summary of our results we will briefly sketch both reductions and explain

the nature of the local structures emerging when applying the reduction repeatedly.

As announced in the introductory chapter, the SageMath [59] worksheets associated to this

chapter as well as instructions on how to use them can be found at https://arxiv.org/
src/1612.07286v1/anc.

2.1.1 Binary Trees
Binary trees are either a leaf or a root together with a left and a right subtree which are

binary trees. This recursive definition can be written as a symbolic equation (� and mark

leaves and inner nodes, respectively):

B = � +
B B

By using the symbolic method (cf. [21, Part A]), this equation can be translated into a

functional equation for the generating function counting binary trees with respect to their

size (i.e. the number of inner nodes). The corresponding functional equation is given by

B(z) = 1+ zB(z)2,

which leads to the well-known expansion

B(z) =
1−
p

1− 4z
2z

=
∑

n≥0

1
n+ 1

�

2n
n

�

zn.

This means that the number of binary trees with n inner nodes is given by the nth Catalan

number Cn =
1

n+1

�2n
n

�

.

By simple algebraic manipulations, it is easy to verify that the generating function B(z)
satisfies the identity

B(z) = 1+
z

1− 2z
B
�

z2

(1− 2z)2

�

.

However, as we will see in Section 2.2, we can justify this identity from a combinatorial

point of view as well, and the most important part of this combinatorial interpretation is a

reduction procedure for binary trees.

Essentially, this procedure first removes all leaves from the tree and then “repairs” the

resulting object by collapsing chains of nodes with only one child into one node. More details

on this reduction are provided in Section 2.2.

With the help of this reduction we can assign labels to all nodes in a given tree by tracking

how many iterated tree reductions it takes until the node is deleted. Note that collapsing

https://arxiv.org/src/1612.07286v1/anc
https://arxiv.org/src/1612.07286v1/anc
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some nodes into one node does not count as deleting the node. In Section 2.2 we prove

that these labels are intimately linked with a very well-known and well-studied branching

complexity measure of binary trees: the register function.

The local structures we are interested in also become visible after labeling a tree as described

above: the so-called r-branches of a binary tree are the connected subgraphs of nodes with

label r. The number of these r-branches in a random tree of size n is modeled by the random

variable Xn;r : Bn→ N0, where Bn is the set of all binary trees of size n. A proper definition

as well as results on r-branches can be found in Section 2.2.2.

In the context of binary tree reductions we are interested in precise analyses of the random

variables Xn;r as well as Xn :=
∑

r≥0 Xn;r , which models the total number of branches in a

random tree of size n. This quantity is investigated closely in Section 2.2.3.

Table 2.1 gives an overview of the results of our investigation. The results for the register

function are well-known, which is why we refer to external literature instead. Additionally,

Theorem 2.2.8 proves asymptotic normality for the number of r-branches Xn;r .

Register function r-branches (Xn;r) branches total (Xn)

range [20, Sec. 1.1, Sec 2] Proposition 2.2.5 Proposition 2.2.9

explicit formula [20, Theorem 1] Proposition 2.2.7 Proposition 2.2.10

asymptotic formula [20, Theorem 3] Theorem 2.2.6 Theorem 2.2.11

Table 2.1: Results: binary trees.

2.1.2 Lattice Paths
Let L be the combinatorial class of simple two-dimensional lattice paths, i.e., the set of all

nonempty sequences over {↑,→,↓,←}. It is easy to see that the corresponding generating

function is

L(z) =
4z

1− 4z
.

Similarly to before, it is easy to check by algebraic manipulation that L(z) satisfies the

functional equation

L(z) = 4L
�

z2

(1− 2z)2

�

+ 4z.

However, as in the case of binary trees, we will see in Section 2.3 that the combinatorial

interpretation of this equation is much more fruitful and gives rise to a reduction procedure

for lattice paths.

In this case it takes a bit more to fully describe the reduction. The core idea is to reduce a given

path by collapsing an entire horizontal-vertical segment (i.e. a path segment that consists of
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a sequence of horizontal movements followed by a sequence of vertical movements) into a

single step.

The first parameter of interest in this context is the reduction degree of a random path of

length n, which is the number of repeated reductions that it takes until the entire path is

reduced to a single step. We will model this parameter with the random variable Dn : Ln→ N0,

where Ln consists of all simple two-dimensional lattice paths of length n.

As an analogue to the number of r-branches in a given binary tree we consider the length of

the rth fringe, i.e., the rth reduction of a given lattice path. This quantity is modeled by the

random variable X L
n;r : L→ N0.

By summation of the length of the rth fringe for r ≥ 0 we obtain the total fringe size

X L
n :=

∑

r≥0 X L
n;r . In some sense, the total fringe size measures the complexity of horizontal-

vertical direction changes of a given lattice path. Both, the rth fringe size as well as the total

fringe size are analyzed in Section 2.3.2.

Table 2.2 gives an overview of the results of our investigation.

Reduction degree (Dn) r-fringes (X L
n;r) total fringe size (X L

n )

range Proposition 2.3.6 Proposition 2.3.9 Proposition 2.3.12

explicit formula Corollary 2.3.5 Proposition 2.3.11 Corollary 2.3.13

asymptotic formula Theorem 2.3.8 Theorem 2.3.10 Theorem 2.3.14

Table 2.2: Results: lattice paths.

2.2 Tree Reductions and the Register Function

2.2.1 Motivation and Preliminaries
As mentioned in the introduction, we want to find a combinatorial proof of the following

proposition.

Proposition 2.2.1.

The generating function counting binary trees by the number of inner nodes, B(z) = 1−
p

1−4z
2z ,

satisfies the identity

B(z) = 1+
z

1− 2z
B
�

z2

(1− 2z)2

�

. (2.1)

Proof. We consider the following reduction of a binary tree t, which we write as ρ(t):
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0 2

2

1

0 0

1

0 0

0
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2

1

0 1

0 0

1

1

0 0

0

1

0 0
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1 1
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2

1 1

1

2

1

0 0

1

1

0 0

0

Figure 2.1: Illustration of the tree reduction ρ: in the first tree, the leaves are deleted

(dashed nodes) and nodes with exactly one child are merged (gray overlay). The

second tree shows the result of these operations. Finally, in the last tree all nodes

without children are marked as leaves.

First, all leaves of t are erased. Then, if a node has only one child, these two nodes are

merged; this operation will be repeated as long as there are such nodes. The leaves of the

reduced tree are precisely the nodes without children.

This operation was introduced in [71]. The various steps of the reduction are depicted in

Figure 2.1. The numbers attached to the nodes will be explained later.

Note that ρ(�) is undefined, so this is a partial function. Of course, many different trees are

mapped to the same binary tree. However, they can all be obtained from a given reduced

tree by the following operations:

All leaves and all internal nodes in the tree are replaced by chains of internal nodes. In

such a chain, there has to be at least one leaf attached to every internal node; the symbolic
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equation for chains is

C = +
C
+

C
.

Obviously, these substitutions do not only restore the (previously deleted) leaves, but can

also “unmerge” previously merged nodes. Thus, all trees that reduce to some tree t ′ can be

reconstructed from t ′.

From the symbolic equation of chains above, we find that the generating function C(z)
counting chains with respect to their size (i.e. number of internal nodes) satisfies the equation

C(z) = z + 2zC(z) and thus, we obtain

C(z) =
z

1− 2z
.

Finally, if F(z) is a generating function counting some family of binary trees, then the bivariate

generating function vF(zv) counts the same family with respect to size (variable z) and

number of leaves (variable v). This is a direct consequence of the fact that binary trees with

n inner nodes have n+ 1 leaves.

Therefore, replacing all nodes of a binary tree with chains corresponds to the substitutions

v 7→ z
1−2z and z 7→ z

1−2z in the language of generating functions. Therefore, all binary trees

that can be reconstructed from a reduced version of itself are counted by

z
1− 2z

B
�

z2

(1− 2z)2

�

.

By all these considerations, (2.1) can be interpreted combinatorially as the following state-

ment: a binary tree is either just �, or it can be reconstructed from another binary tree where

all nodes are replaced by chains.

Remark.

Note that (2.1) can be used to find a very simple proof for a well-known identity for Catalan

numbers:

Comparing the coefficients of zn+1, (2.1) leads to

Cn+1 = [z
n+1]

∑

k≥0

Ck
z2k+1

(1− 2z)2k+1
=
∑

k≥0

Ck[z
n−2k]

∑

j≥0

2 j
�

2k+ j
j

�

z j

=
∑

0≤k≤n/2

Ck2n−2k
�

n
2k

�

,

which is known as Touchard’s identity [61, 65].
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With this interpretation in mind, (2.1) can also be seen as a recursive process to generate

binary trees by repeated substitution of chains. This process can be modeled by the generating

functions

B0(z) = 1, Br(z) = 1+
z

1− 2z
Br−1

�

z2

(1− 2z)2

�

, r ≥ 1. (2.2)

By construction, Br(z) is the generating function of all binary trees that can be constructed

from � with up to r expansions—or, equivalently—all binary trees that can be reduced to �
by applying ρ up to r times.

Expanding the first few functions gives

B1(z) = 1+ z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + 64z7 + 128z8 + 256z9 + 512z10 + · · · ,

B2(z) = 1+ z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 428z7 + 1416z8 + 4744z9 + · · · ,

B3(z) = 1+ z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 + 4862z9 + · · · .

As it turns out, these generating functions are inherently linked with the register function
(also known as the Horton-Strahler number) of binary trees. In order to understand this

connection, we introduce the register function and prove a simple property regarding the

tree reduction ρ.

The register function is recursively defined: for the binary tree consisting of only a leaf we

have Reg(�) = 0, and if a binary tree t has subtrees t1 and t2, then the register function is

defined to be

Reg(t) =







max{Reg(t1), Reg(t2)} for Reg(t1) 6= Reg(t2),

Reg(t1) + 1 otherwise.

In particular, the numbers attached to the nodes in Figure 2.1 represent the values of the

register function of the subtree rooted at the respective node.

Historically, the idea of the register function originated (as the Horton-Strahler numbers) in

[30, 64] in the study of the complexity of river networks. However, the very same concept

also occurs within a computer science context: arithmetic expressions with binary operators

can be expressed as a binary tree with data in the leaves and operators in the internal nodes.

Then, the register function of this binary expression tree corresponds to the minimal number

of registers needed to evaluate the expression.

There are several publications in which the register function and related concepts are

investigated in great detail, for example Flajolet, Raoult, and Vuillemin [20], Kemp [36],
Flajolet and Prodinger [19], Nebel [46], Drmota and Prodinger [13], and Viennot [66]. For

a detailed survey on the register function and related topics see [56]. In contrast to those

papers, we do not study the register function in this chapter, but we focus on the enumeration
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of branches of the binary tree. Details are given in Sections 2.2.2 and 2.2.3. Note that our

methods could also be used to re-prove the known results on the register function.

We continue by observing that the tree reduction ρ is a very natural operation regarding the

register function:

Proposition 2.2.2.

Let t be a binary tree with Reg(t) = r ≥ 1. Then ρ(t) is well-defined and the register

function of the reduced tree is Reg(ρ(t)) = r − 1.

Proof. First, observe that all trees with at least one internal node have a node with two leaves

attached. Therefore, this node has register function 1—and thus, only � has register function

0. Consequently, if we have Reg(t)≥ 1, t cannot be �, meaning that ρ(t) is well-defined.

Now take an arbitrary binary tree t with at least one internal node and assume that we have

Reg(ρ(t)) = r. As described above, the tree t can be reconstructed from ρ(t) by replacing

all nodes (i.e. leaves and internal nodes) by chains of internal nodes.

When replacing internal nodes with chains of internal nodes, nothing changes for the register

function: the value is just propagated up along the chain. However, if all leaves are replaced

by chains, the register function of all subtrees that are rooted at a internal node increases by

1, resulting in Reg(t) = r + 1. This proves the proposition.

As an immediate consequence of Proposition 2.2.2 we find that ρ can be applied r times

repeatedly to some binary tree t if and only if Reg(t)≥ r holds. In particular, we obtain

ρr(t) = � ⇐⇒ Reg(t) = r. (2.3)

With (2.3), the link between the generating functions Br(z) from above and the register

function becomes clear: Br(z) is exactly the generating function of binary trees with register

function ≤ r.

In order to analyze these recursively defined generating functions an explicit representation

is convenient. As it turns out, the substitution z = u
(1+u)2 =: Z(u) is a helpful tool in this

context.

Proposition 2.2.3.

Consider the complex functions

Z(u) =
u

(1+ u)2
for u ∈ C \ {−1},

U(z) =
1−
p

1− 4z
2z

− 1 for z ∈ C,

where the principal branch of the square root function is chosen as usual, i.e., as a holomorphic

function on C \R≤0 such that
p

1= 1. Then the following properties hold:
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(a) Let Z = C \ [1/4,∞) and U = {u ∈ C | |u| < 1}. Then U : Z → U and Z : U → Z are

bijective holomorphic functions which are inverses of each other.

(b) Let U = U ∪ {exp(−tπi) | 0≤ t < 1}. Then U : C→ U is bijective with inverse Z .

(c) The relations

Z ′(u) =
1− u
(1+ u)3

and
Z(u)

1− 2Z(u)
=

u
1+ u2

hold for u ∈ C \ {−1}.

(d) For the function σ : C \ {1
2} → C with σ(z) = z2

(1−2z)2 , the diagram

U

Z

U

Z

Z

u 7→ u2

σ

Z

commutes, i.e., we have σ ◦ Z = Z ◦ (u 7→ u2).

(e) Let α ∈ C \ {0,−1}, u ∈ C \ {α, 1/α} and z = Z(u). Then

u

(u−α)(u− 1
α)
= −

zZ(α)
z − Z(α)

.

For α= −1 we find u
(1+u)2 = Z(u) = z.

Proof.

(a) We first note that Z is well-defined and holomorphic on U with Z ′(u) 6= 0 for all u ∈ U .

If |u|= 1, then

Z(u) =
1

u+ 1
u + 2

=
1

2+ 2Re u
.

Thus, the image of the unit circle without u= −1 is the interval [1/4,∞).

For every z ∈ C \ {0}, z = Z(u) is equivalent to

u2 + u
�

2−
1
z

�

+ 1= 0 (2.4)

which has two not necessarily distinct solutions u1, u2 ∈ C with u1u2 = 1. W.l.o.g.,

|u1| ≤ |u2|. Thus either u1 ∈ U and |u2|> 1 or |u1| = |u2| = 1. In the latter case, we have

z ∈ [1/4,∞). For z = 0, z = Z(u) is equivalent to u = 0. This implies that Z : U → Z is

bijective.

Furthermore, Z : U → Z has a holomorphic inverse Z−1 defined on the simply connected

region Z. Solving (2.4) explicitly yields

u=
1±
p

1− 4z
2z

− 1.
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In a neighborhood of zero, we must have Z−1(z) = U(z), because

1+
p

1− 4z
2z

− 1

has a pole at z = 0. Altogether this proves that U is the inverse of Z .

(b) [28]. For z ∈ [1/4,∞), we know that U(z) is on the unit circle. It is easily checked that

Im U(z) = −
p

|1− 4z|/(2z) for these z, thus Im U(z) ∈ U .

(c) The two relations follow directly from the definition of Z .

(d) [28]. This can be shown by straightforward computation: we obtain

σ(Z(u)) =
�

Z(u)
1− 2Z(u)

�2

=
�

u
1+ u2

�2

= Z(u2),

where (c) is used.

(e) [28]. By writing (2.4) as

u+
1
u
=

1
z
− 2,

we have

u

(u−α)(u− 1
α)
= −

α

(u−α)(1
u −α)

= −
α

1−α(u+ 1
u) +α2

= −
α

(α+ 1)2 − α
z

= −
zZ(α)

z − Z(α)
.

In a nutshell, the fact that σ ◦ Z = Z ◦ (u 7→ u2) means that applying σ in the “z-world”

corresponds to squaring in the “u-world”. As we will see in a moment, this is very useful for

expressing recursively defined generating functions like the one encountered above explicitly.

Proposition 2.2.4.

Let F0, D, and E be complex functions that are analytic in a neighborhood of 0. Then the

recursively defined functions

Fr(z) = D(z) + E(z)Fr−1(σ(z)), r ≥ 1, (2.5)

can be written explicitly by means of the substitution z = u
(1+u)2 as

Fr(z) =
r−1
∑

j=0

D
�

u2 j

(1+ u2 j)2

� j−1
∏

k=0

E
�

u2k

(1+ u2k)2

�

+ F0

�

u2r

(1+ u2r )2

� r−1
∏

k=0

E
�

u2k

(1+ u2k)2

�

. (2.6)

Proof. Let j ∈ N. Observe that by repeated application of Property (d) of Proposition 2.2.3

we can write

u2 j

(1+ u2 j)2
= Z(u2 j

) = σ(Z(u2 j−1
)) = · · ·= σ j(Z(u)) = σ j(z),
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where σ j(z) denotes the j-fold application of σ to z. This lets us write (2.6) as

Fr(z) =
r−1
∑

j=0

D(σ j(z))
j−1
∏

k=0

E(σk(z)) + F0(σ
r(z))

r−1
∏

k=0

E(σk(z)).

This expression follows from (2.5) by induction over r.

With Proposition 2.2.4 we have an appropriate tool for analyzing Br(z), the generating

function enumerating binary trees with register function ≤ r. With D(z) = 1, E(z) = z
1−2z ,

and Property (c) of Proposition 2.2.3 the recurrence in (2.2) yields

Br(z) =
1− u2

u

r
∑

j=0

u2 j

1− u2 j+1 . (2.7)

Note that at this point, we can determine the generating function B=r (z) counting binary

trees with register function equal to r with respect to their size as

B=r (z) = Br(z)− Br−1(z) =
1− u2

u
u2r

1− u2r+1 . (2.8)

This explicit representation of B=r (z) could be used to determine the asymptotic behavior

of the register function. However, as these properties are well-known (cf. [20]), we will

continue in a different direction by studying the number of so-called r-branches—where we

will also encounter the generating function B=r (z) again.

2.2.2 r-branches
The register function associates a value to each node (internal nodes as well as leaves),

and the value at the root is the value of the register function of the tree. An r-branch is

a maximal chain of nodes labeled r. This must be a chain, since the merging of two such

chains would already result in the higher value r + 1. The nodes of the tree are partitioned

into such chains, from r = 0, 1, . . .. Figure 2.2 illustrates this situation for a tree of size 13.

The goal of this section is the study of the parameter “number of r-branches”, in particular,

the average number of them, assuming that all binary trees of size n are equally likely.

Formally, we investigate this parameter via the family of random variables (Xn;r)n≥0
r≥0

where

Xn;r : Bn→ N0 counts the number of r-branches in binary trees of size n.

This parameter was the main object of the paper [71], and some partial results were given

that we are now going to extend. In contrast to this paper, our approach relies heavily

on generating functions which, besides allowing us to verify the results in a relatively

straightforward way, also enables us to extract explicit formulas for the expectation (and, in

principle, also for higher moments).
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Figure 2.2: Binary tree with colored r-branches.

A parameter that was not investigated in [71] is the total number of r-branches, for any r,

i.e., the sum over r ≥ 0. Here, asymptotics are trickier, and the basic approach from [71]
cannot be applied. However, in this chapter we use the Mellin transform, combined with

singularity analysis of generating functions, a multi-layer approach that also allowed one of

us several years ago to solve a problem by Yekutieli and Mandelbrot, cf. [51]. The origins of

singularity analysis can be found in [18], and for a detailed survey see [21].

In particular, note that the value of the register function in [71] differs by one to the value

we consider here, and that n generally refers there to the number of leaves, not nodes as

here.

According to our previous considerations, after r iterations of ρ, the r-branches become

leaves (or, equivalently, 0-branches).

We begin our detailed analysis of the random variables enumerating r-branches by studying

sharp bounds for this parameter.

Notation.

We use the Iversonian notation

JexprK=







1 if expr is true,

0 otherwise,

popularized in [22, Chapter 2].

Proposition 2.2.5.

Let n, r ∈ N0. If r = 0, then Xn;0 is a deterministic quantity with Xn;0 = n+ 1. For r > 0, the

bound

Jn> 0 and r = 1K≤ Xn;r ≤
�

n+ 1
2r

�
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holds and is sharp.

Proof. First, recall that r-branches are nothing but leaves in the r-fold reduced tree. Thus,

Xn;0 counts the number of leaves in a binary tree with n inner nodes—and it is a well-known

fact that binary trees with n inner nodes always have n+ 1 leaves.

For the lower bound we observe that in every tree with at least one inner node, there is a node

to which two leaves are attached. This node is part of a (possibly larger) 1-branch. Therefore,

1 is a lower bound for Xn;1 where n> 0. Chains are an example for arbitrarily large binary

trees where the lower bounds 1 and 0 are attained for r = 1 and r > 1, respectively.

As there are finitely many binary trees of size n, there is a tree t for which Xn;r attains its

maximum value M ∈ N0, meaning that the r-fold reduced tree ρr(t) has M leaves. In order

to obtain an estimate between M and n we expand the reduced tree r times by successively

replacing leaves by cherries, which are chains of size one. By doing so, the number of

leaves doubles after every iteration, which means that our new tree has M · 2r leaves—or,

equivalently, M · 2r − 1 inner nodes. Because t cannot be smaller than the tree we have just

constructed, the inequality M · 2r − 1≤ n has to hold. This proves the upper bound in the

statement above.

In order to show that the upper bound is sharp as well, we consider the family of binary trees

(Bm)m≥1, where Bm denotes the unique almost complete binary tree with m leaves, which is

constructed by adding the nodes layer-to-layer from left to right. For these trees, we can

(a) B6. (b) B3.

Figure 2.3: Almost complete binary trees.

prove that ρ(Bm) = Bbm/2c: in case m is even, reducing the tree is equivalent to replacing all

cherries on the lower levels by leaves, effectively halving the number of leaves. If m = 2k+1

is odd, there is a node whose left and right child are an inner node and a leaf, respectively.

In particular, the subtree in question looks like B3 illustrated in Figure 2.3b. When reducing

this tree, the left child has to be merged with its parent. This shows that in total, ρ(B2k+1)
has k leaves.

By applying ρ(Bm) = Bbm/2c iteratively, and by
�

m
2r

�

=
�

1
2

�

m
2r−1

��
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we see that Bn+1, which is a binary tree of size n, attains the upper bound for the number of

r-branches.

Next we analyze the asymptotic behavior of the expectation and variance of Xn;r .

Theorem 2.2.6.

Let r ∈ N0 be fixed. The expected number EXn;r of r-branches in binary trees of size n and

the corresponding variance VXn;r have the asymptotic expansions

EXn;r =
n
4r
+

1
6

�

1+
5
4r

�

+
1

20n

�

4r −
1
4r

�

+
1

12n2

�

5 · 16r

21
−

7 · 4r

10
+

97
210 · 4r

�

+O(n−3),

(2.9)

VXn;r =
4r − 1
3 · 16r

n−
2 · 16r − 25 · 4r + 23

90 · 16r
−

13 · 64r − 14 · 16r + 7 · 4r − 6
420 · 16r n

+O(n−2). (2.10)

Remark.

The main terms (without error terms) of the asymptotic expansions for the expectation and

the variance of the number of r-branches have already been determined in [45].

Proof. We begin our asymptotic analysis by constructing the generating function of the total

number of leaves in all trees of size n. First, observe that the bivariate generating function

allowing us to count the leaves of the binary trees is vB(zv). Hence, the generating function

counting the total number of leaves among all trees of size n is given by

∂

∂ v
vB(zv)

�

�

�

v=1
=

1
p

1− 4z
=

1+ u
1− u

.

Following the same recursive procedure as described in the proof of Proposition 2.2.1 and

replacing all nodes of a given tree by chains, the leaves become 1-branches. Generally

speaking, expanding a tree lets the r-branches become (r + 1)-branches. In particular, this

means that after r iterations of the tree expansion, the leaves have become r-branches.

With this in mind, we want to construct the generating function F (1)r (z) that enumerates the

sum of the number of r-branches over all trees with the same size, which is marked by z. As

0-branches are leaves, the expression determined above is precisely F (1)0 (z). Applying the

tree expansion operator r times to F (1)0 (z) yields F (1)r (z). This is justified by the argument

F (1)r (z) =
∑

t∈B
#(r-branches of t)z|t| =

∑

t ′∈B

∑

t∈B
ρ(t)=t ′

#(r-branches of t)z|t|

=
∑

t ′∈B
#((r − 1)-branches of t ′)

∑

t∈B
ρ(t)=t ′

z|t|

=
z

1− 2z
F (1)r−1

�

z2

(1− 2z)2

�

,
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where |t| denotes the size of a tree t ∈ B.

Altogether, we obtain the recursion

F (1)0 (z) =
1

p
1− 4z

, F (1)r (z) =
z

1− 2z
F (1)r−1

�

z2

(1− 2z)2

�

, r ≥ 1.

By construction, dividing the nth coefficient of F (1)r (z) by Cn yields

EXn;r =
1
Cn
[zn]F (1)r (z),

which is the expected number of r-branches in a random tree of size n.

In order to analyze F (1)r (z) we rewrite it using Proposition 2.2.4 and the fact that D(z) = 0

and E(z) = z
1−2z . Thus, we obtain

F (1)r (z) =
1− u2

u
u2r

(1− u2r )2
. (2.11)

The generating function F (1)r (z) has a singularity at z = 1/4, so we have to locally expand the

function in terms of
p

1− 4z such that the methods of singularity analysis can be applied.

Expansion yields

F (1)r (z) =
1

4r
p

1− 4z
+

1
3
(4−r − 1)

p

1− 4z +
1

15
(41−r − 5+ 4r)(1− 4z)3/2 +O((1− 4z)5/2).

Singularity analysis [21, Chapter VI] guarantees that one can read off coefficients in this

expansion:

[zn]F (1)r (z) =
4n

p
π

�

1
4r
p

n
+

1
6n3/2

�

1−
7

4r+1

�

+
1

n5/2

�

4r

20
−

3
16
+

93
640 · 4r

�

+O(n−7/2)
�

.

The asymptotics of Cn are straightforward, especially for a computer. By performing singu-

larity analysis on the generating function B(z) we obtain

Cn =
4n

p
π

�

1
n3/2
−

9
8n5/2

+
145

128n7/2
+O(n−9/2)

�

.

Division of the two expansions yields (2.9). In principle, any number of terms would be

available.

We also determine the variance by virtually the same approach. In this case we determine

the variance using the second factorial moment. Let F (2)r (z) be the generating function of

the unnormalized second factorial moment of the number of r-branches, i.e.,

F (2)r (z) =
∑

n≥0

CnE
�

Xn;r(Xn;r − 1)
�

zn.
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By analogous argumentation as before we know that F (2)0 (z) can be obtained by differentiating

the bivariate generating function vB(vz) two times with respect to v and setting v = 1. This

gives
∂ 2

∂ v2
vB(zv)

�

�

�

v=1
=

2z
(1− 4z)3/2

=
2u(1+ u)
(1− u)3

.

Furthermore, we know that the recurrence

F (2)0 (z) =
2z

(1− 4z)3/2
, F (2)r (z) =

z
1− 2z

F (2)r−1

�

z2

(1− 2z)2

�

has to hold. Again, with the help of Proposition 2.2.4, we find

F (2)r (z) = 2
1− u2

u
u2r+1

(1− u2r )4
,

which can be locally expanded to

F (2)r (z) =
1

2 · 16r(1− 4z)3/2
−

1+ 2 · 4r

6 · 16r
p

1− 4z

−
1+ 10 · 4r − 11 · 16r

90 · 16r

p

1− 4z +O((1− 4z)3/2).

After determining the asymptotic contribution of these coefficients by means of singularity

analysis and dividing the result by the asymptotic expansion of the Catalan numbers, we

arrive at an expansion for the second factorial moment:

EXn;r(Xn;r − 1) =
1
Cn
[zn]F (2)r (z) =

n2

16r
+

4− 4r

3 · 16r
n+

61− 50 · 4r − 11 · 16r

180 · 16r
+O(n−1).

Computing the variance by means of the well-known formula VXn;r = EXn;r(Xn;r − 1) +
EXn;r − (EXn;r)2 yields (2.10) and thus, concludes the proof.

Of course, the expected number of r-branches can also be computed explicitly by using

Cauchy’s integral formula. This yields the following result:

Proposition 2.2.7.

The expected number EXn;r of r-branches in binary trees of size n is given by the explicit

formula

EXn;r =
n+ 1
�2n

n

�

∑

λ≥1

λ

��

2n
n+ 1−λ2r

�

− 2
�

2n
n−λ2r

�

+
�

2n
n− 1−λ2r

��

. (2.12)

Proof. Let γ be a small circle around the origin. Then, γ̃, the image of γ under the substitution



2.2 Tree Reductions and the Register Function 23

z = u
(1+u)2 , is a closed curve in the interior of the unit circle that winds around the origin

once. Now, applying Cauchy’s integral formula yields

[zn]F (1)r (z) =
1

2πi

∮

γ

1− u2

u
u2r

(1− u2r )2
dz

zn+1

=
1

2πi

∮

γ̃

1− u2

u
u2r

(1− u2r )2
(1− u)(1+ u)2n+2

(1+ u)3
du

un+1

=
1

2πi

∮

γ̃

(1− u)2(1+ u)2n

un+2

�

∑

λ≥0

λuλ2r
�

du,

where we used
x

(1− x)2
=
∑

λ≥0

λxλ. (2.13)

Then, interchanging summation and integration and applying Cauchy’s integral formula

once again yields

[zn]F (1)r (z) =
∑

λ≥1

λ[un+1−λ2r
](1− u)2(1+ u)2n,

which, after extracting the coefficient and dividing by Cn =
1

n+1

�2n
n

�

, proves the statement.

We are also interested in the limiting distribution of Xn;r for fixed r ∈ N0 and n→∞. Note

that as Xn;0 = n+ 1 is a deterministic quantity, we focus on the case that r ≥ 1.

Theorem 2.2.8.

Let r ∈ N be fixed. Then Xn;r , the random variable modeling the number of r-branches in a

binary tree of size n, is asymptotically normally distributed for n→∞. In particular, for

x ∈ R we have

P
�Xn;r −EXn;r

p

VXn;r

≤ x
�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2).

Remark.

For the special case of 1-branches, i.e., r = 1, a central limit theorem has been proved in [68].
Additionally, numerical evidence for the validity of a general central limit theorem like the

one we obtained above has been provided in [70].

Proof of Theorem 2.2.8. The central idea behind this proof is that Xn;r can be interpreted as

an additive tree parameter, meaning that the parameter can be evaluated as the sum of the

parameters corresponding to the subtrees rooted at the children of the root of the original

tree and an additional so-called toll function.

In our case, it is straightforward to see that the number of r-branches in a binary tree of size

n can be computed as the sum of the number of r-branches in the left and right subtree. Only
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in the case where both subtrees have register function r − 1, the root itself is an r-branch

that is not accounted for in the subtrees.

Hence, the random variable Xn;r satisfies the distributional recurrence relation

Xn;r = X In;r + X ∗n−1−In;r + Tn;r ,

where X ∗n;r is an independent copy of Xn;r , In;r is a random variable modeling the size of the

left subtree with

P(In = j) =
C jCn−1− j

Cn
where j ∈ {0,1, . . . , n− 1},

and where Tn;r is a toll function depending on Xn;r satisfying

Tn;r =







1 if the register function of both rooted subtrees is r − 1,

0 otherwise.

Asymptotic normality of Xn;r can now be obtained by showing that the expectation of the

toll function decays exponentially, according to [67].

In order to show that this condition is satisfied we consider B=r (z), the generating function

for binary trees with register function equal to r. By (2.8) we have

B=r (z) =
1− u2

u
u2r

1− u2r+1 .

By means of Property (e) in Proposition 2.2.3 we can write

B=r (z) =
(u− 1)(u+ 1)u2r−1

∏

0≤k<2r+1(u−ωk)
= −

z2r−1
∏

0<k<2r Z(ωk)
∏

0<k<2r (z − Z(ωk))
,

where ωk := exp(2πik/2r+1). In particular, this proves that B=r (z) is a rational function. As

we have Z(ωk) =
1

2+2cos(πk/2r ) , the dominant singularity of B=r (z) can uniquely be identified

as Z(ω1) =
1

2+2 cos(π/2r ) > 1/4, which proves that the ratio of trees with register function r
among all binary trees of size n decays exponentially.

The exponential decay of the expected value of the toll function Tn;r now follows from the

fact that ETn;r equals the ratio of the trees whose children both have register function r − 1

among all trees of size n. These trees form a subset of those counted by B=r (z), which means

that their ratio has to decay exponentially as well.

The asymptotic normality of Xn;r now follows from [67, Theorem 2.1]. All that remains to

show is that the speed of convergence is O(n−1/2). In order to do so, we observe that the proof

for asymptotic normality in Wagner’s theorem basically relies on [11, Theorem 2.23], which

uses a formulation of Hwang’s Quasi-Power Theorem without quantification of the speed of
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convergence (cf. [11, Theorem 2.22]). By replacing this argument with a quantified version

(cf. [31] or [29] for a generalization to higher dimensions) of the Quasi-Power Theorem,

we find that the speed of convergence in Wagner’s result—and therefore, in our result as

well—is O(n−1/2).

2.2.3 Total Number of Branches
So far, we were dealing with fixed r, and the number of r-branches in trees of size n, for

large n. Now we consider the total number of such branches, i.e., the sum over r ≥ 0, which

was not considered in [71]. Formally, this corresponds to the analysis of the random variable

Xn : Bn→ N0 where

Xn :=
∑

r≥0

Xn;r .

By definition, Xn enumerates the total number of branches in binary trees of size n.

With the help of the bounds for the number of r-branches obtained in Proposition 2.2.5 we

can characterize the range of Xn as well.

Proposition 2.2.9.

Let n ∈ N0 and let w2(n) denote the binary weight, i.e. the number of non-zero digits in the

binary expansion of n. Then the bound

n+ 1+ Jn> 0K≤ Xn ≤ 2n+ 2−w2(n+ 1)≤ 2n+ 1

holds for the random variable Xn and is sharp.

Remark.

The sharp upper bound 2n+ 2−w2(n+ 1) is enumerated by sequence A005187, shifted by

one, in [47].

Proof. We begin by observing that for fixed n ∈ N, the random variable Xn;r vanishes for

sufficiently large r. As the bounds from Proposition 2.2.5 are sharp, we are allowed to sum

up the inequalities in order to obtain

n+ 1+ Jn> 0K≤
∑

r≥0

Xn;r ≤
∑

r≥0

�

n+ 1
2r

�

.

This immediately proves the lower bound from the statement.

In order to prove the upper bound we investigate the sum
∑

r≥0bm/2
rc for m ∈ N. Consider

the binary digit expansion of m, denoted by (xk . . . x1 x0)2. In this context, the sum can be

http://oeis.org/A005187
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written as
k
∑

r=0

(xk . . . x r+1 x r)2 =
k
∑

r=0

x r(1+ 2+ 4+ · · ·+ 2r) =
k
∑

r=0

x r(2
r+1 − 1)

= 2 · (xk . . . x1 x0)2 −
k
∑

r=0

x r = 2m−w2(m).

By setting m = n+1 we see that the upper bound holds as well. The fact that 2n+2−w2(n+
1)≤ 2n+ 1 is a direct consequence of w2(n+ 1)≥ 1 for all n ∈ N0.

It is easy to see that the bounds are sharp for n= 0. For n> 0, the lower bound is attained

by any chain of size n: they consist of n+ 1 leaves (which are 0-branches) and exactly one

additional 1-branch which connects all the leaves. The upper bound is attained by the family

of almost complete binary trees constructed in the proof of Proposition 2.2.5, which follows

from the fact that Xn;r attains its maximum in the tree Bn+1, which does not depend on the

value of r.

First, to get an explicit formula, the results from Proposition 2.2.7 can be summed.

Corollary 2.2.10.

The expected number of branches in binary trees of size n is given by the explicit formula

EXn =
n+ 1
�2n

n

�

n+1
∑

k=1

(2− 2−v2(k))k
��

2n
n+ 1− k

�

− 2
�

2n
n− k

�

+
�

2n
n− 1− k

��

,

where v2(k) is the dyadic valuation of k, i.e., the highest exponent ν such that 2ν divides k.

Proof. To simplify the double summation, we consider

ψ(k) :=
∑

λ≥0, r≥0:
λ2r=k

λ.

This sum can be simplified to some degree. We write k = 2v2(k)(2 j + 1), such that we have

ψ(k) =
v2(k)
∑

r=0

2v2(k)−r(2 j + 1) = (2v2(k)+1 − 1)(2 j + 1) = (2− 2−v2(k))k,

which proves the result.

While it is absolutely possible to work out the asymptotic growth from this explicit formula,

at it was done in earlier papers [20, 36], we choose a faster method, like in [19]. It works

on the level of generating functions and uses the Mellin transform together with singularity

analysis of generating functions [21, 54].

The following theorem describes the asymptotic behavior for the expected number of branches

in a binary tree.
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Theorem 2.2.11.

The expected value of the total number of branches in a random binary tree of size n admits

the asymptotic expansion

EXn =
4n
3
+

1
6

log4 n−
2ζ′(−1)

log 2
−

γ

12 log 2
−

1
6 log2

+
43
36
+δ(log4 n) +O

�

log n
n

�

,

where

δ(x) :=
1

log 2

∑

k 6=0

Γ

�

χk

2

�

ζ(χk − 1)(χk − 1)e2πikx

is a 1-periodic function of mean zero, given by its Fourier series expansion with χk =
2πik
log2 .

Remark.

Note that the value of the derivative of the zeta function is given by ζ′(−1) = − 1
12 − log A≈

−0.1654211437, where A is the Glaisher-Kinkelin constant (cf. [14, Section 2.15]).

2 2.5 3 3.5 4 4.5 5

−0.09

−0.06

−0.03
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0.03

0.06

empirical
Fourier series

Figure 2.4: Partial Fourier series (20 summands) compared with the empirical values

of the function δ from Theorem 2.2.11.

Remark.

The occurrence of the periodic fluctuation δ where the argument is logarithmic in n is

actually not surprising: while this phenomenon is already very common in the context of

the register function, fluctuations appear very often in the asymptotic analysis of sums.

Proof. By using (2.11) and (2.13), the generating function of interest can be written as

F(z) =
∑

r≥0

F (1)r (z) =
∑

r≥0

1− u2

u
u2r

(1− u2r )2
=

1− u2

u

∑

r,λ≥0

λuλ2r
.
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To find the asymptotic behavior of the sum, we set u= e−t , consider the function

f (t) :=
∑

r,λ≥0

λe−tλ2r
,

and compute its Mellin transform

f ∗(s) =
∑

r,λ≥0

λ1−s2−rsΓ (s) = Γ (s)ζ(s− 1)
1

1− 2−s
.

The fundamental strip of f ∗(s) is 〈2,∞〉. Then, by the inversion formula for the Mellin

transform we obtain

f (t) =
1

2πi

∫ 5+i∞

5−i∞
Γ (s)ζ(s− 1)

1
1− 2−s

t−s ds, (2.14)

which is valid for real, positive t → 0, which gives an expansion for u→ 1−, or, equivalently

z → (1/4)−. In order to use this representation of f (t) for our purposes (i.e. in order to

apply singularity analysis), we need to have analyticity in a larger region (cf. [18]), e.g. in

a complex punctured neighborhood of 1/4 with1 |arg(z − 1/4)|> 2π/5. In particular, the

expansion

t = − log(U(z)) = 2
p

1− 4z +
2
3
(1− 4z)3/2 +O((1− 4z)5/2) (2.15)

implies

|arg t|=
1
2
|arg(1− 4z)|+ o(1),

such that we have the bound |arg t| < 2π/5 for t → 0, given that the restriction on the

argument in the z-world is satisfied.

Then, given that Re(s) = 5 or Re(s) = −3 holds we find that we have the estimate

| f ∗(s)t−s|= O
�

|Im(s)|5|t|−Re(s) exp
�

−
π

10
|Im(s)|

��

(2.16)

for the integrand in (2.14). The very same estimate also holds for −3 ≤ Re(s) ≤ 5 where

Im(s) = 2πi
log2

�

k + 1
2

�

and k ∈ Z tends towards ∞ or −∞. This is a consequence of the

behavior of Γ (s) as given in [10, 5.11.3], estimates for ζ(s) as given in [69, 13.51], and the

fact that 1
1−2−s is bounded for s in the given ranges.

Together with the identity theorem for analytic functions (cf. [19] for a similar argumentation)

this means that the inverse Mellin transform remains valid for complex z in a neighborhood

of 1/4 with |arg(1− 4z)|> 2π/5, which justifies the following approach.

We can evaluate (2.14) by shifting the line of integration from Re(s) = 5 to Re(s) = −3 and

collecting the residues of the poles we cross. This yields

f (t) =
∑

p∈P

Ress=p( f
∗(s)t−s) +

1
2πi

∫ −3+i∞

−3−i∞
f ∗(s)t−s ds,

1Note that the bound 2π/5 is somewhat arbitrary: the argument just needs to be less than π/2.

http://dlmf.nist.gov/5.11.E3
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where P = {−2,0,2} ∪ {χk | k ∈ Z \ {0}} and χk := 2πik
log 2 . Multiplying this representation of

f (t) with 1−u2

u and expanding everything locally for z → 1/4 yields a singular expansion

from which coefficient growth can be extracted by means of singularity analysis.

For the error term we use the estimate above and find

1
2πi

∫ −3+i∞

−3−i∞
f ∗(s)t−s ds = O(|t|3).

However, for the sake of simplicity we want to use the contribution of the residue collected

from the pole at s = −2 as the error term. We immediately find

Ress=−2( f
∗(s)t−s) = O(|t|2).

We compute the remaining residues explicitly with the help of SageMath [59] and obtain

f (t) =
∑

p∈P\{−2}

Ress=p( f
∗(s)t−s) +O(|t|2)

=
�

4
3t2
+

log t
12 log2

+
ζ′(−1)
log2

+
γ

12 log2
−

1
24

�

+
∑

k 6=0

Γ (χk)ζ(χk − 1)
log 2

t−χk +O(|t|2),

where we used the Laurent expansion for the Gamma function at s = 0 (cf. [62, 43:6:1]) and

the fact that ζ(−1) = −1/12 (cf. [10, 25.6.3]). When translating this expansion in terms of

t → 0 to an expansion in terms of z→ 1/4, we have to be particularly careful with respect

to the sum of the residues at s = χk as we have to check that the sum of the errors is still

controllable.

We do so by considering the expansion

t−χk = (1− 4z)−χk/2
�

1+O(1− 4z)
�−χk/2.

With the well-known inequality

|exp(z)− 1| ≤ |z|exp |z|

we find

|(1+O(1− 4z))−χk/2 − 1|=
�

�

�exp
�

−
χk

2
log(1+O(1− 4z))

�

− 1
�

�

�

≤
�

�

�

χk

2

�

�

�|log(1+O(1− 4z))|exp
�

2π
log 2

|k||log(1+O(1− 4z))|
�

=
�

�

�

χk

2

�

�

�O(1− 4z)exp
�

2π
log2

|k|O(1− 4z)
�

. (2.17)

This proves that the errors we sum up are of order O(|k|(1− 4z)exp(|k|O(1− 4z))). Thus, if

z is chosen sufficiently close to 1/4, this exponential growth is slow enough to vanish within

the exponential decay established in (2.16).

http://dlmf.nist.gov/25.6.E3
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Finally, by considering

1− u2

u
= 4

p

1− 4z + 4(1− 4z)3/2 +O((1− 4z)5/2)

we find that

F(z) =
4

3
p

1− 4z
+
�

γ

3 log 2
+

4ζ′(−1)
log 2

+
11
18
+

log(1− 4z)
6 log2

�

p

1− 4z

+
4

log2

∑

k 6=0

Γ (χk)ζ(χk − 1)(1− 4z)1/2−χk/2 +O((1− 4z)3/2 log(1− 4z)).

Applying singularity analysis, normalizing the result by Cn and rewriting the coefficients of

the contributions from the poles at χk via the duplication formula for the Gamma function

(cf. [10, 5.5.5]) then proves the asymptotic expansion for EXn.

While this multi-layer approach enabled us to analyze the expected value of the number of

branches in binary trees of size n, the same strategy fails for computing the variance. This is

because the random variables modeling the number of r-branches are correlated for different

values of r—and thus, the sum of the variances (which we compute by our approach) differs

from the variance of the sum.

This concludes our study of the number of branches per binary tree. In the next section,

we analyze a quantity that has similar properties as the register function, but is defined on

simple two-dimensional lattice paths.

2.3 Reduction of Lattice Paths

2.3.1 Iterative Reductions and an Analogue to the Register Func-
tion

Recall that the register function describes the number of reductions of a binary tree required

in order to reduce the tree to a leaf. By defining a similar process for simple two-dimensional

lattice paths, a function that plays a similar role as the register function is obtained.

Simple two-dimensional lattice paths are sequences of the symbols {↑,→,↓,←}. It is easy to

see that the generating function counting these paths (without the path of length 0) is

L(z) =
4z

1− 4z
= 4z + 16z2 + 64z3 + 256z4 + 1024z5 + · · · .

Proposition 2.3.1.

The generating function L(z) = 4z
1−4z satisfies the functional equation

L(z) = 4L
�

z2

(1− 2z)2

�

+ 4z. (2.18)

http://dlmf.nist.gov/5.5.E5
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Remark.

It is easy to verify this result by means of substitution and expansion. However, we want

to give a combinatorial proof—this approach also motivates the definition of a recursive

reduction process for lattice paths, similar to the process for binary trees from above.

The principle is easy: a sequence of consecutive horizontal steps followed by a sequence

of consecutive vertical steps is replaced by a diagonal step which is determined by the first

horizontal step and the first vertical step. The details are slightly more technical because we

have to ensure that any given path can be reduced.

=⇒ =⇒ =⇒

=⇒ =⇒ =⇒

Figure 2.5: Repeated application of the reduction ρL on a path with reduction degree

2.

Proof. We show that the right-hand side of (2.18) counts simple two-dimensional lattice

paths (excluding the path of length 0) as well. In order to do so, we introduce a reduction

of lattice paths denoted by ρL, that works on a given path ` with length ≥ 2 as follows:

First, if ` starts vertically (i.e. with ↑ or ↓), rotate the entire path clockwise such that it starts

horizontally.

Second, if the (possibly rotated) path ends horizontally, rotate the very last step (which has

to be→ or←) once again clockwise.

Now, the path can be reduced by collapsing each pair of horizontal-vertical path segments

into a path of length 1 as follows:

• If a segment starts with→ and the first vertical step is ↑, replace it by↗,

• if a segment starts with→ and the first vertical step is ↓, replace it by↘,

• if a segment starts with← and the first vertical step is ↓, replace it by↙,

• and if a segment starts with← and the first vertical step is ↑, replace it by↖.

Finally, rotate the obtained path with the diagonal steps by 45◦ clockwise such that ↗
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becomes→ and so on. The resulting path is the reduction ρL(`). This process is visualized

in Figure 2.5.

As it is the case with the reduction ρ of binary trees, ρL is a partial function as well: ρL(s) is

undefined for s ∈ {↑,→,↓,←}. Furthermore, a reduced path can be expanded (although not

uniquely) to its original path again by rotating a given path to the left such that it is given in

diagonal steps, reading the replacements from above from right to left, and then optionally

rotating the very last step and/or the entire path to the left again.

We find that the generating function for lattice paths consisting of sequences of horizontal-

vertical segments is given by L
�

z2

(1−2z)2
�

. In order to see this, consider the expansion of a path

of length 1, for example

→ =⇒ ↗ =⇒ →(→+←)∗↑(↑+ ↓)∗,

where the regular expression describes a sequence of horizontal steps starting with →,

followed by a sequence of vertical steps starting with ↑. As path length is marked by z, the

expansion above translates to the substitution

z 7→
z2

(1− 2z)2
.

As all four expansion variants lead to the same variable substitution, L
�

z2

(1−2z)2
�

precisely

enumerates all lattice paths consisting of sequences of horizontal-vertical segments.

The factor 4 in (2.18) is explained by the four path variants obtained by either rotating just

the last step and/or the entire path.

Putting all of this together, (2.18) can be interpreted combinatorially as the following

statement: a simple two-dimensional lattice path is either a simple step, or can be obtained

by expanding another simple two-dimensional lattice path. This proves the proposition.

The process described in the proof of Proposition 2.3.1 allows us to assign a unique number

to each lattice path:

Definition 2.3.2.

Let ` be a simple two-dimensional lattice path consisting of at least one step. We define the

reduction degree of `, denoted as rdeg(`) as

rdeg(`) = n ⇐⇒ ρn
L(`) ∈ {↑,→,↓,←}.

Remark.

The parallels between the reduction degree and the register function are obvious: both count

the number of times some given mathematical object can be reduced according to some

rules until an atomic form of the respective object is obtained. Therefore, both functions

describe, in some sense, the complexity of a given structure.
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In the remainder of this section we want to derive some asymptotic results for the reduc-

tion degree, namely the expected degree of a lattice path of given length as well as the

corresponding variance.

Analogously to our strategy for (2.1), we want to interpret (2.18) as a recursive generation

process as well and therefore set

L0(z) = 4z, Lr(z) = 4Lr−1

�

z2

(1− 2z)2

�

+ 4z, r ≥ 1.

This yields the functions

L1(z) = 4z + 16z2 + 64z3 + 192z4 + 512z5 + 1280z6 + 3072z7 + 7168z8 + · · · ,

L2(z) = 4z + 16z2 + 64z3 + 256z4 + 1024z5 + 4096z6 + 16384z7 + 65280z8 + · · · ,

L3(z) = 4z + 16z2 + 64z3 + 256z4 + 1024z5 + 4096z6 + 16384z7 + 65536z8 + · · · .

Due to the construction, the function Lr(z) is the generating functions of those lattice paths

with reduction degree ≤ r.

By using Proposition 2.2.4 with D(z) = 4z and E(z) = 4, the generating functions Lr(z) can

be written explicitly in terms of u= U(z)—with U(z) as given in Proposition 2.2.3—as

Lr(z) =
r
∑

j=0

4 j+1 u2 j

(1+ u2 j)2
.

The generating function L=r (z) of lattice paths with reduction degree equal to r can then

be found by considering the difference Lr(z)− Lr−1(z), or, alternatively, by dropping the

summand 4z in the recursion above. Both approaches lead to

L=r (z) = 4r+1 u2r

(1+ u2r )2
. (2.19)

The coefficients of this function can be extracted explicitly by applying Cauchy’s integral

formula.

Proposition 2.3.3.

The number of two-dimensional simple lattice paths of length n that have reduction degree

r is given by

[zn]L=r (z) = 4r+1
∑

λ≥0

λ(−1)λ−1
��

2n− 1
n−λ2r

�

−
�

2n− 1
n−λ2r − 1

��

.

Proof. The proof is straightforward and uses the same approach as the proof of Proposi-

tion 2.2.7.

In fact, by studying the substitution z = Z(u) closely, the asymptotic behavior of the coeffi-

cients of L=r (z) can be extracted as well.
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Proposition 2.3.4 ([28]).
Let r ≥ 1 be fixed. Then L=r (z) is a rational function in z with poles at

zk =
1

4cos2(πk2−r−1)

with singular expansions

L=r (z) =
4 tan2

�

kπ
2r+1

�

�

1− z
zk

�2 −
4 sin2

�

kπ
2r+1

�

+ 2

cos2
�

kπ
2r+1

�

1
1− z

zk

+O(1), z→ zk,

for 1≤ k < 2r , k odd.

Proof. First note that all of the following estimates are not uniform w.r.t. r, meaning that

the constant in the O-term depends heavily on r.

By definition, L=r (z) is a rational function. From (2.19) and Proposition 2.2.3(e), we obtain

that the poles of L=r (z) are located at Z(ω) where ω runs through the 2rth roots of −1. By

symmetry, we restrict ourselves to ω with Imω≤ 0.

We now fix such an ω = exp(−kπi2−r) for some 1≤ k < 2r , k odd. By expansion around ω,

we get
4r+1u2r

(1+ u2r )2
= −

4ω2

(u−ω)2
−

4ω
u−ω

+O(1) for u→ω.

We know that L=r (z) has a pole of order 2 at zk = Z(ω), implying that expanding L=r (z) for

z→ zk yields an expansion of the form

L=r (z) =
A

�

1− z
zk

�2 +
B

1− z
zk

+O(1) for z→ zk

where A and B are some constants depending on k and r. With the help of Cauchy’s integral

formula, the substitution u = U(z), and the expansion from above we can determine the

constants A and B and find

L=r (z) =
−4(ω− 1)2

(ω+ 1)2
1

�

1− z
zk

�2 +
4(ω2 − 4ω+ 1)
(ω+ 1)2

1
1− z

zk

+O(1) for z→ zk.

Rewriting all complex exponentials in terms of trigonometric functions then yields the

result.

With the help of this characterization of the poles of L=r the asymptotic behavior of the

number of lattice paths with reduction degree equal to r can be obtained.
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Corollary 2.3.5 ([28]).
Let r ≥ 1 be fixed. The number of lattice paths with reduction degree equal to r admits the

asymptotic expansion

[zn]L=r (z) = (4 cos2(π2−r−1))n
�

4 tan2(π2−r−1)n−
2

cos2(π2−r−1)

�

+O
�

(4cos2(3π2−r−1))nn
�

, (2.20)

where the constant in the O-term depends on r.

Proof. We use the notation of Proposition 2.3.4. By means of singularity analysis and by

considering that L=r is a rational function, we find that the pole at zk (for odd k) yields a

contribution of (up to simplification)

z−n
k

�

4 tan2(kπ2−r−1)(n+ 1)−
4sin2(kπ2−r−1) + 2

cos2(kπ2−r−1)

�

= z−n
k

�

4 tan2(kπ2−r−1)n−
2

cos2(kπ2−r−1)

�

for sufficiently large n.

We turn to the investigation of the expected reduction degree. Let Ln denote the set of simple

two-dimensional lattice paths of size n. Consider the family of random variables Dn : Ln→ N0

modeling the reduction degree of the lattice paths of length n under the assumption that all

paths are equally likely.

Similar to the investigations we have conducted for the random variables in Sections 2.2.2

and 2.2.3, we want to characterize the range of the reduction degree for lattice paths of

given length n as well.

Proposition 2.3.6.

Let n ∈ N. Then the reduction degree for any simple two-dimensional lattice path of length

n satisfies

Jn> 1K≤ Dn ≤ blog2 nc,

and these bounds are sharp.

Proof. First, observe that for n = 1, we only have the atomic steps {↑,→,↓,←}, and all of

them have reduction degree 0, which the lower and upper bound given above agree upon.

For n> 1 we find that, e.g., the path (→)n has reduction degree 1. In combination with the

fact that there are no paths of length greater than 1 with reduction degree 0, this establishes

the lower bound and proves that it is sharp.
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In order to prove the upper bound, we consider M to be the maximal reduction degree

among all lattice paths of length n, i.e. the corresponding path can be obtained from one of

the steps (of length 1) by expanding the path M times.

The shortest possible path after M expansions can be obtained by replacing every step of

the path iteratively by a segment of length 2, meaning that the length doubles after every

expansion. Thus, a minimally expanded path has length 2M .

As the minimally expanded path has to be at most equally long as the original path, the

inequality 2M ≤ n and therefore M ≤ blog2 nc holds, which proves the upper bound.

In order to construct a path of length n with reduction degree equal to blog2 nc, we consider

the binary digit expansion (xk . . . x1 x0)2 of n. Reading this expansion from left to right,

starting at xk−1, we construct the path as follows: we start with→, if the current digit is 0

then we expand the path minimally, and otherwise we expand all but the last step of the path

minimally; the last step is expanded by replacing it by a corresponding segment of length 3

(i.e. one additional step is added in contrast to minimal expansion). The digit xk = 1 is not

relevant for this construction, thus it is ignored.

It is easy to see that the length of the resulting path is n, as our construction corresponds to the

“double-and-add”-strategy used to determine the value of the binary expansion. Furthermore,

for each of the digits in xk−1 . . . x1 x0 we have expanded our path once, which produces a path

with reduction degree k. Finally, from the binary expansion it is easy to see that k = blog2 nc
holds, which proves that for all n ∈ N, the upper bound above is attained for some lattice

path of length n.

The following results are immediate consequences of Proposition 2.3.3.

Corollary 2.3.7.

The probability that a lattice path of length n has reduction degree r is given by the explicit

formula

P(Dn = r) =
[zn]L=r (z)

4n
= 4r+1−n

∑

λ≥0

λ(−1)λ−1
��

2n− 1
n−λ2r

�

−
�

2n− 1
n−λ2r − 1

��

,

and the expected reduction degree for paths of length n is given by

EDn =
∑

k≥1

8k(2v2(k) − 1)
��

2n− 1
n− k

�

−
�

2n− 1
n− k− 1

��

. (2.21)

Proof. Analogously to our approach in Section 2.2.3, the double sum

EDn =
∑

r,λ≥0

4r+1−nr(−1)λ−1λ

��

2n− 1
n−λ2r

�

−
�

2n− 1
n−λ2r − 1

��
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can be simplified by considering

ψ(k) := 4
∑

λ,r≥0
λ2r=k

4r r(−1)λ−1λ.

We find

ψ(k) = 4k
�

2v2(k)v2(k)−
v2(k)−1
∑

r=0

r2r
�

= 8k(2v2(k) − 1),

which proves (2.21).

Remark.

The formula for P(Dn = r) is very similar to the results for the classical register function

obtained by Flajolet (cf. [15]). It is likely that applying the techniques that were used in [42]
could be used to determine expansions for arbitrary moments.

The following theorem characterizes the asymptotic behavior of the expected reduction

degree and the corresponding variance.

Theorem 2.3.8.

The expected reduction degree of simple two-dimensional lattice paths of length n admits

the asymptotic expansion

EDn = log4 n+
γ+ 2− 3 log2

2 log2
+δ1(log4 n) +O(n−1), (2.22)

and for the corresponding variance we have

VDn =
π2 − 24 log2π− 48ζ′′(0)− 24

24 log2 2
−

2 logπ
log 2

−
11
12
+δ2(log4 n)

−
γ+ 2− 3 log 2

log2
δ1(log4 n)−δ2

1(log4 n) +O
�

log n
n

�

(2.23)

where δ1(x) and δ2(x) are 1-periodic fluctuations of mean zero which are defined as

δ1(x) = log2
∑

k 6=0

cke2kπi x (2.24)

and

δ2(x) =
∑

k 6=0

�

dk − ckψ

�

1+
χk

2

��

e2kπi x (2.25)

with χk =
2πik
log2 and constants

ck =
2

p
π log2 2

Γ

�

3+χk

2

�

ζ(1+χk)

and

dk =
4

p
π log2 2

Γ

�

3+χk

2

�

�

ψ(2+χk)ζ(1+χk) + ζ
′(1+χk)

�

− 3ck log 2.
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Proof. In order to analyze the expected value EDn asymptotically, we study the corresponding

generating function G(1)(z) =
∑

r≥0 r L=r (z), for which we have EDn =
1
4n [zn]G(1)(z), with an

approach that is similar to the one in Theorem 2.2.11.

With the substitution u= e−t , we find

G(1)(z) =
∑

r≥1

r4r+1 u2r

(1+ u2r )2
=
∑

r,λ≥1

r4r+1(−1)λ−1λe−tλ2r
,

where we used (2.13). Thus, the Mellin transform g(1)(s) =M(G(1))(s) of G(1) (which is a

function in t) is given by

g(1)(s) =
∑

r,λ≥1

r4r+1(−1)λ−1λ1−s2−rsΓ (s) = 4
�

∑

r≥1

r2(2−s)r
��

∑

λ≥1

(−1)λ−1λ1−s
�

Γ (s)

= 4
22−s

(1− 22−s)2
(1− 22−s)ζ(s− 1)Γ (s) = 4Γ (s)ζ(s− 1)

22−s

1− 22−s
,

which is analytic for Re(s)> 2. Observe that g(1)(s) has a pole of order two at s = 2, simple

poles at s = 2+χk for k ∈ Z \ {0} and further simple poles at s ∈ −2N0.

As the fundamental strip of g(1)(s) is given by 〈2,∞〉, the Mellin inversion formula yields

G(1)(z) =
1

2πi

∫ 5+i∞

5−i∞
g(1)(s)t−s ds,

and we compute this integral by shifting the line of integration to Re(s) = −3.

Note that analogously to the argumentation in the proof of Theorem 2.2.11, the Mellin

inversion formula above is also valid for complex z in a punctured neighborhood of 1/4

where |arg(4z − 1)|> 2π/5, which allows us to apply singularity analysis.

We compute the contributions of the singularities with the help of SageMath [59]. With an

analogous estimation as in the proof of Theorem 2.2.11 we find that the integral (after the

shift) contributes an error of O(|t|3). Again, for the sake of simplicity we take the contribution

of the residue at −2 as the error term:

Ress=−2(g
(1)(s)t−s) = O(t2).

Thus, with P = {−2, 0,2} ∪ {χk | k ∈ Z \ {0}} we find

∑

p∈P

Ress=p(g
(1)(s)t−s) = −

4
log 2

t−2 log t +
�

4
log2

− 2
�

t−2

+
4
9
+

4
log2

∑

k 6=0

Γ (2+χk)ζ(1+χk)t
−2−χk +O(t2).
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Substituting back, controlling the error analogously to (2.17), applying singularity analysis,

normalizing by 4n, and rewriting the coefficients of the terms of growth nχk/2 with the

duplication formula for the Gamma function (cf. [10, 5.5.5]) then proves (2.22) and (2.24).

For the analysis of the variance we turn our attention to the second moments, ED2
n . The

related generating function is given by

G(2)(z) =
∑

r≥0

r2 L=r (z) =
∑

r,λ≥0

r24r+1(−1)λ−1λe−tλ2r
.

It is easy to check that the corresponding Mellin transform g(2)(s) is

g(2)(s) = 4Γ (s)ζ(s− 1)
(1+ 22−s)22−s

(1− 22−s)2
,

with a pole of order 3 at s = 2, and poles of order two at s = 2+χk for k ∈ Z \ {0}, as well

as simple poles at s ∈ −2N0. Analogously to above, the inversion formula is also valid for

complex z in a punctured neighborhood around 1/4 with |arg(1− 4z)|> 2π/5. We shift the

line of integration to Re(s) = −3, which yields an error term of

1
2πi

∫ −3+i∞

−3−i∞
g(2)(s)t−s ds = O(|t|3),

and collect residues.

We find that Ress=0(g(2)(s)t−s) does not yield a contribution in terms of z. The pole at s = −2

is the leftmost pole we shift the line of integration over. For the sake of simplicity, we use

the contribution of the residue at this pole as the error term, which we find to be

Ress=−2(g
(2)(s)t−s) = O(|t|2).

Furthermore, the pole at s = 2 yields a residue of

Ress=2(g
(2)(s)t−s) =

4

log2 2
t−2 log2 t +

�

4
log2

−
8

log2 2

�

t−2 log t

+
�

π2 − 12 log2π− 24ζ′′(0)
3 log2 2

−
8 logπ+ 4

log 2
−

8
3

�

t−2

which translates into a local expansion of

1

4 log2 2

log2(1− 4z)
1− 4z

+
�

3
2 log 2

−
1

log2 2

�

log(1− 4z)
1− 4z

+
�

π2 − 12 log2π− 24ζ′′(0)
12 log2 2

−
2 logπ+ 3

log2
+

4
3

�

1
1− 4z

+O(log2(1− 4z)),

http://dlmf.nist.gov/5.5.E5
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and, after applying singularity analysis and dividing by 4n, into an asymptotic contribution

of

log2
4 n+

γ+ 2− 3 log2
log 2

log4 n+
6γ2 +π2 − 24 log2π+ 24γ− 48ζ′′(0)

24 log2 2

−
3γ+ 4 logπ+ 6

2 log2
+

4
3
+O(n−1 log n).

Observe that the logarithmic terms in this expansion cancel against the square of the expan-

sion for EDn as given in (2.22)—which is a common phenomenon.

Next we determine the contribution of the remaining poles. Locally expanding the sum of the

corresponding residues in terms of z→ 1/4 and controlling the resulting error analogously

to (2.17) yields
∑

k 6=0

Ress=2+χk
(g(1)(s)t−s) =

∑

k 6=0

�

− log(1− 4z)(1− 4z)−1−χk/2Γ (1+χk/2)ck

+ (1− 4z)−1−χk/2Γ (1+χk/2)dk

�

+O(log(1− 4z))

where the coefficients ck and dk are defined as in the theorem. Note that all estimates still

work out as the product of the Gamma and the Digamma function decays exponentially

and the derivative of the zeta function grows at most polynomially, which is easy to see by

considering the derivative by means of Cauchy’s integral formula.

Singularity analysis and dividing by 4n then yields an asymptotic contribution of

2δ1(log4 n) log4 n+δ2(log4 n)

with δ1 and δ2 from (2.24) and (2.25), respectively.

Putting everything together we find

ED2
n = log2

4 n+
γ+ 2− 3 log 2

log 2
log4 n+ 2δ1(log4 n) log4 n

+
6γ2 +π2 − 24 log2π+ 24γ− 48ζ′′(0)

24 log2 2

−
3γ+ 4 logπ+ 6

2 log2
+

4
3
+δ2(log4 n) +O

�

log n
n

�

.

With this result, we are able to find an expansion of the variance VDn by considering the

difference ED2
n − (EDn)2, which yields the expansion given in (2.23).

2.3.2 Fringes
We define the rth fringe of a given lattice path ` of length ≥ 1 to be ρr

L(`), i.e. the rth fringe

is given by the rth reduction of the path. In particular, if ` can be reduced r times, we call
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the length of ρr
L(`) the size of the rth fringe. Otherwise, we say that this size is 0. We model

the size of the rth fringe with the random variable X L
n;r : Ln→ N0.

The rth fringes of positive size can then be enumerated by the bivariate generating function

Hr(z, v) =
∑

` path
rdeg(`)≥r

v|ρ
r
L(`)|z|`|

where |`| denotes the length of a lattice path.

Deriving a recursion for these generating functions is pretty straightforward: first, observe

that for r = 0, the exponent of v always coincides with the exponent of z as ρ0
L(`) = ` for all

lattice paths ` of length ≥ 1. Thus

H0(z, v) = L(zv) =
4zv

1− 4zv
,

where L(z) is the generating function counting all paths of length ≥ 1.

The recursion itself follows from the fact that rth fringes of a path ` are (r−1)th fringes of its

reduction ρL(`). Thus, by the same argument that was used in the proof of Proposition 2.3.1,

we have

Hr(z, v) = 4Hr−1

��

z
1− 2z

�2

, v
�

. (2.26)

In this recursion the second parameter, v, does not change. This justifies the application

of Proposition 2.2.4 in order to rewrite Hr(z, v) by means of the substitution z = Z(u). We

obtain

Hr(z, v) =
4r+1 u2r

(1+u2r )2 v

1− 4u2r

(1+u2r )2 v
=

4r+1u2r
v

(1+ u2r )2 − 4u2r v
.

The generating function Hr(z, v) can now be used to derive the asymptotic behavior of the

expectation EX L
n;r and the variance VX L

n;r of the size of the rth fringe, where all paths of

length n arise with the same probability.

The first few of those generating functions are

H0(z, v) = 4vz + 16v2z2 + 64v3z3 + 256v4z4 + 1024v5z5 + 4096v6z6

+ 16384v7z7 + 65536v8z8 + 262144v9z9 +O(z10),

H1(z, v) = 16vz2 + 64vz3 + (64v2 + 192v)z4 + (512v2 + 512v)z5

+ (256v3 + 2560v2 + 1280v)z6 + (3072v3 + 10240v2 + 3072v)z7

+ (1024v4 + 21504v3 + 35840v2 + 7168v)z8

+ (16384v4 + 114688v3 + 114688v2 + 16384v)z9 +O(z10),

H2(z, v) = 64vz4 + 512vz5 + 2816vz6 + 13312vz7 + (256v2 + 58112v)z8

+ (4096v2 + 241664v)z9 +O(z10),

H3(z, v) = 256vz8 + 4096vz9 +O(z10).
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In order to get a better understanding of the behavior of fringe sizes, we investigate the

minimum and maximum value of the random variable X L
n;r modeling the size of the rth

fringe of a random lattice path of length n.

Proposition 2.3.9.

Let n, r ∈ N0. If r = 0, then X L
n;0 is a deterministic quantity with X L

n;0 = n. For r > 0, the

bound

Jn> 0 and r = 1K≤ X L
n;r ≤

�

n
2r

�

holds and is sharp.

Proof. The proof follows the same idea as the proof of Proposition 2.2.5. In particular, the

concept of “minimal expansion” of binary trees corresponds to expanding single steps into

segments of length 2. Furthermore, an appropriate family of lattice paths can be constructed

from the steps {↑,→,↓,←} by iteratively expanding the path either minimally, or expanding

the first step into a segment of length 3 and the rest minimally.

Theorem 2.3.10.

Let r ∈ N0 be fixed. The expectation and variance of the size of the rth fringe of a random

path of length n have the asymptotic expansions

EX L
n;r =

n
4r
+

1− 4−r

3
+O(n3θ−n

r ) (2.27)

and

VX L
n;r =

4r − 1
3 · 16r

n+
−2 · 16r − 5 · 4r + 7

45 · 16r
+O(n5θ−n

r ), (2.28)

where θr =
4

2+2cos(2π/2r ) > 1. If additionally r > 0, then for the random variables X L
n;r

modeling the rth fringe size of lattice paths of length n we have

P
�X L

n;r −EX L
n;r

Æ

VX L
n;r

≤ x
�

=
1
p

2π

∫ x

−∞
e−w2/2 dw+O(n−1/2),

i.e. the random variables X L
n;r are asymptotically normally distributed.

Proof. The generating function Hr(z, v) only sums over all lattice paths with reduction degree

≥ r. In a first step we show that the number of excluded paths is exponentially small when

compared with the number of all paths.

In order to do so, we consider the generating function

Hr(z, 1) =
4r+1u2r

(1− u2r )2
.

From (2.26) we know that Hr(z, 1) is a meromorphic function, i.e. all its singularities are

poles and no square-root singularities can occur. In the u-world the singularities can be
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expressed as the 2rth roots of unity. From the proof of Proposition 2.2.3 we also know that

on the unit circle,

Z(u) =
1

2+ 2Re u
holds, such that with Property (e) of Proposition 2.2.3 we know that the dominant singularity

(in terms of z = Z(u)) is a simple pole at z = Z(1) = 1/4, and the next singularity is a pole

of order two at
θr

4
:= Z(e−2πi/2r

) =
1

2+ 2cos(2π/2r)
,

which translates into a contribution of O(n4nθ−n
r ).

Together with the local expansion

Hr(z, 1) =
1

1− 4z
+O(1)

for z→ 1/4, and with the fact that Hr(z, 1) is meromorphic, we find that

[zn]Hr(z, 1) = 4n +O(n(2+ 2 cos(2π/2r))n), (2.29)

as claimed. For determining the moments, fringes of size 0 do not yield a contribution (as

they are weighted with 0), such that we can use the generating function Hr(z, v).

It is easy to see that EX L
n;r can be obtained by dividing the coefficient of zn in

�

∂ Hr
∂ v (z, v)

��

�

v=1

by the normalization factor. In particular, we find
�

∂ Hr

∂ v
(z, v)

�

�

�

�

�

v=1

= 4r+1u2r (1+ u2r
)2

(1− u2r )4
=

4−r

(1− 4z)2
+

1− 41−r

3(1− 4z)
+O(1).

Applying singularity analysis to this meromorphic function and dividing by 4n yields (2.27).

For the variance we compute asymptotic expansions for the second moment by considering

the generating function
�

∂ 2Hr

∂ v2
(z, v)+

∂ Hr

∂ v
(z, v)

�

�

�

�

�

v=1

=
2 · 16−r

(1− 4z)3
+

4−r − 4 · 16−r

(1− 4z)2
+

1− 20 · 4−r + 34 · 16−r

15(1− 4z)
+O(1).

In this case, singularity analysis and normalization leads to a contribution of

n2

16r
+

4r − 1
16r

n+
16r − 5 · 4r + 4

15 · 16r
+O(n5θ−n

r )

for the second moment. Subtracting (EX L
n;r)

2 from this expansion results in (2.28).

For the limiting distribution we restrict our model to lattice paths admitting r reductions

and study the corresponding random variable X̃ L
n;r . By (2.29) this induces an exponentially

small error in the sense that

P(X̃ L
n;r ∈ A) = P(X L

n;r ∈ A)
�

1+O(θ−n
r )
�
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for all A⊆ N0.

By singularity perturbation of meromorphic functions (cf. [21, Theorem IX.9]) we immedi-

ately find that X̃ L
n;r is asymptotically normally distributed—and as a direct consequence of

the exponentially small error observed above, X L
n;r is asymptotically normally distributed as

well.

As we have the generating function Hr(z, v) in an explicit form, the expected value can also

be extracted explicitly by means of Cauchy’s integral formula.

Proposition 2.3.11.

For given r ∈ N0, the expected size of the rth fringe EX L
n;r of a random path of length n is

given by the explicit formula

EX L
n;r = 4r+1−n

∑

λ≥1

2λ3 +λ
3

��

2n− 1
n− 2rλ

�

−
�

2n− 1
n− 2rλ− 1

��

.

Proof. Applying Cauchy’s integral formula to

EX L
n;r = 4−n[zn]

�

∂ Hr

∂ v
(z, v)

�

�

�

�

�

v=1

yields

EX L
n;r = 4−n[zn]4r+1u2r (1+ u2r

)2

(1− u2r )4
=

4r+1−n

2πi

∮

u2r (1+ u2r
)2

(1− u2r )4
dz

zn+1

=
4r+1−n

2πi

∮

u2r (1+ u2r
)2

(1− u2r )4
(1− u)(1+ u)2n+2

(1+ u)3
du

un+1

= 4r+1−n[un](1− u)(1+ u)2n−1u2r (1+ u2r
)2

(1− u2r )4

= 4r+1−n
∑

λ≥1

2λ3 +λ
3

[un](1− u)(1+ u)2n−1u2rλ,

where the last step is justified by

x
(1+ x)2

(1− x)4
=
∑

λ≥1

2λ3 +λ
3

xλ. (2.30)

The statement of the theorem then follows by extracting the coefficients by means of the

binomial theorem.

Analogously to our investigations concerning branches in binary trees, we also study the

behavior of the overall fringe size, i.e. the sum over the size of the rth fringes for r ≥ 0. Like

the reduction degree, this parameter can also be interpreted as a complexity measure for

lattice paths. We will model this quantity with the random variable X L
n :=

∑

r≥0 X L
n;r .

A first observation regarding the behavior of X L
n can be followed directly from Proposi-

tion 2.3.9.
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Proposition 2.3.12.

Let n ∈ N0 and let w2(n) denote the binary weight, i.e. the number of non-zero digits in the

binary expansion of n. Then the bound

n+ Jn> 1K≤ X L
n ≤ 2n−w2(n)≤ 2n− 1

holds and is sharp.

Proof. Analogously to the proof of Proposition 2.2.9.

Furthermore, summing the explicit expressions for EX L
n;r obtained in Proposition 2.3.11

yields an explicit formula for EX L
n , the expected fringe size for lattice paths of length n.

Corollary 2.3.13.

The expected fringe size EX L
n of a random path of length n can be computed as

EX L
n =

1
12 · 4n

n
∑

k=1

�

2k3(2− 2−v2(k)) + k(2v2(k)+1 − 1)
�

��

2n− 1
n− k

�

−
�

2n− 1
n− k− 1

��

.

Proof. Analogously to the proof of Corollary 2.2.10.

The following theorem quantifies the asymptotic behavior of EX L
n .

Theorem 2.3.14.

Asymptotically, the behavior of the expected fringe size EX L
n for a random path of length n is

given by

EX L
n =

4
3

n+
1
3

log4 n+
5+ 3γ− 11 log 2

18 log2
+δ(log4 n) +O

�

log n
n

�

, (2.31)

where δ(x) is a 1-periodic fluctuation of mean zero with Fourier series expansion

δ(x) =
2

3
p
π log2

∑

k 6=0

Γ

�

3+χk

2

�

�

2ζ(χk − 1) + ζ(χk + 1)
�

e2kπi x .

Proof. We follow the strategy from the proof of Theorem 2.2.11. First of all, observe that

with the substitution u= e−t ,

H (1)(z) :=
∑

r≥0

�

∂ Hr

∂ v
(z, v)

�

�

�

�

�

v=1

=
∑

r≥0

4r+1u2r (1+ u2r
)2

(1− u2r )4
=

4
3

∑

r≥0,
λ≥1

4r(2λ3 +λ)e−tλ2r
,

where we used (2.30). The Mellin transform h(1)(s) :=M(H (1))(s) is then easily determined,

we find

h(1)(s) =
4
3

∑

r≥0,
λ≥1

4r(2λ3 +λ)λ−s2−rsΓ (s) =
4
3
Γ (s)

∑

r≥0

(22−s)r
∑

λ≥1

(2λ3−s +λ1−s)

=
4
3
Γ (s)

2ζ(s− 3) + ζ(s− 1)
1− 22−s

,
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Figure 2.6: Partial Fourier series (20 summands) compared with the empirical values

of the function δ from Theorem 2.3.14.

a function that is analytic for Re(s)> 4. Thus, by the Mellin inversion formula, we have

H (1)(z) =
1

2πi

∫ 5+i∞

5−i∞
h(1)(s)t−s ds,

again valid in a punctured complex neighborhood of 1/4 with |arg(4z − 1)|> 2π/5.

With an analogous justification as in the proof of Theorem 2.2.11 and the proof of Theo-

rem 2.3.8 we shift the line of integration to the line Re(s) = −3 and take the contribution

from the residue at −2 as the error term (which gives an expansion error of O(1 − 4z)).

Analogously to the previous theorems, the remaining integral is absorbed by this error term.

By shifting the line of integration we cross a simple pole at s = 4, a pole of order two at

s = 2, infinitely many simple poles at s = 2+χk, k ∈ Z \ {0}, and a simple pole in s = 0.

With P = {−2,0, 2,4} ∪ {2+χk | k ∈ Z \ {0}} we find that

∑

p∈P

Ress=p(h
(1)(s)t−s) =

64
3

t−4 +
�

2
3
+

10
9 log2

�

t−2 −
4 log t
3 log2

t−2 +
4

135

+
4

3 log 2

∑

k 6=0

Γ (2+χk)(2ζ(−1+χk) + ζ(1+χk))t
−2−χk +O(t2).

Local expansion in terms of z → 1/4 and controlling the error of the translation of the
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residues along the vertical line Re s = 2 analogously to (2.17) then results in

4
3(1− 4z)2

−
log(1− 4z)

6(1− 4z) log 2
+
�

5
18 log 2

−
35
18

�

1
1− 4z

+
1

3 log2

∑

k 6=0

Γ (2+χk)(2ζ(−1+χk) + ζ(1+χk))(1− 4z)−1−χk/2 +O(log(1− 4z)),

from which the statement of the theorem follows after extracting the coefficient growth of

this expansion by means of singularity analysis, dividing by 4n, and applying the duplication

formula for the Gamma function.

Acknowledgment We thank Michael Fuchs for a hint regarding the central limit theorem

for additive tree parameters.





3
Fringe Analysis of Plane Trees
Related to Cutting and Pruning

Rooted plane trees are reduced by four different operations on the fringe. The number of

surviving nodes after reducing the tree repeatedly for a fixed number of times is

asymptotically analyzed. The four different operations include cutting all or only the

leftmost leaves or maximal paths. This generalizes the concept of pruning a tree.

The results include exact expressions and asymptotic expansions for the expected value

and the variance as well as central limit theorems.

This chapter is an adapted version of [24], which is joint work with Clemens Heuberger,

Sara Kropf, and Helmut Prodinger.

3.1 Introduction
Plane trees are among the most interesting elementary combinatorial objects; they appear

in the literature under many different names such as ordered trees, planar trees, planted

plane trees, etc. They have been analyzed under various aspects, especially due to their

relevance in Computer Science. Two particularly well-known quantities are the height,

since it is equivalent to the stack size needed to explore binary (expression) trees, and the

pruning number (pruning index), since it is equivalent to the register function (Horton-

Strahler number) of binary trees. Several results for the height of plane trees can be found in

[8, 17, 50], for the register function, we refer to [9, 20, 37], and for results on the connection

between the register function and the pruning number to [9, 72].

As pointed out in the introduction in Chapter 1, in this chapter we investigate fully determin-
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istic tree reductions (as opposed to removing edges according to some probabilistic model,

see [32, 44, 49]) acting on the fringe of the tree. This means that only (a subset of) leaves

(and som adjacent structures) are removed. To be more precise, we consider four different

models:

– In one round, all leaves together with the corresponding edges are removed (see

Section 3.2).

– In one round, all maximal paths (linear graphs), with the leaves on one end, are

removed (see Section 3.3). This process is called pruning.

– A leaf is called an old leaf if it is the leftmost sibling of its parents. This concept was

introduced in [6]. In one round, only old leaves are removed (see Section 3.4).

– The last model deals with pruning old paths. There might be several interesting models

related to this; the one we have chosen here is that in one round maximal paths are

removed, under the condition that each of their nodes is the leftmost child of their

parent node (see Section 3.5).

The four tree reductions are illustrated in Figure 3.1. We describe these reductions more

formally in the corresponding sections.

Leaves Paths Old leaves Old paths

Figure 3.1: Removal of (old) leaves / paths.

The first model is clearly related to the height of the plane tree, and the second one to

the Horton-Strahler number via the pruning index [72, 66]. While there are no surprises

about the number of rounds that the process takes here, we are interested in how the fringe

develops. The number of leaves and nodes altogether in the remaining tree after a fixed

number of reduction rounds is the main parameter analyzed in this chapter.

For the sake of simplicity, we will use the same notation for each of the following reduction

analyses. In case we need to compare objects from two different sections, we will distinguish

them by adding appropriate superscripts.

The random variable Xn,r models the tree size after reducing a plane tree of size n (that is

chosen uniformly at random among all trees with n nodes) r-times iteratively according to

one of our four reductions. If a tree does not “survive” r rounds of reductions, we consider
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the size of the resulting tree to be 0. In particular, for r = 0, the given plane tree is not

changed and Xn,0 = n.

As we will see, a key aspect of the analysis of Xn,r is the translation of the algorithmic

description of the reduction into an operator Φ that acts on the corresponding generating

functions.

In Section 3.2, the reduction cutting away all leaves from the tree is discussed. Section 3.2.1

contains all necessary auxiliary concepts required in order to study the r-fold application of

this reduction. In Section 3.2.2, we determine the operator Φ acting on the corresponding

generating function explicitly and prove some direct consequences. Then, in Section 3.2.3

we carry out the analysis of the behavior of Xn,r by computing explicit expressions and

asymptotic expansions for the factorial moments of Xn,r as well as a central limit theorem.

Section 3.3 is devoted to the study of the reduction that cuts away all paths. As we will

see in Section 3.3.1, we can actually obtain all results regarding the behavior of Xn,r as

consequences of the corresponding results in Section 3.2. In Section 3.3.2, we analyze the

asymptotic behavior of the expected number of paths required to construct a plane tree of

size n, i.e. the number of paths we can cut away until the tree cannot be reduced any further.

Sections 3.4 and 3.5 are devoted to the analysis of reductions removing only leftmost leaves

and leftmost paths from the tree, respectively. In particular, in Section 3.5.3, we study the

total number of old paths that can be removed from a tree until it cannot be reduced any

further.

The following supplementary SageMath [59] worksheets are available:

• treereductions.ipynb for most of the asymptotic computations in Sections 3.2,

3.3, and 3.4,

• old_paths.ipynb for most of the asymptotic computations in Section 3.5,

• factorial_moments_leaves.ipynb for computation of the factorial moments in

Theorem 3.2.13,

• factorial_moments_old_paths.ipynb for computation of the factorial moments

in Theorem 3.5.6.

Additionally, in order to run these computations yourself, you also need to download the

following two utility files:

• identities_common.py,

• conditional_substitution.py.

All these files including some instructions on how to use them can be found at https:
//benjamin-hackl.at/publications/treereductions/.

https://benjamin-hackl.at/downloads/treereductions/treereductions.ipynb
https://benjamin-hackl.at/downloads/treereductions/old_paths.ipynb
https://benjamin-hackl.at/downloads/treereductions/factorial_moments_leaves.ipynb
https://benjamin-hackl.at/downloads/treereductions/factorial_moments_old_paths.ipynb
https://benjamin-hackl.at/downloads/treereductions/identities_common.py
https://benjamin-hackl.at/downloads/treereductions/conditional_substitution.py
https://benjamin-hackl.at/publications/treereductions/
https://benjamin-hackl.at/publications/treereductions/


52 3 Cutting and Pruning Plane Trees

3.2 Cutting Leaves

3.2.1 Preliminaries
In this section we investigate the effect of the tree reduction that cuts away all leaves from a

given tree. However, before we can do so, we require some auxiliary concepts, which we

discuss in this section. Most importantly, we need a generating function counting plane

trees with respect to their number of inner nodes and leaves, which is intimately linked

to Narayana numbers. The generating function presented in the following proposition is

actually well-known (see, e.g. [21, Example III.13]).

Proposition 3.2.1.

The generating function T (z, t) which enumerates plane trees with respect to their internal

nodes (marked by the variable z) and leaves (marked by t) is given explicitly by

T (z, t) =
1− (z − t)−

p

1− 2(z + t) + (z − t)2

2
. (3.1)

Proof. This can be obtained directly from the symbolic equation describing the combinatorial

class of plane trees T , which is illustrated in Figure 3.2. In particular, � and represent

leaves and internal nodes, respectively.

T = � +
∑

n≥1

T T T · · · T

n

Figure 3.2: Symbolic equation for plane trees.

The symbolic equation translates into the functional equation

T (z, t) = t +
zT (z, t)

1− T (z, t)
,

which yields (3.1) after solving for T (z, t) and choosing the appropriate branch.

In the context of plane trees, the so-called Narayana numbers count the number of trees

with a given size and a given number of leaves (cf. [12]). As these numbers will appear

throughout the entire chapter, we introduce them formally and investigate some properties

within the following statements.

Definition 3.2.2.

The Narayana numbers are defined as

Nn,k =
1
n

�

n
k− 1

��

n
k

�
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for 1≤ n and 1≤ k ≤ n, and N0,0 = 1. All other indices give Nn,k = 0. Combinatorially, for

n≥ 1 the Narayana number Nn,k corresponds to the number of plane trees with n edges (i.e.

n+ 1 nodes) and k leaves. The Narayana polynomials are defined as

Nn(x) =
n
∑

k=1

Nn,k x k−1

for n≥ 1 and N0(x) = 1, and the associated Narayana polynomials are defined as

Ñn(x) = x · Nn(x)

for n≥ 0. Note that

Nn(1) = Ñn(1) = Cn =
1

n+ 1

�

2n
n

�

is the nth Catalan number.

Remark.

The generating function 1
z T(z, z) = 1−

p
1−4z

2z enumerates Catalan numbers, see [11, Theo-

rem 3.2], and the generating function T (z, tz) enumerates Narayana numbers

T (z, tz) = zt +
∑

n≥2

n−1
∑

k=1

Nn−1,kzn tk =
∑

n≥1

znÑn−1(t). (3.2)

We will frequently use this relation in the form

T (z, t) =
∑

n≥1

znÑn−1

�

t
z

�

. (3.3)

Furthermore [28], it is easily checked that T (z, tz) satisfies the ordinary differential equation

(1− 2(t + 1)z + (1− t)2z2)
∂

∂ z
T (z, tz)− ((1− t)2z − t − 1)T (z, tz) = t(1+ z − tz).

Extracting the coefficient of zn+2 then yields the recurrence relation

(n+ 3)Ñn+2(t)− (2n+ 3)(t + 1)Ñn+1(t) + n(t − 1)2Ñn(t) = 0 (3.4)

for n≥ 0.

The following proposition gives another useful property of associated Narayana polynomials.

Proposition 3.2.3.

Let n≥ 0, then we have the relation

tn+1Ñn

�

1
t

�

= (1− t)Jn= 0K+ Ñn(t). (3.5)
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Proof. This relation follows from extracting the coefficient of zn+1 from the identity T (tz, z) =
T (z, tz) + (1− t)z with the help of (3.3).

While it is straightforward to prove that the identity is valid by means of algebraic manipula-

tion, we also give a combinatorial proof.

From a combinatorial point of view, both generating functions T(tz, z) and T(z, tz) enu-

merate plane trees where z marks the tree size, the only difference is that the variable t
enumerates inner nodes in T (tz, z) and leaves in T (z, tz). We want to show that for trees of

size n≥ 2, these two classes are equal, resulting in T (tz, z)− z = T (z, tz)− tz.

To construct an appropriate bijection between the class of trees of size n with k leaves and

the class of trees of size n with k inner nodes we need to have a closer look at the well-known

rotation correspondence [21, I.5.3], which is a bijection between plane trees of size n and

binary trees with n− 1 inner nodes. In fact, the leaves in the binary tree are strongly related

to the leaves and inner nodes of the original tree:

– Left leaves in the binary tree are only attached to those nodes whose companions in

the plane tree have no children, i.e., to those who correspond to leaves in the plane

tree.

– Right leaves, on the other hand, are attached to nodes whose companion nodes in the

plane tree have no sibling right of them. This means that for every node with children,

i.e., for every inner node, there is precisely one rightmost child and thus precisely one

right leaf in the binary tree.

The bijection between the two tree classes can now be described as follows: given some tree

of size n and k leaves, apply the rotation correspondence in order to obtain a binary tree.

Then mirror the binary tree by swapping all left and right children. Transform this mirrored

tree back by means of the inverse rotation correspondence, and the result is a plane tree of

size n and k inner nodes as mirroring the binary tree swapped the number of left and right

leaves in the tree. This proves the proposition.

Derivatives of the associated Narayana polynomials defined above will occur within the

analysis of a reduction model later, which is why we compute some special values in the

following proposition.

Proposition 3.2.4.

Evaluating the rth derivative of the associated Narayana polynomials at 1, i.e. Ñ (r)n (1), gives

the number of trees with n+ 1 nodes where precisely r leaves are selected and labeled from

1 to r. In particular, for n≥ 1 we have

Ñ ′n(1) =
1
2

�

2n
n

�

, Ñ ′′n (1) = (n− 1)
�

2n− 2
n− 1

�

.
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Proof. The combinatorial interpretation follows immediately by rewriting

Ñ (r)n (1) =
n
∑

k=1

Nn,kkr ,

where we used the notion kr = k(k−1) · · · (k− r +1) for the falling factorial. Explicit values

can be obtained by differentiating (3.2) r-times with respect to t, then setting t = 1 and

extracting the coefficient of zn+1.

Remark.

By the combinatorial interpretation of Proposition 3.2.4 we find that Ñ ′n(1) =
1
2

�2n
n

�

enu-

merates the number of leaves, summed over all trees with n+ 1 nodes. At the same time,

as there are Cn =
1

n+1

�2n
n

�

such trees, the total number of nodes in these trees is
�2n

n

�

. This

implies that exactly half of all nodes in all trees of given size are leaves!

In fact, this interpretation also motivates a second, purely combinatorial proof of the explicit

value of Ñ ′n(1): the bijection correspondence maps trees of size n+ 1 to binary trees with n
inner nodes. In the proof of Proposition 3.2.3 we already observed that the number of left

leaves in the binary tree obtained from the rotation correspondence is equal to the number

of leaves in the plane tree.

As binary trees with n inner nodes have n+ 1 leaves, and as there are Cn binary trees with

n inner nodes, the total number of leaves in all binary trees with n inner nodes is
�2n

n

�

. By

symmetry, there have to be equally many left leaves as right leaves—which proves that there

are 1
2

�2n
n

�

left leaves, and thus Ñ ′n(1) =
1
2

�2n
n

�

.

In addition to the polynomials related to the Narayana numbers, there is another well-known

sequence of polynomials that will occur throughout this chapter.

Definition 3.2.5.

The Fibonacci polynomials are recursively defined by

Fr(z) = Fr−1(z) + zFr−2(z)

for r ≥ 2 and F0(z) = 0, F1(z) = 1.

For many identities involving Fibonacci numbers, there is an analogous statement for Fi-

bonacci polynomials. The identity presented in the following proposition will be used

repeatedly throughout this chapter.

Proposition 3.2.6 (d’Ocagne’s Identity, [28]).
Let s, r ∈ Z≥0 where s ≥ r. Then we have

Fr+1(z)Fs(z)− Fr(z)Fs+1(z) = (−z)r Fs−r(z). (3.6)
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Proof. The left-hand side of (3.6) can be expressed as the determinant of
 

Fr+1(z) Fr(z)

Fs+1(z) Fs(z)

!

.

At the same time, for r, s ≥ 1 we can write
 

Fr+1(z) Fr(z)

Fs+1(z) Fs(z)

!

=

 

Fr(z) Fr−1(z)

Fs(z) Fs−1(z)

! 

1 1

z 0

!

.

Combining these two observations yields

Fr+1(z)Fs(z)−Fr(z)Fs+1(z) = det

 

Fr+1(z) Fr(z)

Fs+1(z) Fs(z)

!

= det

 

1 0

Fs+1−r(z) Fs−r(z)

!

det

 

1 1

z 0

!r

,

which proves the statement.

Observe that setting s = r + 1 in (3.6) yields the identity

Fr+1(z)
2 − Fr(z)Fr+2(z) = (−z)r , (3.7)

which we will make heavy use of later on.

An important tool in the context of plane trees is the substitution z = u/(1+ u)2, which

allows us to write some expressions in a manageable form. It is easy to check that with this

substitution, we can write Fibonacci polynomials as

Fr(−z) =
1− ur

(1− u)(1+ u)r−1
. (3.8)

The fact that this substitution also works for Fibonacci polynomials is not that surprising, as

zFr(−z)/Fr+1(−z) is the generating function of plane trees with height ≤ r (see [8]).

3.2.2 Leaf-Reduction and the Expansion Operator
The reduction ρ : T \ {�} → T we want to investigate now can be explained very easily. For

any tree τ ∈ T \ {�} we obtain the reduced tree ρ(τ) simply by removing all leaves from τ.

Repeated application of ρ to a tree is illustrated in Figure 3.3.

It is easy to see that this operator is certainly not injective: there are many trees that reduce to

the same tree. However, it is also easy to see that ρ is surjective, as we can always construct

an expanded tree that reduces to any given tree τ by attaching leaves to all leaves of τ.

In fact, the operator ρ−1 mapping trees τ ∈ T to the set of preimages is easier to handle

from a combinatorial point of view. This is because we can model the expansion of trees in

the language of generating functions.
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7→ 7→ 7→

Figure 3.3: Illustration of the “cutting leaves”-operator ρ.

Proposition 3.2.7.

Let F ⊆ T be a family of plane trees with bivariate generating function f (z, t), where z
marks inner nodes and t marks leaves. Then the generating function of ρ−1(F), the family

of trees whose reduction is in F , is given by

Φ( f (z, t)) = (1− t) f
�

z
(1− t)2

,
zt

(1− t)2

�

. (3.9)

Proof. It is obvious from a combinatorial point of view that the operator Φ has to be linear.

Thus we only have to determine how a tree represented by an arbitrary monomial zn tk, i.e.

a tree τ with n inner nodes and k leaves, is expanded.

In order to obtain all possible tree expansions from τ, we perform the following operations:

first, all leaves of τ are expanded by appending a nonempty sequence of leaves to each of

them. Then, every inner node of τ is expanded by appending (possibly empty) sequences of

leaves between two of its children as well as before the first and after the last one.

In terms of generating functions, expanding the leaves of τ corresponds to replacing t by

zt/(1− t). Expanding the inner vertices is a bit more involved: by considering that every

inner node has precisely one more available position to attach new leaves than it has children

we find that there are 2n+ k− 1 available positions overall within τ. Therefore we find

Φ(zn tk) = zn
�

zt
1− t

�k 1
(1− t)2n+k−1

,

which, as Φ is linear, immediately proves (3.9).

Corollary 3.2.8.

The generating function for plane trees T (z, t) satisfies the functional equation

T (z, t) = t +Φ(T (z, t)). (3.10)

Proof. This follows directly from the fact that ρ : T \ {�} → T is surjective, i.e. ρ−1(T ) =
T \ {�}.
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Corollary 3.2.9.

The Narayana numbers satisfy the identity

Nn+k−1,k =
k
∑

`=1

�

2n+ k− `− 2
k− `

�

Nn−1,`

for n≥ 2, k ≥ 1.

Proof. The result follows from extracting the coefficient of zn tk from both sides of (3.10).

Remark.

Note that in [5] there is a very short proof based on Dyck paths for this identity, and actually

the argumentation there is strongly related to our tree reduction here: by the well-known

glove bijection, it is easy to see that cutting away all leaves of a plane tree translates into

removing all peaks within the corresponding Dyck path.

We are now interested in determining a multivariate generating function enumerating plane

trees with respect to the tree size as well as the size of the tree after applying the tree

reduction ρ a fixed number of times.

Proposition 3.2.10.

Let r ∈ N0. The trivariate generating function Gr(z, vI , vL) = GL
r (z, vI , vL) enumerating plane

trees whose leaves can be cut at least r-times, where z marks the tree size, and vI and vL

mark the number of inner nodes and leaves of the r-fold cut tree, respectively, is given by

Gr(z, vI , vL) = Φ
r(T (zvI , t vL))|t=z =

1− ur+2

(1− ur+1)(1+ u)
T
�

u(1− ur+1)2

(1− ur+2)2
vI ,

ur+1(1− u)2

(1− ur+2)2
vL

�

.

(3.11)

Proof. First, observe that formally, we can obtain the generating function enumerating

plane trees that can be reduced at least r-times with respect to their size by considering

Φr(T (z, t))|t=z. If we additionally track some size parameter like the number of inner nodes

or the number of leaves before the expansion by marking their size with vI and vL, then we

obtain a generating function for plane trees that can be reduced at least r-times where vI

and vL mark inner nodes and leaves in the original tree and z marks the size of the expanded

tree. From a different point of view, z marks the size of the original tree and vI and vL mark

the number of inner nodes and leaves of the r-fold reduced tree, meaning that we have

Gr(z, vI , vL) = Φ
r(T (zvI , t vL))|t=z,

which proves the first equation in (3.11).

As Φ is linear, we are mainly interested in finding a representation for Φr(zn tk)|t=z. To do so,

we consider the strongly related operator

Ψ( f (z, t)) := f
�

z
(1− t)2

,
zt

(1− t)2

�

.
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It is easy to prove by induction that iterative application of Φ can be expressed in terms of Ψ

via

Φr( f (z, t)) = Ψ r( f (z, t))
r−1
∏

j=0

(1−Ψ j(t)),

which means that we can concentrate on the investigation of the linear operator Ψ. Note

that Ψ is also multiplicative, meaning that Ψ r(zn tk) = Ψ r(z)nΨ r(t)k.

Again by induction, it is easy to show that the recurrences

Ψ r+1(t) =
zΨ r(t)

∏r
j=0(1−Ψ j(t))2

and Ψ r+1(z) =
z

∏r
j=0(1−Ψ j(t))2

hold for r ≥ 0. Now define fr := Ψ r(t)|t=z and gr := Ψ r(z)|t=z. We prove by induction that

these quantities can be represented by means of Fibonacci polynomials as

fr =
z r+1

Fr+2(−z)2
and gr =

zFr+1(−z)2

Fr+2(−z)2

for r ≥ 0, where the recurrence relations from above, the identity (3.7) as well as the relation

r−1
∏

j=0

(1− f j) =
Fr+2(−z)
Fr+1(−z)

for r ≥ 0 play integral parts in the proof.

With these explicit representations, we find

Φr(zn tk)|t=z = Ψ
r(zn tk)|t=z

r−1
∏

j=0

(1− f j) =
zn+k(r+1)Fr+1(−z)2n−1

Fr+2(−z)2n+2k−1
. (3.12)

Then, using (3.8) and rewriting the right-hand side of (3.12) in terms of u, where z =
u/(1+ u)2, yields

Φr(zn tk)|t=z =
1− ur+2

(1− ur+1)(1+ u)

�

u(1− ur+1)2

(1− ur+2)2

�n�ur+1(1− u)2

(1− ur+2)2

�k

.

By linearity, we are allowed to apply Φr to every summand in the power series expansion of

f (z, t) separately—which proves the statement.

The generating function Gr(z, v, v) tells us how many nodes (marked by v) are still in the

tree after r reductions. For the sake of brevity we set Gr(z, v) := Gr(z, v, v). It is completely

described in terms of the function T(z, t), although in a non-trivial way. Results about

moments and the limiting distribution can be extracted from this explicit form.

With the help of the mathematics software system SageMath [59], the generating function

Gr(z, v) can be expanded. For small values of r, the first few summands are

G1(z, v) = vz2 + (v2 + v)z3 + (v3 + 3v2 + v)z4 + (v4 + 6v3 + 6v2 + v)z5 +O(vz6),
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G2(z, v) = vz3 + (v2 + 3v)z4 + (v3 + 5v2 + 7v)z5 + (v4 + 7v3 + 18v2 + 15v)z6 +O(vz7),

G3(z, v) = vz4 + (v2 + 5v)z5 + (v3 + 7v2 + 18v)z6 + (v4 + 9v3 + 33v2 + 57v)z7 +O(vz8).

As announced in Section 3.1, we investigate the behavior of the random variable Xn,r = X L
n,r

that models the number of nodes which are left after reducing a random tree τ with n nodes

r-times. In case the r-fold application of ρ to τ is not defined, we consider the resulting tree

size to be 0. In terms of the random variable, this means that Xn,r = 0 for these trees. Note

that the tree τ is chosen uniformly at random among all trees of size n. With the help of the

generating function Gr(z, v) we are able to express the probability generating function of

Xn,r as

EvXn,r =
an,r + [zn]Gr(z, v)

Cn−1
(3.13)

where an,r is the number of trees of size n which are empty after reducing r-times. We have

an,r = Cn−1 − [zn]Gr(z, 1).

In addition to Xn,r , we also consider the random variables In,r and Ln,r that model the number

of inner nodes and leaves, respectively, that remain after reducing a random tree with n
nodes r times. The generating functions corresponding to In,r and Ln,r are Gr(z, v, 1) and

Gr(z, 1, v), respectively.

The relations Xn,r
d
= In,r + Ln,r and In,r

d
= Xn,r+1 hold by the combinatorial interpretation of

the operator Φ.

3.2.3 Asymptotic Analysis
We find explicit generating functions for the factorial moments of the random variables Xn,r ,

In,r , and Ln,r .

Proposition 3.2.11 ([28]).
The dth factorial moments of Xn,r , In,r and Ln,r are given by

EX d
n,r = EI d

n,r−1 =
1

Cn−1
[zn]

∂ d

∂ vd
Gr(z, 1)

�

�

�

v=1

=
1

Cn−1
[zn]

ud d!
(1+ u)(1− ur+1)d(1− u)d−1

Ñd−1(u
r) (3.14)

and

ELd
n,r =

1
Cn−1

[zn]
udr+2d(1− u)d!

(1+ u)(1− ur+2)d(1− ur+1)d
Ñd−1

�

1
u

�

(3.15)

where z = u/(1+ u)2 for d ∈ Z≥1.

Remark.

For d ≥ 2, ud Ñd−1(u−1) can be replaced by Ñd−1(u) in (3.15), see (3.5).
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Proof. We use the abbreviations

a :=
u(1− ur+1)2

(1− ur+2)2
, b :=

ur+1(1− u)2

(1− ur+2)2
, c :=

1− ur+2

(1− ur+1)(1+ u)
.

We consider the exponential generating function of ∂ d/(∂ v)d Gr(z, v) to be a Taylor series

and obtain
∑

d≥0

1
d!
∂ d

∂ vd
Gr(z, v)qd = Gr(z, v + q).

By Proposition 3.2.10, extracting the coefficient of qd yields

∂ d

∂ vd
Gr(z, v)

�

�

�

v=1
= d![qd]Gr(z, 1+ q) = d!c[qd]T (a(1+ q), b(1+ q)).

We have

T (a(1+ q), b(1+ q)) =
1− (a− b)(1+ q)−

p

1− 2(1+ q)(a+ b) + (1+ q)2(a− b)2

2

=
1− (a− b)− (a− b)q

2

−
p

1− 2(a+ b) + (a− b)2 − 2q(a+ b− (a− b)2) + q2(a− b)2

2
.

By using the fact that

1− 2(a+ b) + (a− b)2 =∆2 for ∆=
(1− u)(1− ur+1)

1− ur+2

and by choosing α and β such that

α+ β =
a+ b− (a− b)2

∆2
, α− β =

a− b
∆

,

we obtain

T (a(1+ q), b(1+ q)) =
∆

2

�

1
∆
− (α− β)− (α− β)q−

Æ

1− 2q(α+ β) + q2(α− β)2
�

=
∆( 1

∆ − 1− (α− β))
2

+∆T (αq,βq).

Extracting the coefficient of qd for d ≥ 1 yields

∂ d

∂ vd
Gr(z, v)

�

�

�

v=1
= cd!∆[qd]

∑

d≥1

αdqd Ñd−1

�

β

α

�

= cd!∆αd Ñd−1

�

β

α

�

where (3.3) has been used.
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Noting that

α=
u

(1− u)(1− ur+1)
and β =

ur+1

(1− u)(1− ur+1)
completes the proof of (3.14).

For the proof of (3.15), we proceed in the same way and use the identity

T (a, b(1+ q)) =
1−∆− (a− b)

2
+∆T (α′q,β ′q)

for

α′ =
ur+2

(1− ur+1)(1− ur+2)
, β ′ =

ur+1

(1− ur+1)(1− ur+2)
.

In fact, we have

T (a, b(1+ q)) =
1− (a− b− bq)−

p

1− 2(a+ b+ bq) + (a− b− bq)2

2

=
(1− (a− b))− (−bq)−

p

∆2 − 2q(b+ b(a− b)) + b2q2

2

=
1−∆− (a− b)

2
+∆

1− (α′ − β ′)q−
p

1− 2q(α′ + β ′) + (α′ − β ′)2q2

2

=
1−∆− (a− b)

2
+∆T (α′q,β ′q)

where α′ and β ′ have been chosen such that

α′ + β ′ =
b+ ba− b2

∆2
and α′ − β ′ = −

b
∆

,

which implies the values for α′ and β ′ given above.

Thus the qth derivative of the generating function Gr(z, 1, 1+ q) is

d!∆cα′d Ñd−1

�

β ′

α′

�

,

which proves (3.15).

From the proof of Proposition 3.2.11, we extract the following identities for the modified

Narayana polynomials.

Remark.

For d ∈ Z≥1 the power series identities

∑

n≥1

�

n
d

�

un−d(1− ux)2n+d−1(1− u)d−1

(1− u2 x)2n−1
Ñn−1

�

x(1− u)2

(1− ux)2

�

= Ñd−1(x) (3.16)

∑

n≥1

un−2d(1− ux)2n−d−1(1− u)2d−1

(1− u2 x)2n−d−1d!
Ñ (d)n−1

�

x(1− u)2

(1− ux)2

�

= Ñd−1

�

1
u

�

(3.17)

hold, where Ñ (d)n−1 denotes the dth derivative of Ñn−1.
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Proof. In the proof of Proposition 3.2.11, we showed that

∂ d

∂ vd
cT (av, bv)

�

�

�

v=1
= cd!∆αd Ñd−1

�

β

α

�

.

Expanding the left side using (3.3) and evaluating the derivative yields (3.16) (where ur

has been replaced by the independent variable x).

The identity (3.17) is proved in the same way.

A previous version of the proof of Proposition 3.2.11 was using the power series identi-

ties (3.16) and (3.17), which can also be derived by using the Mathematica package Sigma

(see [60]).

Corollary 3.2.12.

The expected value of Xn+1,r is explicitly given by

EXn+1,r =
1
Cn

∑

`≥1

��

2n
n+ 1− `(r + 1)

�

−
�

2n
n− `(r + 1)

��

.

Proof. Using Proposition 3.2.11 and Cauchy’s integral formula, we have

CnEXn+1,r = [z
n+1]

ur+1

(1+ u)(1− ur+1)

=
1

2πi

∮

γ

ur+1

(1+ u)(1− ur+1)
dz

zn+2

=
1

2πi

∮

γ̃

ur+1(1− u)(1+ u)2n

1− ur+1

du
un+2

,

where γ is a circle around 0 with a sufficiently small radius such that γ′, the image of γ under

the transformation, is a small contour circling 0 exactly once as well.

Expanding (1− ur+1)−1 into a geometric series and exchanging integration and summation,

we obtain

CnEXn+1,r =
∑

`≥1

[un+1−`(r+1)](1− u)(1+ u)2n,

which implies the result.

Having determined a closed form for this generating function allows us to analyze the

asymptotic behavior of Xn,r in a relatively straightforward way.

Theorem 3.2.13.

Let r ∈ N0 be fixed and consider n→∞. Then the expected size and the corresponding

variance of an r-fold cut plane tree are given by

EXn,r =
n

r + 1
−

r(r − 1)
6(r + 1)

+O(n−1), (3.18)
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and

VXn,r =
r(r + 2)
6(r + 1)2

n+O(1). (3.19)

The factorial moments are asymptotically given by

EX d
n,r =

1
(r + 1)d

nd +
d

12(r + 1)d
(dr2 − 4dr − 3r2 − 6d + 6r + 6)nd−1 +O(nd−3/2)

for d ≥ 1. Note that all O-constants above depend implicitly on r.

Proof. In a nutshell, we want to extract the growth of the derivatives of the generating

functions ∂ d

∂ vd Gr(z, 1), as dividing these quantities by Cn−1 yields the factorial moments. We

want to extract the growth by means of singularity analysis (cf. [18]).

In order to do so, we first need to establish the location of the dominant singularity of these

generating functions, which are explicitly given in (3.14).

The singularities of (3.14) are roots of unity in terms of u. Substituting back u = (1 −
p

1− 4z )/(2z)− 1 maps these roots of unity to real numbers greater or equal to 1/4 and

only u = 1 is mapped to z = 1/4. Thus z = 1/4 is the dominant singularity of (3.14). A

more detailed treatment of these analytic properties of the substitution z = u/(1+ u)2 can

be found in Proposition 2.2.3.

As N0(x) = 1, we obtain the expansion

1
2(r + 1)

(1− u)−1 −
1
4
+

r2 − r − 3
24(r + 1)

(1− u) +O((1− u)2)

for the function on the right-hand side of (3.14) with d = 1. Then, the expansion

(1− u)−κ = 2−κ(1− 4z)−κ/2 + 2−κκ(1− 4z)−(κ−1)/2

+ 2−κ
κ(κ− 1)

2
(1− 4z)−(κ−2)/2 +O((1− 4z)−(κ−3)/2) (3.20)

for fixed κ ∈ C yields

1
4(r + 1)

(1− 4z)−1/2 +
r2 − r − 3
12(r + 1)

(1− 4z)1/2 +O((1− 4z)3/2) + power series in (1− 4z).

By singularity analysis, the nth coefficient, normalized by Cn−1, is asymptotically

EXn,r =
n

r + 1
−

r(r − 1)
6(r + 1)

+O(n−1)

using

Cn−1 = 4n−1 1
n3/2
p
π

�

1+
3
8

n−1 +O(n−2)
�

.
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The higher order factorial moments follow similarly by expanding the function on the

right-hand side of (3.14) for general d > 1 around u = 1 with the help of SageMath,

where in particular the explicit values of the derivatives of the Narayana polynomials from

Proposition 3.2.4 are required.

Singularity analysis of the resulting expansion yields the expression given in the statement

of the theorem. Finally, note that the variance can be computed by using

VXn,r = EX 2
n,r +EXn,r − (EXn,r)

2.

Theorem 3.2.14.

The size Xn,r of the tree obtained from a random plane tree with n nodes by cutting it r-times

is, after standardization, asymptotically normally distributed for n→∞ and fixed r, i.e.,

Xn,r −
n

r + 1
√

√ r(r + 2)
6(r + 1)2

n

d
−→N (0,1).

To be more precise, for x ∈ R we have

P
�Xn,r − nµ
p
σ2n

≤ x
�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2),

with µ= 1
r+1 and σ2 = r(r+2)

6(r+1)2 and where the O-constant depends implicitly on r.

As In,r−1
d
= Xn,r , the same also holds for this random variable.

The rest of this section is devoted to the proof of this central limit theorem. In order to derive

the fact that the number of remaining nodes after r reductions is asymptotically normally

distributed, we first show that the number of nodes that are deleted after r reductions is

asymptotically normally distributed. Then, as the sum of the number of remaining nodes

and the number of deleted nodes is equal to the original tree size, we obtain immediately

that the number of remaining nodes has to be asymptotically normally distributed as well.

We begin by considering the function Fr : T → N0 which maps a plane tree τ to the number

of nodes that are deleted when reducing the tree r times, i.e. the difference between the

size of τ and the size of ρr(τ). Let τn now denote a plane tree with n nodes.

For the sake of convenience, we consider Fr(τn) to be n if r is larger than the maximal

number of reductions that can be applied to τn before the tree cannot be reduced further. In

particular, this means that Fr(�) = 1 for r ≥ 1.
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It is easy to see that the parameter Fr(τn) is a so-called additive tree parameter, meaning that

Fr(τn) = Fr(τi1) + · · ·+ Fr(τi`) + fr(τn)

holds, where τi1 , . . . , τi` are the subtrees rooted at the children of the root of τn, and

fr : T → {0,1} is a toll function recursively defined by

fr(τn) =







1, if Fr−1(τik) = ik for all k = 1, . . . ,`,

0, otherwise,

for r ≥ 1 and f0(τn) = 0.

In order to prove asymptotic normality for additive tree parameters, we can use [67, Theo-

rem 2], which requires us to show that the expected value of the toll function is exponentially

decreasing in n. This is done in the following lemma.

Lemma 3.2.15.

The expected value of fr(τn) is exponentially decreasing in n.

Remark.

Of course, n − Fr(τn) is also an additive parameter. However, the expected value of the

corresponding growth function is not exponentially decreasing.

Proof. Define

qn,r = E( fr(τn)) = P(Fr−1(τik) = ik for all k = 1, . . . ,`) = P(Fr(τn) = n)

and the corresponding generating function

Q r(z) =
∑

n≥1

Cn−1qn,rz
n.

Observe that Fr(τn) = n holds if and only if τn has height less than r, as removing all leaves

from a tree reduces its height by precisely one. Therefore, the generating function Q r(z) is

the generating function enumerating trees of height less than r.

It is well-known (cf. [8]) that the generating function for plane trees of height less than r
can be expressed in terms of Fibonacci polynomials as

Q r(z) =
zFr−1(−z)

Fr(−z)
.

The roots of Fr(−z) are also well-known and can be written as α j,r = (4cos2( jπ/r))−1 for

j = 1, . . . , b(r − 1)/2c.

Thus Q r(z) is a rational function and its coefficients have the form

Cn−1qn,r =
∑

j

c j,rα
−n
j,r
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for constants c j,r . We have |α j,r |> 4. As

Cn−1 ∼
4n−1

p
πn3/2

,

there exists a constant c ∈ (0,1) such that qn,r = O(cn).

Thus, by the strategy discussed above, we find that not only Fr(τn) but also Xn,r = n− Fn,r is

asymptotically normally distributed.

Remark.

Note that the fact that F1(τn) is asymptotically normally distributed means that the Narayana

numbers are asymptotically normally distributed, see for example [11, Theorem 3.13].

As sketched above, Lemma 3.2.15 allows us to apply [67, Theorem 2] in order to prove that

Fr(τn), and therefore also Xn,r = n− Fr(τn) is asymptotically normally distributed. All that

remains to prove is that the speed of convergence is O(n−1/2).

We do so by noting that the proof for asymptotic normality in Wagner’s theorem is based

on [11, Theorem 2.23], where a version of Hwang’s Quasi-Power Theorem [31] without

quantification of the speed of convergence is used. Replacing this argument with the multi-

dimensional quantified version given in [29] then gives us the desired speed of convergence

of O(n−1/2).

3.3 Cutting Paths

3.3.1 Expansion Operator and Results
Let P denote the combinatorial class of paths, i.e. trees in which every node is either a leaf

or has precisely one child. The tree reduction ρ : T \P → T which we will focus on in this

section reduces a tree by cutting away all paths of the tree. This operation is illustrated in

Figure 3.4.

Analogously to our approach in Section 3.2.2, we first determine the corresponding expansion

operator Φ. In order to do so, we need the generating function for the family of paths P ,

which is given by P = P(z, t) = t
1−z . For the sake of readability, we omit the arguments of P.

Proposition 3.3.1.

Let F ⊆ T be a family of plane trees with bivariate generating function f (z, t), where z
marks inner nodes and t marks leaves. Then the generating function for ρ−1(F), the family

of trees whose reduction is in F , is given by

Φ( f (z, t)) = (1− P) f
�

z
(1− P)2

,
zP2

(1− P)2

�

. (3.21)
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7→

Figure 3.4: Illustration of the “cutting paths”-operator ρ.

Proof. The fact that Φ is a linear operator is obvious from a combinatorial point of view,

meaning that we may concentrate on some tree τwith n inner nodes and k leaves, represented

by zn tk.

We follow the proof of Proposition 3.2.7 and observe that all possible tree expansions of τ

can be obtained by the following operations: the leaves of τ are expanded by appending

a sequence of at least two paths to each of them. Note that appending a single path to

a leaf is not allowed, because this would just extend the path ending in that leaf, which

causes ambiguity. Then, the inner nodes are expanded as well by appending (possibly empty)

sequences of paths to the 2n+ k − 1 available positions between, before, and after their

children.

Translating this expansion to the language of generating functions yields

Φ(zn tk) = zn
�

zP2

1− P

�k 1
(1− P)2n+k−1

,

which proves (3.21).

Corollary 3.3.2.

The generating function for plane trees T (z, t) satisfies the functional equation

T (z, t) = P +Φ(T (z, t)). (3.22)

Proof. Surjectivity of ρ implies ρ−1(T ) = T \P , which proves the statement after translating

this into the language of generating functions with the help of Φ.

In the following proposition, we determine the generating function Gr(z, vI , vL) measuring

the effect of applying the path reduction r times on the size of the tree. Most interestingly,

we will see that the path connection is in fact strongly related to the leaf reduction from the

previous section.

Proposition 3.3.3.

The trivariate generating function Gr(z, vI , vL) = GP
r (z, vI , vL) enumerating plane trees whose
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paths can be cut at least r-times, where z marks the tree size and vI and vL mark the number

of inner nodes and leaves of the r-fold cut tree, respectively, is given by

Gr(z, vI , vL) = Φ
r(T (zvI , t vL))|t=z

=
1− u2r+1

(1− u2r+1−1)(1+ u)
T
�

u(1− u2r+1−1)2

(1− u2r+1)2
vI ,

u2r+1−1(1− u)2

(1− u2r+1)2
vL

�

,

where z = u/(1+ u)2.

Proof. By the same reasoning as in the proof of Proposition 3.2.10, the generating function

we are interested in is Gr(z, vI , vL) = Φr(T (zvI , t vL))|t=z, meaning that we want to study the

iterated application of Φ. To do so, we consider the strongly related operator

Ψ( f (z, t)) := f
�

z
(1− P)2

,
zP2

(1− P)2

�

.

The relation

Φr( f (z, t)) = Ψ r( f (z, t))
r−1
∏

j=0

(1−Ψ j(P))

can be proved easily by induction and enables us to determine the behavior of Φ via Ψ.

First of all, for r ≥ 0 and r ≥ 1, the relations

Ψ r(z) =
z

∏r−1
j=0(1−Ψ j(P))2

and Ψ r(P) =
z(Ψ r−1(P))2

∏r−1
j=0(1−Ψ j(P))2 − z

can be proved easily by induction, respectively. Also observe that we can write Ψ r(t) =
Ψ r(z)Ψ r−1(P)2. Now let fr = Ψ r(z)|t=z, gr = Ψ r(t)|t=z, and hr = Ψ r(P)|t=z. With the help of

the identity
∏r

j=0(1+ u2 j
) = 1−u2r+1

1−u we are able to prove the explicit formula

hr =
u2r+1−1(1− u)

1− u2r+2−1
=

z2r+1−1

F2r+2−1(−z)
, (3.23)

where z = u/(1+ u)2 and the second equation is a consequence of (3.8). Using (3.23), we

immediately find

fr =
u(1− u2r+1−1)2

(1− u2r+1)2
=

zF2r+1−1(−z)2

F2r+1(−z)2
and gr =

u2r+1−1(1− u)2

(1− u2r+1)2
=

z2r+1−1

F2r+1(−z)2
.

Putting everything together yields

Φr(zn tk)|t=z =
zn+(2r+1−1)kF2r+1−1(−z)2n−1

F2r+1(−z)2n+2k−1

=
1− u2r+1

(1− u2r+1−1)(1+ u)

�

u(1− u2r+1−1)2

(1− u2r+1)2

�n�u2r+1−1(1− u)2

(1− u2r+1)2

�k

,

which directly implies the statement.
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The following result shows that there is an intimate connection between the “cutting leaves”-

reduction from Section 3.2 and the “cutting paths”-reduction, as can be seen after comparing

the statement of Proposition 3.2.10 with the statement of Proposition 3.3.3.

Corollary 3.3.4.

The generating function Gr(z, vI , vL) = GP
r (z, vI , vL)measuring the change in size after cutting

away all paths from plane trees r times is equal to the generating function GL
2r+1−2(z, vI , vL)

measuring the change in size after cutting away all leaves from plane trees 2r+1 − 2 times.

This connection is now especially important for the analysis of the random variable Xn,r = X P
n,r

modeling the number of nodes that are left after reducing a random tree τ with n nodes r
times by removing all paths. In fact, it follows that

X P
n,r

d
= X L

n,2r+1−2,

meaning that the asymptotic analysis of the factorial moments of X P
n,r as well as the limiting

distribution follow directly from the corresponding results in Section 3.2.3.

Theorem 3.3.5.

Let r ∈ N0 be fixed and consider n→∞. Then expectation and variance of the random

variable Xn,r = X P
n,r can be expressed as

EXn,r =
n

2r+1 − 1
−
(2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+O(n−1), (3.24)

and

VXn,r =
2r+1(2r − 1)
3(2r+1 − 1)2

n+O(1). (3.25)

The factorial moments are asymptotically given by

EX d
n,r =

nd

(2r+1 − 1)d

+
d

12(2r+1 − 1)d
(4r+1d − 2r+4d − 3 · 4r+1 + 9 · 2r+2 + 6d − 18)

+O(nd−3/2).

Furthermore, Xn,r = X P
n,r is asymptotically normally distributed, i.e., for x ∈ R we have

P
�Xn,r −µn
p
σ2n

≤ x
�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2)

for µ= 1
2r+1−1 and σ2 = 2r+1(2r−1)

3(2r+1−1)2 . All O-constants in this theorem depend implicitly on r.
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3.3.2 Total number of paths
In the context of this reduction it is interesting to investigate the total number of paths needed

to construct a given tree. To determine this parameter we can reduce the tree repeatedly

and count the number of leaves. The sum of the number of leaves over all reduction steps

is equal to the number of paths, which follows from the observation that leaves mark the

endpoints of all paths.

Formally, given the random variables Pn,r counting the number of leaves in the rth reduction

of a tree of size n, we want to analyze the random variable Pn :=
∑

r≥0 Pn,r .

Proposition 3.3.6.

The expected number of paths needed to construct a uniformly random tree of size n satisfies

EPn =
1

Cn−1
[zn]

1− u
1+ u

∑

r≥1

u2r

(1− u2r )(1− u2r−1)
, (3.26)

where z = u/(1+ u)2.

Proof. As a consequence of Proposition 3.3.3, the bivariate generating function enumerating

plane trees where z marks tree size and v marks the number of leaves after r path reductions

can be written as

1− u2r+1

(1− u2r+1−1)(1+ u)
T
�

u(1− u2r+1−1)2

(1− u2r+1)2
,
u2r+1−1(1− u)2

(1− u2r+1)2
v
�

.

By differentiating this generating function once with respect to v and setting v = 1 afterwards,

we obtain an expression where Cn−1EPn,r can be extracted as the coefficient of zn. By (3.15)

with d = 1 and r replaced by 2r+1 − 2, we have

EPn,r =
1

Cn−1
[zn]

1− u
1+ u

u2r+1

(1− u2r+1)(1− u2r+1−1)
.

Summation over r ≥ 0 and shifting the index of summation by one completes the proof.

Our strategy for determining an asymptotic expansion for EPn as given in (3.26) is based on

the Mellin transform.

Theorem 3.3.7.

For n→∞, the expected number of paths required to construct a uniformly random tree of

size n is given by the asymptotic expansion

EPn = (α− 1)n+
1
6

log4 n−
γ+ 4(α− 1) log2+ log 2+ 24ζ′(−1) + 2

12 log2

+δ(log4 n) +O(n−1/4), (3.27)
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where

δ(x) :=
1

log 2

∑

k∈Z\{0}

(−1+χk)Γ (χk/2)ζ(−1+χk)e
2kπi x (3.28)

with χk =
2kπi
log2 is a fluctuation with mean 0 and α :=

∑

k≥1 1/(2k − 1)≈ 1.606695, γ is the

Euler–Mascheroni constant and ζ is the Riemann zeta function.

Remark.

The constant α appears in the asymptotic analysis of digital search trees (see e.g. [39]).

Proof. In order to obtain an asymptotic expansion from (3.26), we rewrite

P(z) =
1− u
1+ u

∑

r≥1

u2r

(1− u2r )(1− u2r−1)
=

u
1+ u

∑

r≥1

�

u2r−1

1− u2r−1
−

u2r

1− u2r

�

where z = u/(1+ u)2. The main task to obtain an asymptotic expansion of P(z) is to provide

a precise analysis of this sum, which we carry out via the Mellin transform. We consider the

function

f (t) :=
∑

r≥1

e−(2
r−1)t

1− e−(2r−1)t
−
∑

r≥1

e−2r t

1− e−2r t
,

obtained from substituting u= e−t in the sum above. With

A(s) :=
∑

r≥1

1
2rs
((1− 2−r)−s − 1) =

∑

`≥1

�

`+ s− 1
`

�

1
2s+` − 1

we find that the corresponding Mellin transform of this difference of harmonic sums is given

by

f ∗(s) = Γ (s)ζ(s)A(s)

with fundamental strip 〈1,∞〉. In order for the inversion formula to be valid, we need to

show that f ∗(s) decays sufficiently fast along vertical lines in the complex plane. While Γ (s)
and ζ(s) are well-known to decay exponentially and grow polynomially along vertical lines,

respectively, the Dirichlet series A(s) has to be investigated in more detail.

We want to estimate the summands in

A(s)−
s

2s+1 − 1
=
∑

r≥1

1
2rs

�

(1− 2−r)−s − 1−
s
2r

�

.

To do so, we consider g(x) = (1− x)−s as a function of a real variable. By means of the

integral form of the Taylor approximation error we find

|g(2−r)− g(0)− g ′(0) · 2−r |=
�

�

�

�

∫ 2−r

0

s(s+ 1)(1− t)−s−2(2−r − t) d t

�

�

�

�

≤ |s||s+ 1|2−r

∫ 2−r

0

|1− t|−Re s−2 d t

≤ |s||s+ 1|2−2r(1− 2−r)−Re s−2,
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where the last inequality is valid under the assumption that Re s > −2. Using this estimate,

we find

|A(s)| ≤
�

�

�A(s)−
s

2s+1 − 1

�

�

�+
�

�

�

s
2s+1 − 1

�

�

�

≤
�

�

�

s
2s+1 − 1

�

�

�+ |s||s+ 1|
∑

r≥1

1
(2r − 1)Re s+2

,

where the sum converges for Re s > −2. Therefore, A(s) has polynomial growth in Im s for

Re s > −2 and Im s = 2πi
log2

�

k + 1
2

�

, where k ∈ Z and |k| → ∞, as well as on vertical lines

with Re s > −2 and Re s 6= −1. This implies that f ∗(s) decays sufficiently fast, and thus the

inversion formula states

f (t) =
1

2πi

∫ 2+i∞

2−i∞
Γ (s)ζ(s)A(s)t−s ds, (3.29)

which is valid for real, positive t → 0 (and thus u → 1− and z → (1/4)−, as we have

z = u/(1+ u)2 and u= e−t). In order to extract the coefficient growth (in terms of z) with

the help of singularity analysis, we require analyticity in a larger region (cf. [18]), e.g. in a

complex punctured neighborhood of 1/4 with1 |arg(z − 1/4)|> 2π/5.

Substituting back t for z, we find

t = − log
�

1−
p

1− 4z
2z

− 1
�

= 2
p

1− 4z +
2
3
(1− 4z)3/2 +O((1− 4z)5/2),

which implies

|arg t|=
1
2
|arg(1− 4z)|+ o(1)

such that we have the bound |arg t| < 2π/5 for t → 0, given that the restriction on the

argument in terms of z is satisfied.

With the help of our estimates on f ∗(s) that we discussed above, we find that

| f ∗(s)t−s|= O
�

|Im(t)|4|t|−Re(s) exp
�

−
π

10
|Im(s)|

��

(3.30)

for −3/2≤ Re s ≤ 2 and Im s = 2πi
log2

�

k+ 1
2

�

, where k ∈ Z and |k| →∞. This is a consequence

of combining the quantified growth of Γ (s) (see [10, 5.11.3]) and the growth of ζ(s) (see [69,

13.51]) with the facts that A(s) is of order O(Im(s)2) and s
2s+1−1 is of order O(Im(s)) for s

taking values in the specified region.

We can evaluate (3.29) by shifting the line of integration from Re(s) = 2 to Re(s) = −3/2

and collecting the residues of the poles we cross. This yields

f (t) =
∑

p∈P

Ress=p( f
∗(s)t−s) +

1
2πi

∫ −3/2+i∞

−3/2−i∞
f ∗(s)t−s ds,

1Note that the bound 2π/5 is somewhat arbitrary: the argument just needs to be less than π/2.

http://dlmf.nist.gov/5.11.E3
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where P = {−1,1} ∪ {−1+χk | k ∈ Z \ {0}}. For the error term we use the estimate above

and find
1

2πi

∫ −3/2+i∞

−3/2−i∞
f ∗(s)t−s ds = O(|t|3/2).

Evaluating the residues yields

f (t) = A(1)t−1 +
1

12 log 2
t log t +

log 2+ 2γ+ 24ζ′(−1)
24 log2

t

+
∑

k∈Z\{0}

1
log 2

Γ (χk)ζ(−1+χk)t
1−χk +O(|t|3/2).

Note that with α :=
∑

k≥1 1/(2k − 1), we have A(1) = α− 1.

When substituting back in order to obtain an expansion in terms of z → 1/4, we have to

carefully check that the error terms within the sum of the residues at χk for k ∈ Z \ {0} can

still be controlled. Considering that for some exponent κ, we have the expansion

t−κ = (1− 4z)−κ/2(1+O(1− 4z))−κ/2,

and thus

|(1+O(1− 4z))−κ/2 − 1|=
�

�

�exp
�

−
κ

2
log(1+O(1− 4z))

�

− 1
�

�

�

≤
�

�

�

κ

2

�

�

�|log(1+O(1− 4z))|exp
�
�

�

�

κ

2

�

�

�|log(1+O(1− 4z))|
�

=
�

�

�

κ

2

�

�

�O(1− 4z)exp
�
�

�

�

κ

2

�

�

�O(1− 4z)
�

.

Setting κ = −1+χk shows that the errors that we sum are of order O(|k|(1−4z)exp(|k|O(1−
4z))). Choosing z sufficiently close to 1/4 ensures that the exponential growth is negligible

compared to the exponential decay proved in (3.30).

Finally, it is easy to see that the factor u
1+u can be rewritten as 1−

p
1−4z
2 . Multiplying our

expansion of f (t) with this factor and substituting back yields the expansion

P(z) =
α− 1

4
(1− 4z)−1/2 −

α− 1
4
−

1
24 log2

(1− 4z)1/2 log(1− 4z)

+
2γ− 2α log 2+ 5 log 2+ 24ζ′(1)

24 log 2
(1− 4z)1/2

+
1

log2

∑

k∈Z\{0}

Γ (χk)ζ(−1+χk)(1− 4z)(1−χk)/2 +O((1− 4z)3/4).

Applying singularity analysis, normalizing the result by Cn−1, and rewriting the coefficients

of the contributions from the poles at −1+χk via the duplication formula for the Gamma

function (cf. [10, 5.5.5]) then proves the asymptotic expansion for EPn.

http://dlmf.nist.gov/5.5.E5
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3.4 Cutting Old Leaves

3.4.1 Preliminaries
In this section we consider a slightly more complex reduction: instead of removing all leaves,

we just remove all leftmost leaves. Following [6], we call a leaf that is a leftmost child an

old leaf.

In order to describe the corresponding expansion in the language of generating functions,

we need to change our underlying combinatorial model of trees in a way that specifically

marks old leaves.

Let L be the combinatorial class of plane trees where � marks old leaves and marks all

nodes that are neither old leaves nor parents thereof. Now, as a first step we determine the

bivariate generating function L(z, w) of L.

Proposition 3.4.1.

The generating function L(z, w) enumerating plane trees with respect to old leaves� (marked

by the variable w) and all nodes that are neither old leaves nor parents thereof (marked

by z) is given by

L(z, w) =
1−
p

1− 4z − 4w+ 4z2

2
. (3.31)

For n≥ 2 there are Ck−1

� n−2
n−2k

�

2n−2k plane trees of size n (meaning n nodes overall) with k
old leaves.

For example in Figure 3.5, the original tree corresponds to z3w3 because it has three old

leaves (dashed nodes) and three nodes which are neither old leaves nor parents of old leaves.

7→ 7→ 7→ · · · 7→

Figure 3.5: Illustration of the “cutting old leaves”-operator ρ.

Proof. We consider the symbolic equation describing the combinatorial class L of plane trees

with respect to old leaves, which is illustrated in Figure 3.6. The functional equation that
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L = +
∑

n≥0

L L · · · L

n

+
∑

n≥0

L− L L · · · L

n

Figure 3.6: Symbolic equation for plane trees w.r.t. old leaves.

can be derived from the symbolic equation by marking � with w and with z is

L(z, w) = z +
w+ z(L(z, w)− z)

1− L(z, w)
. (3.32)

Solving this equation and choosing the correct branch of the root yields (3.31).

To extract coefficients of L(z, w), we rewrite it as

L(z, w) =
1
2

�

1− (1− 2z)

√

√

1−
4w

(1− 2z)2

�

=
1
2

�

1−
∑

k≥0

�

1/2
k

�

(−1)k4kwk

(1− 2z)2k−1

�

(3.33)

= z +
∑

k≥1

Ck−1
wk

(1− 2z)2k−1
= z +

∑

k≥1
n≥0

Ck−1

�

n+ 2k− 2
n

�

2nwkzn. (3.34)

As we will see in the next section, the polynomials defined below will play a similar role

for the “old leaves”-reduction as the Fibonacci polynomials played for the “leaves”- and

“paths”-reduction.

Definition 3.4.2.

The polynomials Br(z) are the generating functions of binary trees w.r.t. the number of

internal nodes of height ≤ r satisfying

Br(z) = 1+ zBr−1(z)
2 (3.35)

for r ≥ 1 and B0(z) = 1.

3.4.2 Expansion Operator and Asymptotic Results
As described in the previous section, we now concentrate on the reduction ρ : L→ L, which

removes all old leaves from a tree. Note that ρ( ) = , as the root itself is not an old leaf.

We begin our analysis of this reduction by determining the expansion operator Φ.

Proposition 3.4.3.

Let F ⊆ L be a family of plane trees with bivariate generating function f (z, w), where z
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marks nodes that are neither old leaves nor parents thereof and w marks old leaves. Then

the generating function for ρ−1(F), the family of trees whose reduction is in F , is given by

Φ( f (z, w)) = f (z +w, (2z +w)w). (3.36)

Proof. Linearity of Φ is obvious from the combinatorial interpretation, meaning that we can

focus on the expansion of any tree represented by znwk, i.e. a tree with n nodes that are

neither old leaves nor parents thereof and k old leaves.

Figure 3.7 illustrates all three possibilities to expand an old leaf �:

– appending an old leaf to the parent of �, which turns the original old leaf into ,

– appending an old leaf to � itself, which turns the parent into ,

– appending old leaves both to � and its parent.

Φ
−→ + +

Figure 3.7: All possible expansions of an old leaf.

In terms of generating functions, this means that w is substituted by 2zw+w2.

Furthermore, the nodes represented by can optionally be expanded by attaching an old

leaf to them, otherwise they stay as they are. This option corresponds to the substitution

z 7→ z +w.

There are no more operations to expand the tree, so putting everything together yields

Φ(znwk) = (z +w)n(2zw+w2)k,

which proves the statement.

An immediate consequence of the fact that ρ : L→ L is surjective is the following corollary.

Corollary 3.4.4.

The generating function for plane trees L(z, w) satisfies the functional equation

Φ(L(z, w)) = L(z, w).

We now focus on determining the generating function measuring the change in the tree size

after repeatedly applying the reduction ρ.
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Proposition 3.4.5.

Let r ∈ N0. The bivariate generating function Gr(z, v) = GOL
r (z, v) enumerating plane trees,

where z marks the tree size and v marks the size of the r-fold cut tree, is given by

Gr(z, v) = Φr(L(zv, wv2))|w=z2 = L(zBr(z)v, z(Br+1(z)− Br(z))v
2),

where the Br(z) are the polynomials enumerating binary trees of height ≤ r w.r.t. the number

of internal nodes.

Proof. First, note that the size of a tree with k old leaves and n nodes that are neither old

leaves nor parents thereof is actually n+2k, as parents of old leaves are not explicitly marked.

This explains why we have to substitute w= z2 in order to arrive at the tree size.

In contrast to the previous sections, the operator Φ is already linear and multiplicative,

meaning that we have

Φr(znwk) = Φr(z)nΦr(w)k.

Investigating the repeated application of Φ to z and w leads to the recurrences

Φr(z) = Φr−1(z) +Φr−1(z)2 −Φr−2(z)2 and Φr(w) = Φr+1(z)−Φr(z)

for r ≥ 2 and r ≥ 0, respectively. With the recurrence for the polynomials Br from (3.35) it

is easy to prove by induction that

Φr(z)|w=z2 = zBr(z)

for r ≥ 0. Thus, we also find Φr(w)|w=z2 = z(Br+1(z)− Br(z)). Overall, we obtain

Φr(znwk)|w=z2 = zn+kBr(z)
n(Br+1(z)− Br(z))

k,

which, by linearity of Φ, proves the proposition.

For the next step in our analysis, we turn to the random variable Xn,r = X OL
n,r which models

the size of the tree that results from reducing a random tree τ with n nodes r-times.

As we have ρ( ) = (and thus no trees vanish completely), the probability generating

function for this random variable is simply

EvXn,r =
[zn]Gr(z, v)

Cn−1
.

While the height polynomials Br(z) make it very difficult to obtain general results for the

factorial moments of Xn,r , special moments like expectation and variance are no problem,

and even a central limit theorem is possible.
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Theorem 3.4.6.

Let r ∈ N0 be fixed and consider n→∞. Then the expected tree size after deleting old

leaves of a tree with n nodes r-times and the corresponding variance are given by

EXn,r = (2− Br(1/4))n−
B′r(1/4)

8
+O(n−1), (3.37)

and

VXn,r =
�

Br(1/4)− Br(1/4)
2 +
(2− Br(1/4))B′r(1/4)

2

�

n+O(1). (3.38)

All O-constants in this theorem depend implicitly on r.

Additionally, the random variable Xn,r is asymptotically normally distributed for fixed r ≥ 1,

i.e.
Xn,r −µn
p
σ2n

d
−→N (0, 1),

where µ= (2− Br(1/4)) and σ2 =
�

Br(1/4)− Br(1/4)2 +
(2−Br (1/4))B′r (1/4)

2

�

.

Proof. First of all, we observe that Proposition 3.4.1 and Proposition 3.4.5 combined with

the recursion Br(z) = 1+ zBr−1(z)2 allow us to write the bivariate generating function as

Gr(z, v) =
1−

p

1− 4zv(Br(z)(1− v) + v)
2

.

The asymptotic expansion for the expected value EXn,r can now be obtained by determining

1
Cn−1

[zn]
∂

∂ v
Gr(z, v)|v=1 =

1
Cn−1

[zn]
z(2− Br(z))p

1− 4z
.

By means of singularity analysis we find

EXn,r = (2− Br(1/4))n−
B′r(1/4)

8
−
�3B′r(1/4)

16
+

3B′′r (1/4)

128

�

n−1 +O(n−2),

which proves (3.37). For the second factorial moment we obtain

EX 2
n,r =

1
Cn−1

[zn]
∂ 2

∂ v2
Gr(z, v)|v=1 =

1
Cn−1

[zn]
�

2z2(2− Br(z))
(1− 4z)3/2

+
2z(1− Br(z))
(1− 4z)1/2

�

,

which yields

EX 2
n,r = (2− Br(1/4))

2n2 +
�

2Br(1/4)− Br(1/4)
2 − 2+

(2− Br(1/4))B′r(1/4)

4

�

n

+
(2− Br(1/4))B′′r (1/4)

64
−

B′r(1/4)
2

64
−

Br(1/4)B′r(1/4)

8
+O(n−1).

The variance can now be obtained via VXn,r = EX 2
n,r +EXn,r − (EXn,r)2, which proves (3.38).
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In order to show asymptotic normality of Xn,r we investigate the random variable n− Xn,r ,

which counts the number of nodes that are deleted after reducing some tree r times. Observe

that this quantity can be seen as an additive tree parameter Fr defined recursively by

Fr(τn) = Fr(τi1) + Fr(τi2) + · · ·+ Fr(τi`) + fr(τn) and Fr( ) = 0

where τn is some tree of size n, τi1 up to τi` are the subtrees rooted at the children of the

root of τn, and fr : L→ {0,1, . . . , r − 1} is a toll function defined by

fr(τn) =
r−1
∑

j=0







1 if ρ j(τn) has an old leaf attached to its root,

0 otherwise,

for r ≥ 1. Now, as fr(τn) enumerates the number of old leaves deleted from the root of τn

after r reductions, Fr(τn) equals the total number of deleted nodes after r reductions.

The fact that r is fixed implies that fr is not only bounded, but also a so-called local functional,
meaning that the value of fr(τn) can already be determined from the first r levels of τn. This

is because one application of ρ can reduce the distance between the root of the tree and the

closest old leaf by at most one. Thus all old leaves that are deleted from the root during r
reductions have to be found within the first r levels of τn.

As we have now established that fr is both bounded and a local functional, we are able to

apply [33, Theorem 1.13], which proves that n− Xn,r is asymptotically normally distributed.

Thus Xn,r is asymptotically normally distributed as well, which proves the statement.

Remark.

In [17], the asymptotic behavior of a sequence strongly related to Br(1/4) was studied:

in Section 4, the authors define a sequence fn such that fr+1 =
1
2 −

Br (1/4)
4 , in our notation.

They prove the asymptotic expansion fn =
1

n+log n+O(1) . This allows us to conclude that the

asymptotic behavior of Br(1/4) can be described as

Br(1/4) = 2−
4
r
+

4 log r
r2

+O(r−2)

for r →∞.

3.5 Cutting Old Paths

3.5.1 Expansion Operator
As in previous sections, we adapt the “old leaves” reduction to remove all “old paths”. That

is, the tree reduction ρ : L→ L in this section reduces a tree by removing all paths that end

in an old leaf. This operation is illustrated in Figure 3.8, where � marks old leaves and

marks all nodes that are neither old leaves nor parents thereof.
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7→ 7→

Figure 3.8: Illustration of the “cutting old paths”-operator ρ.

Obviously, we also need the combinatorial class of paths P for our analysis. The bivariate

generating function of P is given by P = P(z, w) = w
1−z , where w and z mark � and ,

respectively. Also, we omit the arguments of P for the sake of readability. Now, we determine

the shape of the expansion operator Φ.

Proposition 3.5.1.

Let F ⊆ L be a family of plane trees with bivariate generating function f (z, w), where z
marks nodes that are neither old leaves nor parents thereof and w marks old leaves. Then

the generating function for ρ−1(F), the family of trees whose reduction is in F , is given by

Φ( f (z, w)) = f (z + P, zP + P2). (3.39)

Proof. With linearity of the operator Φ being obvious from a combinatorial point of view, we

only have to investigate the expansion of any tree represented by znwk, i.e. a tree with n
nodes that are neither old leaves nor parents thereof and k old leaves.

There are two options to expand an old leaf �:

– either appending an old path to the parent of �, which turns the old leaf into ,

– or an old path is appended to both the parent of � and to � itself.

Note that just appending an old path to� is not a valid expansion as this introduces ambiguity.

This is the same argument that we also used in the proof of Proposition 3.3.1. Overall, this

means that Φ has to map w to zP + P2.

On the other hand, the nodes represented by can optionally be expanded by attaching an

old path. Otherwise they stay as they are. Overall, this implies Φ(z) = z + P.

Putting everything together, we immediately arrive at the statement of the Proposition.

Analogously to the previous reductions, surjectivity of ρ : L → L implies the following

corollary.



82 3 Cutting and Pruning Plane Trees

Corollary 3.5.2.

The generating function for plane trees L(z, w) satisfies the functional equation

Φ(L(z, w)) = L(z, w).

In order to carry out a detailed analysis of this reduction, we need information about the

iterated application of Φ to L(zvI , wv2
L), which leads to the generating function Gr(z, vI , v2

L)
measuring the change in the tree size after r applications of the reduction. The following

proposition deals with determining this generating function.

Proposition 3.5.3.

Let r ∈ N0. The trivariate generating function Gr(z, vI , v2
L) = GOP

r (z, vI , v2
L) enumerating

plane trees, where z marks the tree size, vL marks all old leaves, and vI marks all nodes that

are neither old leaves nor parents thereof, is given by

Gr(z, vI , v2
L) = Φ

r(L(zvI , wv2
L))|w=z2 = L

�

u(1− ur+1)
(1+ u)(1− ur+2)

vI ,
ur+2(1− u)2

(1+ u)2(1− ur+2)2
v2

L

�

,

where z = u/(1+ u)2.

Proof. Observe that the operator Φ is already linear and multiplicative, which is why we can

concentrate on finding suitable expressions for Φr(z) and Φr(w).

First of all, for r ≥ 1 the recurrences

Φr(z) = Φr−1(z) +Φr−1(P), Φr(w) = Φr−1(P)Φr(z)

follow immediately from (3.39). Furthermore, the relation

Φr(P) = P
r
∏

j=1

Φ j(z)
1−Φ j(z)

can easily be proved by induction. Then, by setting fr := Φr(z)|w=z2 the recurrences above

translate to

fr = fr−1 + z
r−1
∏

j=0

f j

1− f j
.

As a next step, we show by induction that fr can be expressed in terms of Fibonacci polyno-

mials as

fr =
zFr+1(−z)
Fr+2(−z)

,

where in particular (3.7) was used. As a consequence, we find

Φr(P)|w=z2 = fr+1 − fr =
zFr+2(−z)
Fr+3(−z)

−
zFr+1(−z)
Fr+2(−z)

=
z r+2

Fr+2(−z)Fr+3(−z)
.



3.5 Cutting Old Paths 83

This allows us to express gr := Φr(w)|w=z2 as

gr = Φ
r−1(P)|w=z2 · fr =

z r+2

Fr+2(−z)2
.

Finally, as we have Φr(znwk)|w=z2 = f n
r gk

r , substituting z = u/(1 + u)2 and using (3.8)

completes the proof.

3.5.2 Analysis of Tree Size and Related Parameters
We investigate the behavior of the random variable Xn,r = X OP

n,r which models the number

of nodes remaining after reducing a random tree τ with n nodes r-times. The tree τ is

chosen uniformly among all trees of size n. Analogously to the “old leaf”-reduction from the

previous section, we also have ρ( ) = for the “old path”-reduction, meaning that no trees

vanish completely. For the sake of convenience we set Gr(z, v) := Gr(z, v, v2), allowing us to

write the probability generating function of Xn.r as

EvXn,r =
[zn]Gr(z, v)

Cn−1
.

With the help of Proposition 3.5.3, it is easy to obtain expressions for the factorial moments

EX d
n,r for fixed d by differentiating Gr(z, v) d-times with respect to v and setting v = 1

afterwards. General expressions for d ≥ 2 (coinciding with the value given for d = 2) are

available but less pleasant.

Lemma 3.5.4 ([28]).
The factorial moments of Xn,r are

EXn,r =
1

Cn−1
[zn]

u(1+ ur+1)
(1+ u)(1− ur+2)

,

EXn,r(Xn,r − 1) =
2

Cn−1
[zn]

(1+ u)ur+2

(1− u)(1− ur+2)2

and

EX d
n,r =

d!
Cn−1

[zn]
1− u
1+ u

�

u(1+ ur+1)
(1− u)(1− ur+2)

+
u

1− u

√

√ 1− ur

1− ur+2

�d

× Ñd−1

�

2u2r+2 − ur+2 + 2ur+1 − ur + 2
(1+ u)2ur

+
2(1+ ur+1)(1− ur+2)

ur(1+ u)2

√

√ 1− ur

1− ur+2

�

for d ≥ 2.

Proof. The expressions for d ∈ {1,2} can be obtained by differentiation. We consider the

general case here.
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We use the abbreviations

a =
u(1− ur+1)

(1+ u)(1− ur+2)
, b =

ur+2(1− u)2

(1+ u)2(1− ur+2)2
, ∆=

1− u
1+ u

.

By the same argument as in the proof of Proposition 3.2.11, we have

∂ d

∂ vd
Gr(z, v)

�

�

�

v=1
= d![qd]L(a(1+ q), b(1+ q)2).

By using (3.31), we rewrite L(a(1+ q), b(1+ q)2) as

L(a(1+ q), b(1+ q)2) =
1−

p

(1− 2a− 2aq)2 − 4b(1+ q)2

2

=
1−

p

(1− 2a)2 − 4b− 2q(2a(1− 2a) + 4b) + q2(4a2 − 4b)
2

.

We have

(1− 2a)2 − 4b =∆2,

√

√4a2 − 4b
∆2

=
2u

1− u

√

√ 1− ur

1− ur+2
.

We choose α and β such that

α+ β =
2a(1− 2a) + 4b

∆2
, α− β =

√

√4a2 − 4b
∆2

.

This results in

L(a(1+ q), b(1+ q)2) =∆
1
∆ − 1+ q(α− β)

2
+∆

1− q(α− β)−
p

1− 2q(α+ β) + q2(α− β)
2

=∆
1
∆ − 1+ q(α− β)

2
+∆T (αq,βq).

Using (3.3) to extract the coefficient of qd for d ≥ 1 yields

∂ d

∂ vd
Gr(z, v)

�

�

�

v=1
= d!∆

�

α− β
2

Jd = 1K+αd Nd−1

�

β

α

��

.

Inserting everything concludes the proof of the proposition.

Corollary 3.5.5.

The expected value of Xn+1,r is explicitly given by

EXn+1,r =
1
Cn

��

2n
n

�

+
∑

j≥0

��

2n
n− ( j + 1)(r + 2) + 1

�

−
�

2n
n− j(r + 2)− 1

���

Proof. From Lemma 3.5.4, we obtain

CnEXn+1,r = [z
n+1]

(1+ ur+1)u
(1+ u)(1− ur+2)

and proceeding as in Corollary 3.2.12 we obtain the given result.
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By expanding the expressions in Lemma 3.5.4 and using singularity analysis, we obtain the

asymptotic growth of the expected value and the variance.

Theorem 3.5.6.

Let r ∈ N be fixed and consider n →∞. Then the expected size and the corresponding

variance of an r-fold cut plane tree are given by

EXn,r =
2n

r + 2
−

r(r + 1)
3(r + 2)

+O(n−1),

and

VXn,r =
2r(r + 1)
3(r + 2)2

n+O(1).

For d ≥ 3, the dth factorial moment is

EX d
n,r =

2d−1d
(2d − 3)(r + 2)d

nd +
�

2d − 5
d − 2

� p
rπ d

2d−3(r + 2)d−1/2
nd− 1

2 +O(nd−1).

All O-constants in this theorem depend implicitly on r.

Besides the analysis of the tree size, we are also interested in how the numbers of nodes

represented by � and by develop when the tree is reduced repeatedly. Formally, this means

that we consider the random variables X�n,r and Xn,r counting the number of old leaves and

the number of all nodes that are neither old leaves nor parents thereof, respectively. By

construction, the relation

Xn,r = 2 · X�n,r + Xn,r (3.40)

holds.

The bivariate generating functions corresponding to these random variables can be obtained

directly from Proposition 3.5.3. We have

G�r (z, v) = Gr(z, 1, v), Gr (z, v) = Gr(z, v, 1).

In contrast to Xn,r , the dth factorial moments for X�n,r and Xn,r have simpler expressions.

Proposition 3.5.7 ([28]).
Let d ∈ N. Then the dth factorial moments of X�n,r and Xn,r are given by

EX�n,r
d =
(2d − 2)d−1

Cn−1
[zn]

1− u
1+ u

urd+2d

(1− ur+2)2d
(3.41)

and

EXn,r =
1

Cn−1
[zn]

u(1− ur+1)(1+ ur+2)
(1+ u)(1− ur+2)2

(3.42)

as well as

EXn,r
d =

1
Cn−1

[zn]
(1− ur+1)dud2d d!

(1− u)d−1(1+ u)(1− ur+2)2d
Ñd−1(u

r+2) (3.43)

for d > 1.
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Proof of Proposition 3.5.7. As in the proof of Lemma 3.5.4, we use the abbreviations

a =
u(1− ur+1)

(1+ u)(1− ur+2)
, b =

ur+2(1− u)2

(1+ u)2(1− ur+2)2
, ∆=

1− u
1+ u

.

Then, using (3.33), we get

∂ d

∂ vd
G�r (z, v) =

∂ d

∂ vd
L(a, bv) = −

1− 2a
2

�

1
2

�d�

1−
4bv

(1− 2a)2

�1/2−d (−4b)d

(1− 2a)2d
.

Setting v = 1 and using the fact that

(1− 2a)2 − 4b =∆2 (3.44)

proves (3.41).

For deriving ∂ d/(∂ v)d Gr (z, v), we proceed as in the proof of Proposition 3.2.11. The crucial

identity is

L(a(1+ q), b) =∆
1
∆ − 1+ (α′ − β ′)q

2
+∆T (α′q,β ′q)

with

α′ =
2u(1− ur+1)

(1− ur+2)2(1− u)
,

β ′

α′
= ur+2.

This implies (3.42) and (3.43).

In fact, we have

L(a(1+ q), b) =
1−

p

(1− 2a− 2aq)2 − 4b
2

=
1−

p

(1− 2a)2 − 4b− 2q(2a− 4a2) + q24a2

2
.

We use (3.44) and choose α′ and β ′ such that

α′ + β ′ =
2a− 4a2

∆2
, α′ − β ′ =

2a
∆

.

This results in

L(a(1+ q), b) =∆
1
∆ − 1

2
+∆

1−
p

1− 2q(α′ + β ′) + q2(α′ − β ′)2

2

=∆
1
∆ − 1+ (α′ − β ′)q

2
+∆

1− (α′ − β ′)q−
p

1− 2q(α′ + β ′) + q2(α′ − β ′)2

2

=∆
1
∆ − 1+ (α′ − β ′)q

2
+∆T (α′q,β ′q).

By (3.3), extracting coefficients leads to

Cn−1
1
d!
EXn,r

d = [zn]∆
�

α′ − β ′

2
Jd = 1K+α′d Ñd−1

�

β ′

α′

��
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for d ≥ 1. As
α′ + β ′

2
=

u(1− ur+1)(1+ ur+2)
(1− ur+2)2(1− u)

,

the result follows.

As in Section 3.2.3, the above proof exhibits some identities:

Remark.

For d ∈ Z≥1, the power series identities
∑

n≥0
k≥1

un+k x k(1− x)n(1− u)2k

(1+ u)n+2k(1− ux)n+2k
kd Ck−1

�

n+ 2k− 2
n

�

2n = (2d − 2)d−1 ud x d(1− u)
(1− ux)2d(1+ u)

(3.45)

and
∑

n≥0
k≥1

un+k x k(1− x)n(1− u)2k

(1+ u)n+2k(1− ux)n+2k
nd Ck−1

�

n+ 2k− 2
n

�

2n =
(1− x)dud2d d! Ñd−1(ux)
(1− u)d−1(1+ u)(1− ux)2d

(3.46)

hold.

Proof. We replace ur+1 by x in the proof of Proposition 3.5.7 and expand L by (3.34).

The asymptotic behavior for the factorial moments of X�n,r and Xn,r can now be extracted

quite straightforward by means of singularity analysis from the representation given in

Proposition 3.5.7.

Theorem 3.5.8.

Let r ∈ N0 be fixed and consider n→∞. Then the expected number of old leaves as well as

the expected number of nodes that are neither old leaves nor parents thereof in an r-fold “old

path”-reduced tree and the corresponding variances are given by the asymptotic expansions

EX�n,r =
1

(r + 2)2
n+
(r + 3)(r + 1)

6(r + 2)2
+O(n−1), (3.47)

EXn,r =
2(r + 1)
(r + 2)2

n−
(r2 + 3r + 3)(r + 1)

3(r + 2)2
+O(n−1),

VX�n,r =
(r + 3)(r + 1)

3(r + 2)4
n+O(1), (3.48)

VXn,r =
2(r3 + 4r2 + 6r + 6)(r + 1)

3(r + 2)4
n+O(1).

Additionally, for fixed d ≥ 2 the behavior of the factorial moments of X�n,r and Xn,r is given by

EX�n,r
d =

1
(r + 2)2d

+O(nd−1) (3.49)

and

EXn,r
d =

2d(r + 1)d

(r + 2)2d
nd +O(nd−1), (3.50)

respectively. All O-constants in this theorem depend implicitly on r.
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3.5.3 Total number of old paths
Similarly to our approach for counting the total number of paths required to construct a

given tree from Section 3.3.2, we can also analyze the number of “old path”-segments within

a random tree of size n. Formally, this corresponds to an analysis of the random variable

Sn :=
∑

r≥0 X�n,r .

Theorem 3.5.9.

The expected number of “old path” segments within a uniformly random tree of size n is

given asymptotically by

ESn =
�

π2

6
− 1

�

n−
π2

36
−

1
12
−
π2

120n
+O(n−2) (3.51)

for n→∞.

Proof. As we have Sn =
∑

r≥0 X�n,r , we can use (3.41) to write

ESn =
∑

r≥0

EX�n,r =
1

Cn−1
[zn]

1− u
1+ u

∑

r≥0

ur+2

(1− ur+2)2
.

The main part of this analysis consists of determining an appropriate expansion of the sum

in the last equation via the Mellin transform.

By setting u= e−t and by means of expanding via the geometric series, we find

∑

r≥0

ur+2

(1− ur+2)2
=
∑

r,λ≥0

λuλ(r+2) =
∑

r,λ≥0

λe−tλ(r+2) =: f (t).

It is easy to determine the corresponding Mellin transform

f ∗(s) = Γ (s)ζ(s− 1)(ζ(s)− 1)

with fundamental strip 〈2,∞〉. The poles of f ∗(s) are located at s ∈ {2,1} ∪−2N0. As this

function behaves very nicely along vertical lines because of the exponential decay and the

polynomial growth of the gamma function and the zeta function, respectively, we can use

the inversion theorem to find

f (t) =
1

2πi

∫ 3+i∞

3−i∞
f ∗(s)t−s ds

for t → 0. Analyticity in a larger (complex) region can be obtained analogously to the

approach in the proof of Theorem 3.3.7.

Shifting the line of integration to Re(s) = −5 and collecting residues, we find

f (t) =
∑

p∈{2,1,0,−2,−4}

Res( f ∗(s), s = p)t−p +
1

2πi

∫ −5+i∞

−5−i∞
f ∗(s)t−s ds.
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As in the proof of Theorem 3.3.7, the integral can be estimated with an error of O(|t|5).
However, for the sake of simplicity, we will use the contribution from the singularity at

s = −4 as the expansion error. Effectively, we obtain

f (t) =
�

π2

6
− 1

�

t−2 −
1
2

t−1 +
1
8
−

1
240

t2 +O(t4)

for t → 0. Multiplication with the factor 1−u
1+u , expansion of everything in terms of z→ 1/4,

carrying out singularity analysis, and normalizing the result by dividing by Cn−1 yields the

result.

3.6 Future Work
It seems likely that similar results also hold for reductions where one can cut a different

structure as long as it is allowed to cut a single leaf. An example is cutting either single

leaves or cherries (a root with two children). At least a formulation as an operator as in (3.9)

seems possible in general. How much information about the moments and the central limit

theorem can be extracted from that may vary (as it varies in this chapter already). Also the

case of cutting old structures might be more difficult to handle in general.





4
Growing and Destroying
Catalan–Stanley Trees

Stanley lists the class of Dyck paths where all returns to the axis are of odd length as one of

the many objects enumerated by (shifted) Catalan numbers. By the standard bijection in

this context, these special Dyck paths correspond to a class of rooted plane trees, so-called

Catalan–Stanley trees.

This chapter investigates a deterministic growth procedure for these trees by which any

Catalan–Stanley tree can be grown from the tree of size one after some number of rounds;

a parameter that will be referred to as the age of the tree. Asymptotic analyses are carried

out for the age of a random Catalan–Stanley tree of given size as well as for the “speed” of

the growth process by comparing the size of a given tree to the size of its ancestors.

This chapter is an adapted version of [27], which is joint work with Helmut Prodinger.

4.1 Introduction
It is well-known that the nth Catalan number Cn =

1
n+1

�2n
n

�

enumerates Dyck paths of length

2n. In [63], Stanley lists a variety of other combinatorial interpretations of the Catalan

numbers, one of them being the number of Dyck paths from (0, 0) to (2n+2, 0) such that any

maximal sequence of consecutive (1,−1) steps ending on the x-axis has odd length. At this

point it is interesting to note that there are more subclasses of Dyck paths, also enumerated

by Catalan numbers, that are defined via parity restrictions on the length of the returns to

the x-axis as well (see, e.g., [4]). The height of the class of Dyck paths with odd-length

returns to the origin has already been studied in [53] with the result that the main term
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of the height is equal to the main term of the height of general Dyck paths as investigated

in [8].

¬

Figure 4.1: Bijection between Dyck paths with odd returns to zero and Catalan–Stanley

trees. � marks all peaks before a descent to the x-axis and all rightmost leaves in the

branches attached to the root, respectively.

By the well-known glove bijection, this special class of Dyck path corresponds to a special

class S of rooted plane trees, where the distance between the rightmost node in all branches

attached to the root and the root is odd. This bijection is illustrated in Figure 4.1.

The trees in the combinatorial class S are the central object of study in this chapter.

Definition 4.1.1.

Let S be the combinatorial class of all rooted plane trees τ, where the rightmost leaves in

all branches attached to the root of τ have an odd distance to the root. In particular,

itself, i.e., the tree consisting of just the root belongs to S as well. We call the trees in S
Catalan–Stanley trees.

As we have seen in Chapters 2 and 3, there are approaches in which classical tree parameters

like the register function for binary trees are analyzed by, in a nutshell, finding a proper way

to grow tree families in a way that the parameter of interest corresponds to the age of the

tree within this (deterministic) growth process.

Following this idea, the aim of this chapter is to define a “natural” growth process enabling

us to grow any Catalan–Stanley tree from , and then to analyze the corresponding tree

parameters.

In Section 4.2 we define such a growth process and analyze some properties of it. In particular,

in Proposition 4.2.5 we characterize the family of trees that can be grown by applying a fixed

number of growth iterations to some given tree family. This is then used to derive generating

functions related to the parameters investigated in Sections 4.3 and 4.4.

Section 4.3 contains an analysis of the age of Catalan–Stanley trees, asymptotic expansions

for the expected age among all trees of size n and the corresponding variance are given in

Theorem 4.3.2.
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Section 4.4 is devoted to the analysis of how fast trees of given size can be grown by

investigating the size of the rth ancestor tree compared to the size of the original tree. This

is characterized in Theorem 4.4.2.

Additional resources (i.e., a SageMath [59] worksheet, and instructions on how to use it)

can be found at https://benjamin-hackl.at/publications/catalan-stanley/.

4.2 Growing Catalan–Stanley Trees
We denote the combinatorial class of rooted plane trees with T , and the corresponding

generating function enumerating these trees with respect to their size by T (z). For the sake

of readability, we omit the argument of T(z) = T throughout this chapter. By means of

the symbolic method [21, Chapter I], the combinatorial class T satisfies the construction

T = × SEQ(T ). It translates into the functional equation

T (z) =
z

1− T (z)
⇐⇒ z + T (z)2 = T (z), (4.1)

which will be used throughout the chapter. Additionally, it is easy to see by solving the

quadratic equation in (4.1) and choosing the correct branch of the solution, we have the

well-known formula T (z) = 1−
p

1−4z
2 .

Proposition 4.2.1.

The generating function of the combinatorial class S of Catalan–Stanley trees, where t marks

all the rightmost nodes in the branches attached to the root of the tree and z marks all other

nodes, is given by

S(z, t) = z +
zt

1− t − T 2
. (4.2)

In particular, there is one Catalan–Stanley tree of size 1 and Cn−2 Catalan–Stanley trees of

size n for n≥ 2.

S = +
SEQ

� T

T

�

SEQ
� T

T

�

. . . SEQ
� T

T

�

≥ 1 branches

Figure 4.2: Symbolic specification of the combinatorial class S of Catalan–Stanley trees.

Nodes represented by � are marked by the variable t, all other nodes are marked by z.

https://benjamin-hackl.at/publications/catalan-stanley/
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Proof. By using the symbolic method [21, Chapter I], the symbolic representation of S given

in Figure 4.2 translates into the functional equation

S(z, t) = z +
z t

1−T2

1− t
1−T2

,

which simplifies to the equation given in (4.2).

In order to enumerate Catalan–Stanley trees with respect to their size, we consider S(z, z),
which simplifies to z(T + 1) and thus proves the statement.

We want to describe how to grow all Catalan–Stanley trees beginning from the tree that has

only one node, .

We consider the tree reduction ρ : S → S that operates on a given Catalan–Stanley tree τ

(or just the root) as follows:

Start from all nodes that are represented by t, i.e. the rightmost leaves in the branches

attached to the root: if the node is a child of the root, it is simply deleted. Otherwise we

delete all children of the grandparent of the node and mark the resulting leaf with t.

7→ 7→ 7→

Figure 4.3: Illustration of the reduction operator ρ, � marks the rightmost leaves in

the branches attached to the root.

This tree reduction is illustrated in Figure 4.3. While the reduction ρ is certainly not injective

as there are several trees with the same reduction τ ∈ S, it is easy to construct a tree reducing

to some given τ ∈ S by basically inserting chains of length 2 before all rightmost leaves in

the branches attached to the root. This allows us to think of the operator ρ−1 mapping a

given tree (or some family of trees) to the respective set of preimages as a tree expansion
operator. In this context, we also want to define the age of a Catalan–Stanley tree.
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Definition 4.2.2.

Let τ ∈ S be a Catalan–Stanley tree. Then we define α(τ), the age of τ, to be the number of

expansions required to grow τ from the tree of size one, . In particular, we want

α(τ) = r ⇐⇒ τ ∈ (ρ−1)r( ) and τ 6∈ (ρ−1)r−1( )

for r ∈ Z≥1, and we set α( ) = 0.

Before we delve into the analysis of the age of Catalan–Stanley trees, we need to be able to

translate the tree expansion given by ρ−1 into a suitable form so that we can actually use it

in our analysis. The following proposition shows that ρ−1 can be expressed in the language

of generating functions.

Proposition 4.2.3.

Let F ⊆ S be a family of Catalan–Stanley trees with bivariate generating function f (z, t),
where t marks rightmost leaves in the branches attached to the root and z marks all other

nodes. Then the generating function of ρ−1(F), the family of trees whose reduction is in F ,

is given by

Φ( f (z, t)) =
1

1− t
f
�

z,
t

1− t
T 2
�

. (4.3)

Proof. From a combinatorial point of view it is obvious that the operator Φ has to be linear,

meaning that we can focus on determining all possible expansions of some tree represented

by the monomial zn tk, i.e. a tree where the root has k children (and thus k different rightmost

leaves in the branches attached to the root), and n other nodes.

In order to expand such a tree represented by zn tk we begin by inserting a chain of length two

before every rightmost leaf in order to ensure that the distance to the root is still odd. These

newly inserted nodes can now be considered to be roots of some rooted plane trees, meaning

that we actually insert two arbitrary rooted plane trees before every node represented by t.
This corresponds to a factor of tkT 2k.

In addition to this operation, we are also allowed to add new children to the root, i.e. we can

add sequences of nodes represented by t before or after every child of the root. As observed

above, the root has k children and thus there are k+ 1 positions where such a sequence can

be attached. This corresponds to a factor of (1− t)−(k+1).

Finally, we observe that nodes that are represented by z are not expanded in any way,

meaning that zn remains as it is.

Putting everything together yields that

Φ(zn tk) =
1

1− t
zn
�

tT 2

1− t

�k

,

which, by linearity of Φ, proves the statement.
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Corollary 4.2.4.

The generating function S(z, t) satisfies the functional equation

Φ(S(z, t)) = S(z, t).

Proof. This follows immediately from the fact that the reduction operator ρ is surjective, as

discussed above.

Actually, in order to carry out a thorough analysis of this growth process for Catalan–Stanley

trees we need to have more information on the iterated application of the expansion. In

particular, we need a precise characterization of the family of Catalan–Stanley trees that can

be grown from some given tree family by expanding it a fixed number of times.

Proposition 4.2.5.

Let r ∈ Z≥0 be fixed and F ⊆ S be a family of Catalan–Stanley trees with bivariate gener-

ating function f (z, t). Then the generating function enumerating the trees that are r-fold

expansions of the trees in F is given by

Φr( f (z, t)) =
1

1− t 1−T2r

1−T2

f
�

z,
tT 2r

1− t 1−T2r

1−T2

�

. (4.4)

Proof. By linearity, it is sufficient to determine the generating function for the family of

trees obtained by expanding some tree represented by zn tk. Consider the closely related

multiplicative operator Ψ with

Ψ( f (z, t)) = f
�

z,
t

1− t
T 2
�

.

It is easy to see that we can write the r-fold application of Φ with the help of Ψ as

Φr( f (z, t)) = Ψ r( f (z, t))
r−1
∏

j=0

1
1−Ψ j(t)

.

As Ψ is multiplicative, we have

Ψ r(zn tk) = Ψ r(z)nΨ r(t)k,

meaning that we only have to investigate the r-fold application of Ψ to z and to t.

We immediately see that Ψ r(z) = z, as Ψ maps z to z itself. For Ψ r(t), we can prove by

induction that the relation

Ψ r(t) =
tT 2r

1− t 1−T2r

1−T2

holds for r ≥ 0. Finally, observe that for j ≥ 1 we have

Ψ j(t) =
Ψ j−1(t)

1−Ψ j−1(t)
T 2, (4.5)
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and thus

Ψ r(t) =
Ψ r−1(t)

1−Ψ r−1(t)
T 2 =

Ψ r−2(t)
(1−Ψ r−2(t))(1−Ψ r−1(t))

T 4 = · · ·=
tT 2r

∏r−1
j=0(1−Ψ j(t))

by iteratively using (4.5) in the numerator. With our explicit formula for Ψ r(t) from above

this yields
r−1
∏

j=0

(1−Ψ j(t)) = 1− t
1− T 2r

1− T 2

for r ≥ 1. Putting everything together we obtain

Φr(zn tk) =
1

1− t 1−T2r

1−T2

znΨ r(t)k,

which proves (4.4) by linearity of Φr .

From this characterization we immediately obtain the generating functions for all the classes

of objects we will investigate in the following sections.

Corollary 4.2.6.

Let r ∈ Z≥0. The generating function F≤r (z, t) enumerating Catalan–Stanley trees of age less

than or equal to r where t marks the rightmost leaves in the branches attached to the root

and z marks all other nodes is given by

F≤r (z, t) =
z

1− t 1−T2r

1−T2

. (4.6)

Proof. As we defined ρ( ) = we have ∈ ρ−1( ), which implies F≤r (z, t) is given by

Φr(z).

Corollary 4.2.7.

Let r ≥ 0. Then the generating function Gr(z, v) enumerating Catalan–Stanley trees where z
marks the tree size and v marks the size of the r-fold reduced tree, is given by

Gr(z, v) = Φr(S(zv, t v))|t=z =
1

1− z 1−T2r

1−T2

S
�

zv,
zT 2r

1− z 1−T2r

1−T2

v
�

. (4.7)

Proof. Observe that the generating function S(zv, t v) enumerates Catalan–Stanley trees with

respect to the number of rightmost leaves in the branches attached to the root (marked by t),

the number of other nodes (marked by z), and the size of the tree (marked by v). Applying

the operator Φr to this generating function thus yields a generating function where v still

marks the size of the tree, t and z however enumerate the number of rightmost leaves in the

branches attached to the root and all other nodes of the r-fold expanded tree, respectively.

After setting t = z, we obtain a generating function where v marks the size of the original

tree and z the size of the r-fold expanded tree—which is equivalent to the formulation in

the corollary.
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4.3 Age of Catalan–Stanley Trees
In this section we want to give a proper analysis of the parameter α defined in the previous

section. Formally, we do this by considering the random variable Dn modeling the age of a

tree of size n, where all Catalan–Stanley trees of size n are equally likely.

Remark.

It is noteworthy that in Chapter 2 it was shown that the well-known register function of a

binary tree can also be obtained as the number of times some reduction can be applied to

the binary tree until it degenerates. The age of a Catalan–Stanley tree can thus be seen as a

“register function”-type parameter as well.

First of all, we are interested in the minimum and maximum age a tree of size n can have.

Proposition 4.3.1.

Let n ∈ Z≥2. Then the bounds

1≤ Dn ≤
�

n
2

�

(4.8)

hold and are sharp, i.e. there are trees τ, τ′ ∈ S of size n ≥ 2 such that Dn(τ) = 1 and

Dn(τ′) = bn/2c hold. The only tree of size 1 is , and it satisfies D1( ) = 0.

Proof. Note that only , the tree of size 1 has age 0, therefore the lower bound is certainly

valid for trees of size n ≥ 2. This lower bound is sharp, as the tree with n − 1 children

attached to the root is a Catalan–Stanley tree and has age 1.

For the upper bound, first observe that given a tree of size n ≥ 3 the reduction ρ always

removes at least 2 nodes from the tree. If the tree is of size 2, then ρ only removes one node.

Given an arbitrary Catalan–Stanley tree τ of age r and size n, this means that

1= | |= |ρr(τ)| ≤ |τ| − 2 · (r − 1)− 1= n− 2r + 1,

where |τ| denotes the size of the tree τ. This yields r ≤ n/2, and as r is known to be an

integer we may take the floor of the number on the right-hand side of the inequality. This

proves that the upper bound in (4.8) is valid.

The upper bound is sharp because we can construct appropriate families of trees precisely

reaching the upper bound: for even n, the chain of size n is a Catalan–Stanley tree of age

n/2. For odd n= 2m+ 1 we consider the chain of size 2m and attach one node to the root

of it. The resulting tree is a Catalan–Stanley tree of age m = bn/2c, and thus proves that the

bound is sharp.

By investigating the generating functions obtained from Corollary 4.2.6 we can characterize

the limiting distribution of the age of Catalan–Stanley trees when the size n tends to∞.
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Theorem 4.3.2.

Consider n →∞. Then the age of a (uniformly random) Catalan–Stanley tree of size n
behaves according to a discrete limiting distribution where

P(Dn = r) =
�

4(4r(3r − 1) + 1)
(4r + 2)2

−
4(4r+1(3r + 2) + 1)
(4r+1 + 2)2

�

−
�

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r3 − r2)
(4r + 2)4

−
6 · 64r+1(2r3 + r2)− 6 · 16r+1(16r3 + 24r2 + 10r + 1) + 24 · 4r+1(2r3 + 5r2 + 4r + 1)

(4r+1 + 2)4

�

n−1

+O
�

r5

3r
n−2
�

(4.9)

for r ∈ Z≥1. Additionally, by setting

c0 =
∑

r≥1

4r+1(3r − 1) + 4
(4r + 2)2

= 2.7182536428679528526648361928219367344585435680344 . . . ,

c1 = −
∑

r≥1

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r − 1)r2

(4r + 2)4

= −4.2220971510158840823821873477600478080816411210406 . . . ,

c2 =
∑

r≥1

(2r − 1)
4r+1(3r − 1) + 4
(4r + 2)2

− c2
0

= 0.91845604214374797357797147814019496503688953933967 . . . ,

c3 = −
∑

r≥1

(2r − 1)
(4r + 2)4

�

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1)

+ 24 · 4r(2r − 1)r2
�

− 2c0c1

= −9.1621753200836274996912436568310268988536534594942 . . . ,

the expected age and the corresponding variance are given by the asymptotic expansions

EDn = c0 + c1n−1 +O(n−2), (4.10)

VDn = c2 + c3n−1 +O(n−2). (4.11)

Proof. For the sake of convenience we set F≤r (z) := F≤r (z, z), where F≤r (z, t) is given in (4.6).

This univariate generating function now enumerates Catalan–Stanley trees of age ≤ r with

respect to the tree size.
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We begin by observing that F≥r (z), the generating function enumerating Catalan–Stanley

trees of age ≥ r with respect to the tree size is given by

F≥r (z) = S(z, z)− F≤r−1(z) = z(1+ T )−
z

1− z 1−T2r−2

1−T2

= z(1+ T )
T 2r−1

1+ T 2r−1
, (4.12)

where the last equation follows after some elementary manipulations and by using (4.1).

Now let fn,r := [zn]F≥r (z) denote the number of Catalan–Stanley trees of size n and age ≥ r.

As we consider all Catalan–Stanley trees of size n to be equally likely, we find

P(Dn = r) = P(Dn ≥ r)− P(Dn ≥ r + 1) =
fn,r − fn,r+1

Cn−2
.

We use singularity analysis (see [18] and [21, Chapter VI]) in order to obtain an asymptotic

expansion for fn,r . To do so, we consider z to be in some∆-domain at 1/4 (see [21, Definition

VI.1]). The task of expanding F≥r (z) for z→ 1/4 now largely consists of handling the term
T2r−1

1+T2r−1 . Observe that we can write

T 2r−1

1+ T 2r−1
=

1
1+ T 1−2r

=
1

1+ 22r−1(1−
p

1− 4z )1−2r
,

=
1

(1+ 22r−1)
�

1+ 22r−1

1+22r−1

∑

j≥1

�2r+ j−2
j

�

(1− 4z) j/2
�

which results in

T 2r−1

1+ T 2r−1
=

2
4r + 2

−
2 · 4r(2r − 1)
(4r + 2)2

(1− 4z)1/2

+
2 · 4r (4r(r − 1)− 2r)(2r − 1)

(4r + 2)3
(1− 4z)

−
2 · 4r(16r(2r2 − 5r + 3)− 4r+2(r2 − r) + 8r2 + 4r)(2r − 1)

3(4r + 2)4
(1−4z)3/2+O

�

r4

3r
(1−4z)2

�

.

Multiplying this expansion with the expansion of z(1+ T ) yields the expansion

F≥r (z) =
3

4(4r + 2)
−

4r(3r − 1) + 1
2(4r + 2)2

(1− 4z)1/2

+
16r(6r2 − 7r − 1)− 2 · 4r(6r2 − 5r + 7)− 12

4(4r + 2)3
(1− 4z)

−
64r(2r3 − 5r2 + r)− 2 · 16r(8r3 − 12r2 + 11r − 2) + 4r+1(2r3 − r2 − 3r)− 4

2(4r + 2)4
(1− 4z)3/2

+O
�

r4

3r
(1− 4z)2

�

.
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By means of singularity analysis we extract the nth coefficient and find

fn,r =
4r(3r − 1) + 1
4
p
π (4r + 2)2

4nn−3/2

−
�

3 · 64r(8r3 − 20r2 + r + 1)− 3 · 16r(64r3 − 96r2 + 100r − 19)
32
p
π (4r + 2)4

+
12 · 4r(8r3 − 4r2 − 15r)− 60

32
p
π (4r + 2)4

�

4nn−5/2 +O
�

r5

3r
4nn−7/2

�

.

Computing the difference fn,r − fn,r+1 and dividing by the Catalan number Cn−2 then yields

the expression for P(Dn = r) given in (4.9).

The expected value can then be computed with the help of the well-known formula

EDn =
∑

r≥1

P(Dn ≥ r),

which proves (4.10). Finally, the variance can be obtained from VDn = E(D2
n) − (EDn)2,

where

E(D2
n) =

∑

r≥1

r2P(Dn = r) =
∑

r≥1

(2r − 1)P(Dn ≥ r),

which proves (4.11).

In addition to the asymptotic expansions given in Theorem 4.3.2 we can also determine an

exact formula for the expected value EDn. The key tools in this context are Cauchy’s integral

formula as well as the substitution z = u
(1+u)2 .

Proposition 4.3.3.

Let n ∈ Z≥2. The expected age of the Catalan–Stanley trees of size n is given by

EDn =
1

Cn−2

∑

k≥1

(−1)k+1σodd
0 (k)

��

2n− 4− k
n− 3

�

+
�

2n− 4− k
n− 2

�

− 2
�

2n− 4− k
n− 1

��

, (4.13)

where σodd
0 (k) denotes the number of odd divisors of k.

Proof. We begin by explicitly extracting the coefficient [zn]F≥r (z). The expected value can

then be obtained by summation over r and division by Cn−2.

With the help of the substitution z = u
(1+u)2 we can bring F≥r (z) into the more suitable form

F≥r (z) =
(1+ 2u)u2r

(1+ u)3(u2r−1 + (1+ u)2r−1)
.
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We extract the coefficient of zn now by means of Cauchy’s integral formula. Let γ be a small

contour winding around the origin once. Then we have

[zn]F≥r (z) =
1

2πi

∮

γ

F≥r (z)

zn+1
dz =

1
2πi

∮

γ̃

(1+ u)2n+2

un+1

(1+ 2u)u2r

(1+ u)3(u2r−1 + (1+ u)2r−1)
1− u
(1+ u)3

du

= [un−2r](1+ 2u)(1− u)(1+ u)2n−2r−3 1
1+ ( u

1+u)2r−1

= [un−2r](1+ u− 2u2)
∑

j≥1

(−1) j−1u(2r−1)( j−1)(1+ u)2n−4− j(2r−1)

=
∑

j≥1

(−1) j−1
��

2n− 4− j(2r − 1)
n− 3

�

+
�

2n− 4− j(2r − 1)
n− 2

�

− 2
�

2n− 4− j(2r − 1)
n− 1

��

,

(4.14)

where γ̃, the integration contour of the second integral, is the transformation of γ under the

transformation z = u/(1+ u)2 and is also a small contour winding around the origin once.

Now consider the auxiliary sum

ϑ(k) :=
∑

j,r≥1
j(2r−1)=k

(−1) j−1.

It is easy to see by distinguishing between even and odd k that with the help of σodd
0 (k), ϑ(k)

can be written as ϑ(k) = (−1)k−1σodd
0 (k).

Summing the expression from (4.14) over r ≥ 1, simplifying the resulting double sum by

means of the auxiliary sum ϑ, and finally dividing by Cn−2 then proves (4.13).

4.4 Analysis of Ancestors
In this section we focus on characterizing the effect of the (repeatedly applied) reduction ρ

on a random Catalan–Stanley tree of size n. We are particularly interested in studying the

size of the reduced tree. In the light of the fact that all Catalan–Stanley trees can be grown

from by means of the growth process induced by ρ, we can think of the rth reduction of

some tree τ as the rth ancestor of τ.

In order to formally conduct this analysis, we consider the random variable Xn,r modeling

the size of the rth ancestor some tree of size n, where all Catalan–Stanley trees of size n are

equally likely.

Similar to our approach in Proposition 4.3.1 we can determine precise bounds for Xn,r as

well.
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Proposition 4.4.1.

Let n ∈ Z≥2 and r ∈ Z≥1. Then the bounds

1≤ Xn,r ≤ n− 2(r − 1)− 1 (4.15)

hold for r ≤ bn/2c and are sharp, i.e. there are trees τ, τ′ ∈ S of size n ≥ 2 such that

Xn,r(τ) = 1 and Xn,r(τ′) = n− 2(r − 1)− 1. For r > bn/2c the variable Xn,r is deterministic

with Xn,r = 1.

Proof. Assume that r ≤ bn/2c. The lower bound is obvious as trees cannot reduce further

than to , and as the first ancestor of the tree with n−1 children attached to the root already

is the lower bound is valid and sharp.

For the upper bound we follow the same argumentation as in the proof of Proposition 4.3.1

to arrive at

1≤ |ρr(τ)| ≤ |τ| − 2(r − 1)− 1= n− 2r + 1

for some Catalan–Stanley tree of size n, which proves that the upper bound is valid. Any

tree of size n having the chain of length 2 as its (r − 1)th ancestor satisfies proves that the

upper bound is sharp. This proves (4.15).

In the case of r > bn/2c we observe that as the bn/2cth ancestor of any Catalan–Stanley tree

of size n already is certain to be by Proposition 4.3.1, the rth ancestor is as well.

With the generating function Gr(z, v) enumerating Catalan–Stanley trees with respect to

their size (marked by n) and the size of their rth ancestor (marked by v) from Corollary 4.2.7

we can write the probability generating function of Xn,r as

EvXn,r =
1

Cn−2
[zn]Gr(z, v).

This allows us to extract parameters like the expected size of the rth ancestor and the

corresponding variance.

Theorem 4.4.2.

Let r ∈ Z≥0 be fixed and consider n→∞. Then the expected value and the variance of

the random variable Xn,r modeling the size of the rth ancestor of a (uniformly random)

Catalan–Stanley tree of size n are given by the asymptotic expansions

EXn,r =
1
4r

n+
2 · 4r − 2r2 + r − 2

2 · 4r
+
(2r + 1)(2r − 1)(r − 3)r

2 · 4r+1
n−1 +O(n−3/2), (4.16)
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VXn,r =
(2r + 1)(2r − 1)

16r
n2 −

p
π(4r(3r + 1)− 1)

3 · 16r
n3/2

+
18 · 4r r2 + 3 · 4r r − 38 · 4r + 36r2 − 42r + 38

18 · 16r
n

+
5
p
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1). (4.17)

Proof. The strategy behind this proof is to determine the first and second factorial moment

of Xn,r by extracting the coefficient of zn in the derivatives ∂ d

∂ vd Gr(z, v)|v=1 for d ∈ {1, 2} and

normalizing the result by dividing by Cn−2.

We begin with the expected value. With the help of SageMath [59] we find for z→ 1/4

∂

∂ v
Gr(z, v)|v=1 =

1
4r+2
(1− 4z)−1/2 +

3 · 4r − r
2 · 4r+1

−
2 · 4r − 2r2 + r + 2

4r+2
(1− 4z)1/2

−
9 · 4r + 2r3 − 3r2 − 5r

6 · 4r+1
(1− 4z) +O((1− 4z)3/2),

where the O-constant depends implicitly on r. Extracting the coefficient of zn and dividing

by Cn−2 yields the expansion given in (4.16).

Following the same approach for the second derivative yields the expansion

∂ 2

∂ v2
Gr(z, v)|v=1 =

1
2 · 4r+2

(1− 4z)−3/2 −
4r(3r + 1)− 1

3 · 16r+1
(1− 4z)−1

+
4r(18r2 + 3r + 7)− 24r + 2

18 · 16r+1
(1− 4z)−1/2 +O(1),

such that after applying singularity analysis and division by Cn−2 we obtain the expansion

EX 2
n,r =

1
4r

n2 −
p
π (4r(3r + 1)− 1)

3 · 16r
n3/2 +

4r(18r2 + 3r − 20)− 24r + 2
18 · 16r

n

+
5
p
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1)

for the second factorial moment EX 2
n,r . Applying the well-known formula

VXn,r = EX 2
n,r +EXn,r − (EXn,r)

2

then leads to the asymptotic expansion for the variance given in (4.17) and thus proves the

statement.

Besides the asymptotic expansion given in Theorem 4.4.2, we are also interested in finding

an exact formula for the expected value EXn,r . We can do so by means of Cauchy’s integral

formula.
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Proposition 4.4.3.

Let n, r ∈ Z≥1. Then the expected size of the rth ancestor of a random Catalan–Stanley tree

of size n is given by

EXn,r =
1

Cn−2

�

2n− 2r − 4
n− 2

�

+ 1. (4.18)

Proof. We rewrite the derivative g(z) := ∂
∂ v Gr(z, v)|v=1 into a more suitable form which

makes it easier to extract the coefficients. To do so, we use the substitution z = u/(1+ u)2

again, allowing us to express the derivative as

g(z) =
u2r+2

(1− u)(1+ u)2r+3
+
(1+ 2u)u
(1+ u)3

.

Note that as T = u
1+u , the summand (1+2u)u

(1+u)3 actually represents z(1+ T), implying that the

coefficient of zn in this summand is given by Cn−2. Now let γ be a small contour winding

around the origin once, so that with Cauchy’s integral formula we obtain

[zn]g(z) =
1

2πi

∮

γ

g(z)
zn+1

dz =
1

2πi

∮

γ̃

(1+ u)2n+2

un+1

u2r+2

(1− u)(1+ u)2r+3

1− u
(1+ u)3

du+ Cn−2

= [un−2r−2](1+ u)2n−2r−4 + Cn−2 =
�

2n− 2r − 4
n− 2r − 2

�

+ Cn−2,

where γ̃ is the image of γ under the transformation (and is still a small contour winding

around the origin once). Dividing by Cn−2 then proves (4.18).





5
Ascents in Non-Negative
Lattice Paths

Non-negative Łukasiewicz paths are special two-dimensional lattice paths never passing

below their starting altitude which have only one single special type of down step. They

are well-known and -studied combinatorial objects, in particular due to their bijective

relation to trees with given node degrees.

We study the asymptotic behavior of the number of ascents (i.e., the number of maximal

sequences of consecutive up steps) of given length for classical subfamilies of general

non-negative Łukasiewicz paths: those with arbitrary ending altitude, those ending on their

starting altitude, and a variation thereof. Our results include precise asymptotic expansions

for the expected number of such ascents as well as for the corresponding variance.

This chapter corresponds to an adapted version of [25] and is joint work with Clemens

Heuberger and Helmut Prodinger.

5.1 Introduction
Two-dimensional lattice paths can be defined as sequences of points in the plane R2 where

for any point, the vector pointing to the succeeding point (“step”) is from a predefined finite

set, the step set.

In this chapter, our focus lies on a special class of two-dimensional lattice paths: non-negative
simple Łukasiewicz paths. A lattice path is said to be simple if the horizontal coordinate is

the same (e.g. is 1) for all possible steps. In case of a simple path family, we define the step
set S as the set of allowed height differences, i.e., the respective y-coordinates between the
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points of the path. If, additionally, the step set S ⊆ Z is integer-valued and contains −1 as

the single negative value (meaning that all other values in S are non-negative), then the

corresponding paths are called simple Łukasiewicz paths.

If a lattice path starts at the origin and never passes below the horizontal axis, then the path

is said to be a meander (or non-negative path). And in case such a non-negative path ends

on the horizontal axis, it is called an excursion.

Lattice path families of this type have been studied intensively, see [2] for a detailed survey

on general simple lattice paths, and, for example, [3, 55] for investigations concerning

Łukasiewicz paths.

We are interested in analyzing the number of ascents in these paths. An ascent is an inclusion-

wise maximal sequence of up steps (i.e., steps in S \ {−1}; this might also include the

horizontal step corresponding to 0). For an integer r ≥ 1, if an ascent consists of precisely

r steps, then the ascent is said to be an r-ascent. As an example, Figure 5.1 depicts some

non-negative Łukasiewicz excursion with emphasized 2-ascents.

Figure 5.1: Simple Łukasiewicz excursion of length 16 with emphasized 2-ascents

where S = {−1,1, 2,3}.

In this chapter, we give a precise analysis of the number of r-ascents for non-negative simple

Łukasiewicz paths of given length, as well as of variants of this class of lattice paths. Our

investigation is motivated by [34], where the number of 1-ascents in a special lattice path

class related to the classic Dyck paths was analyzed explicitly by elementary methods.

Main Results
Within this chapter, three special classes of non-negative Łukasiewicz paths are of interest:

• excursions, i.e., paths that end on the horizontal axis,

• dispersed excursions, i.e., excursions where horizontal steps are not allowed except on

the horizontal axis,

• meanders, i.e., general non-negative Łukasiewicz paths without additional restrictions.

Formally, we conduct our analysis by investigating random variables En,r , Dn,r , Mn,r which

model the number of r-ascents in a random excursion, dispersed excursion, and meander
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of length n, respectively. The underlying probability models are based on equidistribution:

within a family, all paths of length n are assumed to be equally likely.

Given r ∈ N and considering n ∈ N0 with n→∞, we prove that for excursions we have

EEn,r = µn+ c0 +O(n−1/2) and VEn,r = σ
2n+O(n1/2),

for some constants µ, c0, σ2 depending on the chosen step set S. The constants are given

explicitly in Theorem 5.5.1. Additionally, if n is not a multiple of the so-called period of the

step set, then the random variable degenerates and we have En,r = 0; see Theorem 5.5.1 for

details.

For dispersed excursions, the corresponding computations get rather messy, which is why we

restrict ourselves to the investigation of dn, the number of dispersed excursions of length n,

as well as the expected value EDn,r . In particular, for all step sets S (except for the special

case of dispersed Dyck paths with S = {−1, 1}), dn satisfies

dn = c0κ
nn−3/2 +O(κnn−5/2),

with constants c0 and κ depending on the chosen step set. For the expected number of

ascents in this particular lattice path family, we find

EDn,r = µn+O(1)

for some constant µ depending on S. Explicit values for these constants and more details

are given in Theorem 5.5.5.

In the context of meanders we are able to show that for all step sets (with two special

exceptions: Dyck meanders with S = {−1,1}, and Motzkin meanders with S = {−1,0,1})
we have

EMn,r = µn+ c0 +O(n5/2κn) and VMn,r = σ
2n+O(1),

for constants µ, c0, κ ∈ (0,1), σ2 depending on S. Also, the random variable Mn,r is

asymptotically normally distributed; see Theorem 5.5.7 for explicit formulas for the constants

and more details.

In theory, our approach can be used to obtain arbitrarily precise asymptotic expansions for

all the quantities above. For the sake of readability we have chosen to only give the main

term as well as one additional term, wherever possible.

On a more technical note, in order to deal with general Łukasiewicz step sets in our setting,

we make use of a generating function approach (see [21, Chapter I]). In particular, we

heavily rely on the technique of singular inversion (see [21, Chapter VI.7], [43]), which

deals with finding an asymptotic expansion for the growth of the coefficients of generating

functions y(z) satisfying a functional equation of the type

y = zφ(y)
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with a suitable function φ.

Notation and Special Cases
Throughout this chapter, the step set will be denoted as S = {−1, b1, . . . , bm−1} with integers

b j ≥ 0 for all j and m≥ 1. The b j are referred to as up steps—even if the step is a horizontal

one.

The so-called characteristic polynomial of the lattice path class, i.e., the generating function

corresponding to the set S, is denoted by S(u) :=
∑

s∈S us. The strongly related generating

function of the non-negative steps is denoted by S+(u) :=
∑

s∈S
s≥0

us.

In this context, observe that the particular step setS = {−1, 0} corresponds to a, in some sense,

pathological family of Łukasiewicz paths. In this case, there is only precisely one non-negative

Łukasiewicz path of any given length. The family of meanders and excursions coincides,

and also the random variables degenerate in the sense that we have En,r = Mn,r = Jn= rK.
Thus, further investigation of this case is not required—which is why we exclude the case

S = {−1, 0} from now on.

While in the case of a general step set S we are forced to deal with implicitly given quantities,

for special cases like S = {−1, 1} (Dyck paths), everything can be made completely explicit

as we will demonstrate in the course of our investigations.

Structure of this Chapter
In Sections 5.2 and 5.3, we demonstrate two different approaches to determine suitable

generating functions required to analyze the number of ascents. The approach in Section 5.2

is fully analytic and fueled by the kernel method and the “adding a new slice”-technique,

see [54, Section 2.5]. The other approach in Section 5.3 is a more combinatorial approach

based on the inherent relation between Łukasiewicz paths and plane trees with given vertex

degrees. Formulas for the respective generating functions are given in Propositions 5.2.2

and 5.3.3.

Then, in Section 5.4 we give a rigorous description of the singular structure of a fundamental

quantity, namely a particular inverse function derived in Sections 5.2 and 5.3. Important

tools for giving this description are provided in Propositions 5.4.1 and 5.4.2, which are

extensions of [21, Theorem VI.6; Remark VI.17].

Section 5.5 contains the actual analysis of ascents for the different lattice path families

mentioned above. In particular, in Section 5.5.1 we investigate excursions; the main result

is stated in Theorem 5.5.1. Section 5.5.2 deals with the analysis of ascents in dispersed

excursions. In this case, the expected number of r-ascents for all but one given step sets

is analyzed within Theorem 5.5.5, and the analysis for the remaining one is conducted
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in Proposition 5.5.6. Finally, Section 5.5.3 contains our results for ascents in meanders.

Similarly to the previous section, the analysis for most step sets is given in Theorem 5.5.7,

and the remaining cases are investigated in Propositions 5.5.8 and 5.5.9.

The SageMath [59] worksheets used to produce our results can be found at

https://benjamin-hackl.at/publications/lukasiewicz-ascents/,

in particular:

• lukasiewicz-excursions.ipynb contains the calculations from Section 5.5.1,

• lukasiewicz-dispersed-excursions.ipynb for Section 5.5.2,

• lukasiewicz-meanders.ipynb for Section 5.5.3, and

• utilities.py, which has to be copied into the same folder as the others. This file

contains utility code that is used in the notebook files.

5.2 Generating Functions: An Analytic Approach
In this section we will introduce and discuss the preliminaries required in order to carry out

the asymptotic analysis of ascents in the different path classes. We begin by taking a closer

look at the structure of Łukasiewicz paths.

Of course, the number of excursions of given length n strongly depends on the structure of

the step set S. For example, in the case of Dyck paths, i.e., S = {−1, 1}, there cannot be any

excursions of odd length—Dyck paths are said to be periodic lattice paths.

Definition 5.2.1 (Periodicity of lattice paths).

Let S be a Łukasiewicz step set with corresponding characteristic polynomial S(u) =
∑

s∈S us.

Then the period of S (and the associated lattice path family) is the largest integer p for

which a polynomial Q satisfying

u S(u) =Q(up)

exists. If p = 1, then S is said to be aperiodic, otherwise S is said to be p-periodic.

Remark.

Observe that if a step set S has period p, then there are only excursions of length n where

n ≡ 0 (mod p). This can be seen by considering the generating function enumerating

unrestricted paths of length n with respect to their height, i.e., S(u)n. Obviously, the number

of excursions of length n is at most the number of unrestricted paths ending at altitude 0,

and the latter one can be written as

[u0]S(u)n = [un](u S(u))n = [un]Q(up)n.

https://benjamin-hackl.at/publications/lukasiewicz-ascents/
https://benjamin-hackl.at/downloads/lukasiewicz-ascents/lukasiewicz-excursions.ipynb
https://benjamin-hackl.at/downloads/lukasiewicz-ascents/lukasiewicz-dispersed-excursions.ipynb
https://benjamin-hackl.at/downloads/lukasiewicz-ascents/lukasiewicz-meanders.ipynb
https://benjamin-hackl.at/downloads/lukasiewicz-ascents/utilities.py
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Hence, if n 6≡ 0 (mod p), there are no unrestricted paths ending on the horizontal axis—and

thus also no excursions.

With these elementary observations in mind, we can now focus on our main problem:

determining a suitable generating function in order to enumerate r-ascents in different

classes of nonnegative Łukasiewicz paths. In this context, the well-known kernel method will

prove to be an appropriate approach.

Proposition 5.2.2.

Let F(z, t, v) be the trivariate ordinary generating function counting non-negative Łukasiewicz

paths with step set S starting at 0, where z marks the length of the path, t marks the number

of r-ascents, and v marks the final altitude of the path. Then F(z, t, v) can be expressed as

F(z, t, v) =
v − V (z, t)

v − zL(z, t, v)
L(z, t, v), (5.1)

where

L(z, t, v) =
1

1− z S+(v)
+ (t − 1)(z S+(v))

r ,

and where v = V (z, t) is the unique solution of the polynomial equation

�

v − z − z(t − 1)(z S+(v))
r
�

(1− z S+(v))− z2 S+(v) = 0 (5.2)

that satisfies V (0, 1) = 0. The function V (z, t) is holomorphic in a neighborhood of (z, t) =
(0, 1).

Proof. Let Φ(k)(z, t, v) denote the trivariate generating function enumerating non-negative

Łukasiewicz paths with respect to the step set S with precisely k mountains (i.e., with k
occurrences of the pattern↗↘, where↗ represents any of the allowed up steps) that end

in a down step. The variables z, t, and v mark path length, number of r-ascents, and the

final altitude of the path, respectively.

By definition of Φ(k)(z, t, v), we have Φ(0)(z, t, v) = 1. We now construct Φ(k+1)(z, t, v) from

Φ(k)(z, t, v) in order to establish a functional identity. Observe that an r-ascent occurs

precisely if a sequence of r upsteps followed by at least one downstep is added after a

downstep. Then, observe that L(z, t, v) as defined in the statement above is the generating

function corresponding to a sequence of up steps (the first summand enumerates sequences

of up steps without considering r-ascents; the second summand marks sequences of length r
with the variable t). Thus, L(z, t, v)− 1 enumerates non-empty sequences of up steps. From

there it is easy to see that the generating function Φ(k)(z, t, v)(L(z, t, v) − 1) enumerates

paths with k mountains and an appended non-empty sequence of up steps. The generating

function Φ(k+1)(z, t, v) can then be obtained by attaching another non-empty sequence of
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down steps. Formally, this can be achieved by substituting v j (which corresponds to a path

ending at altitude j) with

v j 7→
j
∑

`=1

z`v j−` =
z/v

1− z/v
(v j − z j).

In particular, this substitution is also applied for j = 0, i.e., the paths with altitude 0 (which

correspond to v0). In this case the substitution reads v0 7→ 0, which means that these paths

get eliminated as we are not allowed to take a subsequent down step. Altogether, this gives

the recurrence relation

Φ(k+1)(z, t, v) =
z/v

1− z/v

�

Φ(k)(z, t, v)(L(z, t, v) − 1) − Φ(k)(z, t, z)(L(z, t, z) − 1)
�

, (5.3)

because carrying out the substitution gives the difference between Φ(k)(z, t, v)(L(z, t, v)− 1)
and the same term with v replaced by z, multiplied with the factor z/v

1−z/v . Observe that

summing Φ(k)(z, t, v) over k ≥ 0 yields the generating function

Φ(z, t, v) :=
∑

k≥0

Φ(k)(z, t, v)

enumerating paths with an arbitrary number of mountains that end on a down step. Thus,

summation over k ≥ 0 in (5.3) proves that Φ(z, t, v) satisfies the functional equation

Φ(z, t, v)
�

1−
z

v − z
(L(z, t, v)− 1)

�

= 1−
z

v − z
Φ(z, t, z)(L(z, t, z)− 1), (5.4)

where the summand 1 on the right-hand side actually comes from Φ(0)(z, t, v) = 1.

Rewriting the left-hand side of this equation after plugging in the definition of L(z, t, v)
yields

Φ(z, t, v)
(v − z − z(t − 1)(z S+(v))r)(1− z S+(v))− z2 S+(v)

(v − z)(1− z S+(v))
.

We proceed in the spirit of the kernel method (see [1, 52]), which basically revolves around

the idea of setting v to a suitable root V (z, t) of the polynomial in the numerator such that

the numerator (5.2) of the left-hand side disappears.

The existence of such a function is guaranteed by means of the holomorphic implicit function

theorem (see, e.g., [35, Section 0.8]). In our case this theorem allows to conclude that in

a sufficiently small neighborhood of (z, t) = (0,1) there has to be a unique holomorphic

function V (z, t) satisfying V (0, 1) = 0 such that the numerator in the left-hand side of (5.4)

disappears by setting v = V (z, t).

At the same time, the denominator cannot vanish: For t = 1 Equation (5.2) defining V (z, t)
can be rewritten as V (z, 1) = zV (z, 1)S(V (z, 1)), which allows us to obtain a power series

expansion for V (z, 1) in the neighborhood of z = 0. As V (z, t) is holomorphic and V (z, 1) 6= z,
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we find V (z, t) 6= z in a small neighborhood of (z, t) = (0,1) by continuity. Thus, the first

factor in the denominator does not vanish there. Simultaneously, concerning the second

factor, if we had z S+(V (z, t)) = 1, then the kernel equation (5.2) would simplify to −z
(which is not identically 0 in a neighborhood of z = 0), meaning that v = V (z, t) would

no longer be a solution, in contradiction to its definition. Thus, the denominator does not

vanish simultaneously with the numerator in a small neighborhood of (z, t) = (0,1).

Thus, we can use this implicitly defined function to find an expression for Φ(z, t, z)—and

then, after plugging that into (5.4) and doing some simplifications, we arrive at

Φ(z, t, v) =
v − V (z, t)

v − zL(z, t, v)
.

Then, in order to prove (5.1), recall that Φ(z, t, v) enumerates all non-negative Łukasiewicz

paths ending on a down step↘. Thus, the generating function enumerating all non-negative

Łukasiewicz paths F(z, t, v) can be obtained from Φ(z, t, v) by appending another (possibly

empty) sequence of upsteps, and accounting for another possible r-ascent. This yields

F(z, t, v) = Φ(z, t, v)L(z, t, v)

and proves the statement.

The combinatorial nature of F(z, t, v) allows us to draw an interesting conclusion with

respect to the implicitly defined function V (z, t).

Corollary 5.2.3.

Let V (z, t) be the implicitly defined function solving (5.2) from Proposition 5.2.2. Assume

that the underlying step set S has period p. Then V (z, t) is analytic around the origin

(z, t) = (0,0) with power series representation

V (z, t) =
∑

j≥0

g j(t)z
jp+1, (5.5)

where the g j(t) are polynomials with integer coefficients. Combinatorially, V (z, t)/z is the

bivariate generating function enumerating Łukasiewicz excursions with respect to S, where

z and t mark the length of the path and the number of r-ascents within, respectively.

Proof. Setting v = 0, i.e., ignoring all Łukasiewicz paths not ending on the starting alti-

tude, yields F(z, t, 0) = V (z, t)/z as the factor L(z, t, v) in (5.1) then cancels against the

denominator. The combinatorial interpretation of the trivariate generating function F(z, t, v)
together with the fact that for a p-periodic step set S there are no Łukasiewicz excursions of

length n for p - n proves all the statements above.

Now, with an appropriate generating function at hand let us discuss our approach for the

asymptotic analysis of the number of ascents in a nutshell.
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Basically, we set v = 0 to obtain a bivariate generating function enumerating Łukasiewicz

excursions, and we set v = 1 to obtain a generating function enumerating Łukasiewicz

meanders. The appropriate generating functions for the factorial moments of En,r and

Mn,r (from which expected value and variance can be computed) are then obtained by first

differentiating the corresponding generating function with respect to t (possibly more often

than once) and then setting t = 1 in this partial derivative. The growth of the coefficients of

this function can then be extracted by means of singularity analysis.

In particular, this means that in order to compute the asymptotic expansions for the quantities

we are interested in, we only need more information on V (z, 1) as well as the partial

derivatives ∂ ν

∂ tνV (z, t)
�

�

t=1.

Notation.

For the sake of simplicity, and because we will deal with these expressions throughout the

entire paper, we omit the second argument in V (z, t) in case t = 1, i.e., we set V (z) := V (z, 1),
Vt(z) := Vt(z, 1) = ∂

∂ t V (z, t)|t=1, Vz(z) := Vz(z, 1) = ∂
∂ z V (z, t)|t=1, and so on.

Example 5.2.4 (Explicit F(z, t, v)).
In the case of S = {−1,1} and r = 1 the generating function F(z, t, v) can be computed

explicitly and we find

F(z, t, v)

=
(1+ (t − 1)vz(1− vz))((1− 2vz)(1− (t − 1)z2)−

p

(1− (t + 3)z2)(1− (t − 1)z2)
2z(1− (t − 1)z2)(z − v + v2z + vz2(t − 1)(1− z))

.

(5.6)

In particular, for v = 0 (i.e., when we want to get the generating function for 1-ascents in

Dyck paths), we find

F(z, t, 0) =
1− (t − 1)z2 −

p

(1− (t + 3)z2)(1− (t − 1)z2)
2z2(1− (t − 1)z2)

.

5.3 Generating Functions: A Combinatorial Approach
The combinatorial interpretation of the implicitly defined function V (z, t) solving the kernel

equation (5.2) motivates the question whether there is a construction of F(z, t, v) that is

derived from the underlying combinatorial structure, instead of finding this structure as a

side effect.

The following proposition describes an integral relation enabling a purely combinatorial

derivation of the generating function F(z, t, v).

Proposition 5.3.1.
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The excursions of Łukasiewicz paths of length n with respect to some step set S correspond

to rooted plane trees with n+ 1 nodes and node degrees contained in the set 1+S.

An r-ascent in a Łukasiewicz excursion with respect to the step set S corresponds to a rooted

subtree such that the leftmost leaf in this subtree has height r, and additionally the root

node of the subtree is not a leftmost child itself (in the original tree).

Proof. As pointed out in e.g. [2, Example 3], this bijection between rooted plane trees with

given node degrees and Łukasiewicz excursions is well known. See [41, Section 11.3] for

an approach using words. However, as this bijection and its consequences makes up an

integral part of the argumentation within this chapter, we present a short proof ourselves.

Furthermore, proving the bijection allows us to find the substructure in the tree corresponding

to an r-ascent.

Given a rooted plane tree T consisting of n nodes whose outdegrees are contained in 1+S,

we construct a lattice path as follows: when traversing the tree in preorder1, if passing a

node with outdegree d, take a step of height d −1. The resulting lattice path thus consists of

n steps, and always ends on altitude −1, which follows from
∑

v∈T

(deg(v)− 1) =
∑

v∈T

deg(v)− n= (n− 1)− n= −1,

where deg(v) denotes the outdegree (i.e., the number of children) of a node v in the tree

T . In particular, observe that by taking the first n− 1 steps of the lattice path, we actually

end up with a Łukasiewicz excursion using the steps from S. To see this, first observe that

as the last node traversed in preorder certainly is a leaf, meaning that the nth step in the

corresponding lattice path is a down step. As the path ends on altitude −1 after n steps, we

have to arrive at the starting altitude after n− 1 steps.

Furthermore, as illustrated in Figure 5.2, adding one to the current height of the constructed

lattice path gives the size of the stack remembering the children that still have to be visited

while traversing the tree in preorder. Combining the two previous arguments proves that

the first n− 1 steps in the constructed lattice path form a Łukasiewicz excursion.

Similarly, by simply reversing the lattice path construction, a rooted plane tree of size n+ 1

with node degrees in 1+S can be constructed from any Łukasiewicz excursion of length n
with respect to S. This establishes the bijection between the two combinatorial families.

Finally, Figure 5.3 illustrates what r-ascents in Łukasiewicz paths are mapped to by means

of the bijection above.

1Traversing a tree in preorder corresponds to the order in which the nodes are visited when carrying out a

depth-first search on it.
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Figure 5.2: Bijection between Łukasiewicz paths and trees with given node degrees.

The emphasized nodes and edges indicate the construction of the tree after the first

three steps, which illustrates that the height of the Łukasiewicz path is one less than

the number of available node positions in the tree.

Figure 5.3: Plane tree with 30 nodes bijective to some Łukasiewicz excursion with

respect to the step set S = {−1,0,1,2,3} whose number of 2-ascents is 6. The edges

and nodes corresponding to the 2-ascents are emphasized.

In some sense, the bijection from Proposition 5.3.1 can be seen as a generalization of the

well-known bijection between Dyck paths and binary trees where the tree is traversed in

preorder, internal nodes correspond to up steps and leaves to down steps.

The fact that there is this bijection between Łukasiewicz excursions and these special trees

with given node degrees allows us to draw an immediate conclusion regarding the corre-

sponding generating functions.

Corollary 5.3.2 ([28]).
Let V (z, t) be the generating function enumerating rooted plane trees with node degrees

in 1+ S where z marks the number of nodes and t marks the number of r-ascents in the

corresponding Łukasiewicz excursion. Then V (z, t)/z enumerates Łukasiewicz excursions

with respect to S based on their length (marked by z) and the number of r-ascents (marked
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by t).

Additionally, V (z, t) satisfies the equations

V (0, t) = 0, V (z, t) = zL(z, t, V (z, t)), (5.7)

where

L(z, t, v) =
1

1− z S+(v)
+ (t − 1)(z S+(v))

r

enumerates sequences of up steps. In particular, V (z) := V (z, 1), the ordinary generating

function enumerating plane trees with node degrees in 1 + S with respect to their size,

satisfies

V (0) = 0, V (z) = zV (z) S(V (z)). (5.8)

Proof. The first part of this statement is an immediate consequence of the bijection from

Proposition 5.3.1. In order to prove (5.7), we observe that V , the combinatorial class of

plane trees with vertex outdegrees in 1+S, can be constructed combinatorially by means of

the symbolic equation

V = × SEQ
�

×
∑

s∈S
s≥0

V s
�

.

In a nutshell, this constructs trees in V by explicitly building the path to the leftmost leaf (the

first factor in the equation above) in the tree as a sequence of nodes. Apart from a leftmost

child, these nodes also have an additional s ∈ S branches, s ≥ 0, where again a tree from

V is attached. Considering that we obtain an r-ascent when using this construction with

a sequence of length r, this is precisely what is enumerated by L(z, t, V (z, t)). Thus, the

symbolic equation directly translates into the functional equation in (5.7). The condition

V (0, t) = 0 is a consequence of the fact that there are no rooted trees without nodes.

Setting t = 1 in (5.7) leads to (5.8). We also want to give a combinatorial proof of (5.8):

V =
∑

s∈S

V V · · · V

1+ s

Figure 5.4: Symbolic equation for the family of plane trees V with outdegrees in 1+S.

The generating function for V is V (z), and the root node is enumerated by z.

The implicit equation follows from the observation that a tree with node degrees from

1+ S can be seen as a root node (enumerated by z) where 1+ s for s ∈ S such trees are
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attached. Translating this into the language of generating functions via the symbolic equation

illustrated in Figure 5.4, yields

V (z) = z
∑

s∈S
V (z)1+s = zV (z)S(V (z)).

The shape of the functional equation (5.8), which is an immediate consequence of the

recursive structure of the underlying trees, is rather special. While it is tempting to cancel

V (z) on both sides of this equation, it is better to leave it in the present form: on the one

hand, S(u) starts with the summand 1/u—and on the other hand, we require (5.8) to be in

this special form y = zφ(y) such that we can use singular inversion to obtain the asymptotic

behavior of the coefficients of the generating function V (z). This is investigated in detail in

Section 5.4.

The following proposition is the combinatorial counterpart to Proposition 5.2.2.

Proposition 5.3.3.

Let F(z, t, v) be the trivariate ordinary generating function counting non-negative Łukasiewicz

paths with step set S starting at 0, where z marks the length of the path, t marks the number

of r-ascents, and v marks the final altitude of the path. Then F(z, t, v) can be expressed as

F(z, t, v) =
v − V (z, t)

v − zL(z, t, v)
L(z, t, v),

where V (z, t) and L(z, t, v) are defined as in Corollary 5.3.2.

Proof ([28]). It is not hard to see that by considering a sequence of paths enumerated by

L(z, t, v) followed by a single down step (the corresponding generating function for this

class is 1
1−L(z,t,v) z/v ), any unrestricted Łukasiewicz path with respect to S ending on a down

step can be constructed.

We want to subtract all paths that pass below the starting altitude in order to obtain the

trivariate generating function Φ(z, t, v) enumerating just the non-negative Łukasiewicz paths.

The paths passing below the axis can be decomposed into an excursion enumerated by

V (z, t)/z (see Corollary 5.3.2), followed by an (illegal) down step enumerated by z/v, and

ending with an unrestricted path again. Thus, the paths to be subtracted are enumerated by

V (z, t)
z

z
v

1
1− L(z, t, v) z

v

.

Therefore, we find

Φ(z, t, v) =
v − V (z, t)

v − zL(z, t, v)
.

Keeping in mind that Φ(z, t, v) only enumerates those non-negative Łukasiewicz paths ending

on a down step ↘, the generating function F(z, t, v) enumerating all such paths can be

obtained by appending another sequence of upsteps, i.e.,

F(z, t, v) = Φ(z, t, v)L(z, t, v).
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This proves the statement.

Now, as we have derived a suitable generating function both via an analytic as well as via

a combinatorial approach, we are interested in extracting information like, for example,

asymptotic growth rates from F(z, t, v). In order to do so, we need to have a closer look

at the function V (z, t), which, as we have already seen in both of the previous approaches,

plays a fundamental role in the analysis of ascents.

5.4 Singularity Analysis of Inverse Functions
The aim of this section is, on the one hand, to state and prove an extension of [21, Re-

mark VI.17]. In fact, we simply confirm what is announced in the footnote in [21, p. 405]
and give more details. Then, we use these results in order to derive relevant information on

the generating function V (z, t) from before.

For the following two propositions, we borrow the notation used in [21, Chapter VI.7].

Proposition 5.4.1.

Let φ(u) be analytic with radius of convergence 0 < R ≤∞, φ(0) 6= 0, [un]φ(u) ≥ 0 for

all n ≥ 0 and φ(u) not affine linear. Assume that there is a positive τ ∈ (0, R) such that

τφ′(τ) = φ(τ). Finally assume that φ(u) is a p-periodic power series for some maximal p.

Denote the set of all pth roots of unity by G(p).

Then there is a unique function y(z) satisfying y(z) = zφ(y(z)) which is analytic in a

neighborhood of 0 with y(0) = 0. It has radius of convergence ρ = τ/φ(τ) around the

origin. For |z| ≤ ρ, it has exactly singularities at z = ρζ for ζ ∈ G(p). For z→ ρ, we have

the singular expansion

y(z)
z→ρ
∼
∑

j≥0

(−1) jd j

�

1−
z
ρ

� j/2

for some computable constants d j, j ≥ 0. We have d0 = τ and d1 =
Æ

2φ(τ)/φ′′(τ).
Additionally, we have [zn]y(z) = 0 for n 6≡ 1 (mod p).

Proof. Existence, uniqueness, radius of convergence as well as singular expansion around

z→ ρ of y(z) are shown in [21, Theorem VI.6].

As φ is a p-periodic power series and φ(0) 6= 0, there exists an aperiodic function χ such

that φ(u) = χ(up). From the non-negativity of the coefficients of φ(u), it is clear that χ(u)
has non-negative coefficients and is analytic for |u|< Rp. We consider ψ(u) := χ(u)p. Then

ψ is again analytic for |u|< Rp, it has clearly non-negative coefficients, ψ(0) 6= 0 and ψ(u)
is not an affine linear function. If [um]χ(u) > 0 and [un]χ(u) > 0 for some m < n, then

[upm]ψ(u)> 0 as well as [upm+(n−m)]ψ(u)> 0, which implies that ψ is aperiodic.
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Finally, we have

τpψ′(τp) = pτpχ(τp)p−1χ ′(τp) = τφ(τ)p−1φ′(τ) = φ(τ)p = χ(τp)p =ψ(τp).

Considering the functional equation Y (Z) = Zψ(Y (Z)), we see that all assumptions of [21,

Theorem VI.6] are satisfied; thus it has a unique solution Y (Z) with Y (0) = 0 which is

analytic around the origin. By the same result, Y (Z) has radius of convergence

τp

ψ(τp)
=

τp

χ(τp)p
=
�

τ

φ(τ)

�p

= ρp

and, as ψ is aperiodic, the only singularity of Y (Z) with |Z | ≤ ρp is Z = ρp.

We consider the function ey(z) := zχ(Y (zp)). By definition, it is analytic for |z|< ρ and its

only singularities with |z| ≤ ρ are those z with zp = ρp, i.e., z = ρζ for ζ ∈ G(p). It is also

clear by definition that [zn]ey(z) = 0 for n 6≡ 1 (mod p). We have ey(0) = 0 and

zφ(ey(z)) = zχ((ey(z))p) = zχ(zpχ(Y (zp))p) = zχ(zpψ(Y (zp))) = zχ(Y (zp)) = ey(z)

because zpψ(Y (zp)) = Y (zp) by definition of Y . This implies that y = ey .

While the following proposition is particularly useful in the context of the previous one, it

also holds in a slightly more general setting. It gives a detailed description of the singular

expansions for p-periodic power series like above.

Proposition 5.4.2.

Let p be a positive integer and let y be analytic with radius of convergence 0 < ρ ≤∞,

where [zn]y(z) = 0 for n 6≡ 1 (mod p). Assume that y(z) has p dominant singularites located

at ζρ for ζ ∈ G(p), and that for some L ≥ 0 and z→ ρ, we have the singular expansion

y(z)
z→ρ
=

L−1
∑

j=0

d j

�

1−
z
ρ

�−α j

+O
��

1−
z
ρ

�−αL
�

,

where α0, α1, . . . , αL are complex numbers such that Re(α j)≥ Re(α j+1) for all 0≤ j < L.

Then, for ζ ∈ G(p), the singular expansion of y(z) for z→ ζρ is given by

y(z)
z→ζρ
=

L−1
∑

j=0

ζd j

�

1−
z
ζρ

�−α j

+O
��

1−
z
ζρ

�−αL
�

,

i.e., the expansion for z→ ζρ can be obtained by multiplying the expansion for z→ ρ with

ζ and substituting z 7→ ζ/ρ. Finally, for the coefficients of y(z) we find

[zn]y(z) = Jp | 1− nK[zn]
�

p
L−1
∑

j=0

d j

�

1−
z
ρ

�−α j

+O
��

1−
z
ρ

�−αL
��

, (5.9)
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which can be made explicit easily by means of singularity analysis (cf. [21, Chapter VI.4]).

In particular,

[zn]y(z) = Jp | 1− nK
� L−1
∑

j=0

pd j

Γ (α j)
nα j−1ρ−n +O

�

nRe(α0)−2ρ−n
�

+O
�

nRe(αL)−1ρ−n
�

�

.

Proof. As [zn]y(z) = 0 for n 6≡ 1 (mod p) there is a function χ, analytic around the origin,

such that y(z) = zχ(zp). Thus, for every ζ ∈ G(p), we have

y(ζz) = ζzχ((ζz)p) = ζzχ(zp) = ζy(z)

or, equivalently,

y(z) = ζy
�

z
ζ

�

.

Thus the singular expansion for z→ ζρ follows from that for z→ ρ by replacing z with z/ζ
and multiplication by ζ.

With the singular expansions at all the dominant singularities located at ζρ for ζ ∈ G(p) at

hand, we are able to extract the overall growth of the coefficients of y(z) by first applying sin-

gularity analysis to every expansion separately, and then summing up all these contributions.

When doing so, we use the well-known property of roots of unity that
∑

ζ∈G(p)

ζm = pJp | mK (5.10)

for m ∈ Z in order to rewrite the occurring sums as
∑

ζ∈G(p) ζ
1−n = pJp | 1− nK. Comparing

the resulting asymptotic expansion with (5.9) proves the statement.

The following result is a consequence of Propositions 5.2.2 (resp. Corollary 5.3.2), 5.4.1,

and 5.4.2. It shows that actually we have more than enough information to carry out the

asymptotic analysis of the number of ascents, although in general we do not know the

function V (z, t) explicitly.

Corollary 5.4.3.

Let V (z, t) be the bivariate generating function from Corollary 5.3.2 and let V (z) = V (z, 1).

1. Let τ > 0 be the uniquely determined positive constant satisfying S′(τ) = 0. Then

V (z) has radius of convergence ρ := 1/S(τ) with a square-root singularity for z→ ρ.

If S has period p, then the dominant singularities (i.e., singularities with modulus ρ)

are located at ζρ with ζ ∈ G(p). The corresponding expansions are given by

V (z)
z→ζρ
= ζτ−ζ

√

√2 S(τ)
S′′(τ)

�

1−
z
ζρ

�1/2

−ζS(τ)S′′′(τ)
3 S′′(τ)2

�

1−
z
ζρ

�

+O
��

1−
z
ζρ

�3/2�

.

(5.11)
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2. The evaluation of the partial derivatives ∂ ν

∂ tνV (z, t) at t = 1 can be expressed in terms

of V (z). For instance, the first partial derivative is given as

Vt(z) = −z
(V (z)− z)r

V (z)r+2 S′(V (z))
. (5.12)

Proof. Let F(z, t, v) be given as in the statement of Proposition 5.2.2.

1. The singular expansion of V (z) for z→ ζρ follows from applying Propositions 5.4.1

and 5.4.2 to our given context: Plugging in t = 1 in (5.2) (or, alternatively, the combi-

natorial interpretation of V (z, t) as stated in Corollary 5.3.2) proves that V (z) satisfies

the functional equation V (z) = zφ(V (z)) with φ(u) = u S(u). For this particular φ(u),
the fundamental constant τ is defined as the unique positive real number satisfying

S′(τ) = 0. Then, Proposition 5.4.1 yields the singular structure as well as the singular

expansion for z→ ρ after checking that φ(u) satisfies the necessary conditions—and

indeed, we have φ(0) = 1 6= 0, and for step sets other than S = {−1,0}, φ is also a

nonlinear function. With the computed expansion for z→ ρ, we obtain (5.11) from

Proposition 5.4.2.

2. As a consequence of V (z, t) being a bivariate generating function where the coefficient

of zn is given by a polynomial in t (see Corollary 5.3.2), and as we know that V (z) =
V (z, 1) has radius of convergence ρ = 1/S(τ), we obtain that V (z, t) is analytic in

a small neighborhood of (z, t) = (0,1). This allows us to implicitly differentiate the

functional equation (5.7) with respect to t. Within the implicit derivative of this

equation, the partial derivative ∂
∂ t V (z, t) only occurs linearly, so that we can solve for

it.

Equation (5.12) can now be obtained by setting t = 1 and using the relation z S(V (z)) =
1 (see Corollary 5.3.2). Higher-order partial derivatives can be obtained by differenti-

ating again with respect to t before setting t = 1.

These observations allow us to employ singularity analysis (see, e.g., [21, Chapter VI])
in order to carry out a precise analysis of the number of r-ascents in certain families of

Łukasiewicz paths in the following sections.

We conclude this section with a very useful observation with respect to the nature of the

structural constant τ.

Lemma 5.4.4.

Let S be some2 Łukasiewicz step set and let τ be the corresponding structural constant, i.e.

the unique positive number satisfying S′(τ) = 0. Then τ ≤ 1 with equality if and only if

S = {−1, 0,1} or S = {−1, 1}.
2Recall that we excluded S = {−1,0} in Section 5.1.
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Proof. First, observe that S′ is a strictly increasing function. For u≥ 1, we have

S′(u)≥ S′(1) = −1+
∑

s∈S
s≥0

s ≥ 0

with equality if and only if u = 1 and S ∈ {{−1,0,1}, {−1,1}}. Monotonicity of S′ then

implies the assertion of the lemma.

Remark.

The number of Łukasiewicz excursions of length n is trivially bounded from above by

|S|n which corresponds to all paths with the same step set but without any restrictions.

Consequently, the radius of convergence ρ of the generating function of excursions V (z)/z
is bounded from below by 1

|S| .

Assume that S 6∈ {{−1,0,1}, {−1,1}}. In this case, τ < 1 and S′(u)> 0 for τ < u< 1. This

implies |S|= S(1)> S(τ) = 1/ρ, which means that the radius of convergence ρ is strictly

larger than the trivial bound 1/|S|. In other words, for all but the two simple step sets

{−1,0,1} and {−1,1}, the restriction to Łukasiewicz excursions leads to an exponentially

smaller number of admissible paths.

The quantity S′(1) is also referred to as the drift of the walk (see, e.g., [2, Section 3.2]) and

strongly influences the asymptotic behavior of corresponding meanders.

5.5 Analysis of Ascents

5.5.1 Analysis of Excursions
In this section we focus on the analysis of excursions, i.e., paths that start and end on

the horizontal axis. As mentioned in Section 5.2, on the generating function level, this

corresponds to setting v = 0 in F(z, t, v) from (5.1). Also note that from this point on it is

quite useful to replace S+(v) = S(v)− 1/v in F(z, t, v).

Recall that En,r is the random variable modeling the number of r-ascents in a random

non-negative Łukasiewicz excursion of length n with respect to some given step set S.

Theorem 5.5.1.

Let r ∈ N, n ∈ N0, and p ≥ 1 be the period of the step set S. Let τ be the structural constant,

i.e., the unique positive solution of S′(τ) = 0. Set c := τS(τ).

Then, the expected number of r-ascents in Łukasiewicz paths of length n for n≡ 0 (mod p) as
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well as the corresponding variance grow with n→∞ according to the asymptotic expansions

EEn,r =
(c − 1)r

c r+2
n+

(c − 1)r−2

2τ2c r+2 S′′(τ)2
�

S′′(τ)2τ2
�

4c2 − (r + 8)c + r + 4
�

− S′′(τ)S(τ)
�

6c2 − 6(r + 2)c + r2 + 5r + 6
�

− S′′′(τ)c(2c2 − (r + 4)c + r + 2)
�

+O(n−1/2)

(5.13)

and

VEn,r =
�

(c − 1)r

c r+2
+
(2c − 2r − 3)(c − 1)2r

c2r+4
−
(c − 1)2r−2(2c − r − 2)2

c2r+3τ3 S′′(τ)

�

n+O(n1/2). (5.14)

Additionally, for n 6≡ 0 mod p, we have En,r = 0. All O-constants depend implicitly on r.

Proof. While the proof for this theorem actually is quite straightforward, it involves some

rather computationally expensive operations with asymptotic expansions, which we have

carried out with the help of SageMath, see the corresponding worksheet as referenced at the

end of Section 5.1.

As discussed in the remark after the definition of periodic lattice paths, for a p-periodic step

set S there are no excursions of length n for n 6≡ 0 mod p. Thus, the random variable En,r

degenerates to the constant 0 in these cases, allowing us to focus on the case where n is a

multiple of p.

Based on the fact that the generating function enumerating r-ascents within Łukasiewicz

excursions is given by F(z, t, 0) = V (z, t)/z, our general strategy for determining asymptotic

expansions for the expected number of r-ascents and the corresponding variance is to

compute expansions for the first and second factorial moment by normalizing the extracted

coefficients of Vt(z)/z and Vt t(z)/z.

In order to normalize these extracted coefficients, we need to compute an asymptotic

expansion for the number of S-excursions of given length. To accomplish this, we could

simply use the general framework developed by Banderier and Flajolet in [2, Theorem 3]—
however, we choose to analyze this quantity more directly by applying singularity analysis to

the singular expansion of V (z) = V (z, 1) given in (5.11). With the help of SageMath and

Proposition 5.4.2, we immediately find

[zn]
V (z)

z
= p

√

√ S(τ)3

2πS′′(τ)
S(τ)nn−3/2

−
p

24

√

√ S(τ)3

2πS′′(τ)7
�

45 S′′(τ)3 + 5 S(τ)S′′′(τ)2

− 3 S(τ)S′′(τ)S′′′′(τ)
�

S(τ)nn−5/2

+O(S(τ)nn−3)

(5.15)
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for n≡ 0 (mod p).

For the analysis of the expected value, we turn our attention to Vt(z)/z. By Corollary 5.4.3, the

derivative Vt(z) can be expressed in terms of V (z). Then, as V (z) and Vt(z) are both analytic

with radius of convergence ρ, we can use the singular expansion of V (z) together with (5.12)

to arrive at a singular expansion of Vt(z)/z. By (5.5) we know that Proposition 5.4.2 can be

used to obtain the singular expansion of Vt(z) for z→ ζρ with ζ ∈ G(p).

This allows us to extract the nth coefficient of Vt(z)/z by means of singularity analysis—

and dividing by the growth of the number of excursions of length n yields an asymptotic

expansion for EEn,r . This gives (5.13).

In the same manner, by investigating the second derivative Vt t(z)/z, we can obtain an

asymptotic expansion for the second factorial moment, E(En,r(En,r − 1)). Then, applying the

well-known identity

VEn,r = E(En,r(En,r − 1)) +EEn,r − (EEn,r)
2,

proves (5.14).

By means of Theorem 5.5.1 we are immediately able to determine the asymptotic behavior of

interesting special cases. We are particularly interested in the most basic setting: S = {−1, 1},
i.e., Dyck paths.

Example 5.5.2 (r-Ascents in Dyck paths).

In the case of Dyck paths, we have u S(u) = 1+ u2. From there, it is easy to see that τ= 1

and ρ = 1/2, and that the family of paths is 2-periodic. By the same approach as in the

proof of Theorem 5.5.1, we can determine the expected number and variance of r-ascents in

Dyck paths of length 2n with higher precision than stated in Theorem 5.5.1, namely as

ED2n,r =
n

2r+1
−
(r + 1)(r − 4)

2r+3
+
(r2 − 11r + 22)(r + 1)r

2r+6
n−1 +O(n−2)

and

VD2n,r =
�

1
2r+1

−
r2 − 2r + 3

22r+3

�

n

−
�

r2 − 3r − 4
2r+3

−
3r4 − 20r3 + 29r2 − 10r − 14

22r+5

�

+O(n−1/2).

However, as we have a closed expression for V (z), we can do even better. Because of

V (z)
z
=

1−
p

1− 4z2

2z2
,

we can also write down the generating function Vt(z)/z for the expected number of r-ascents

explicitly. We find the 2-periodic power series

Vt(z)
z
=
(1−

p
1− 4z2 )r(1+

p
1− 4z2)

2r+1
p

1− 4z2
, (5.16)
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for which, after substituting Z = z2, we can apply Cauchy’s integral formula in order to

extract the expected values before normalization with the nth Catalan number Cn explicitly.

Considering a contour γ that stays sufficiently close to the origin and winds around it exactly

once, and by the integral substitution Z = u
(1+u)2 we obtain

[Zn]
Vt(z)

z
=

1
2πi

∮

γ

Vt(z)/z
Zn+1

dZ

=
1

2πi

∮

γ̃

�

u
1+ u

�r 1
1− u

(1+ u)2n+2

un+1

1− u
(1+ u)3

du

=
1

2πi

∮

γ̃

(1+ u)2n−r−1

un−r+1
du= [un−r](1+ u)2n−r+1

=
�

2n− r − 1
n− 1

�

,

where γ̃ denotes the image of γ under the transformation; a curve that also stays close to

the origin and winds around it once. After normalization, this proves the exact formula

ED2n,r =
1
Cn

�

2n− r − 1
n− 1

�

.

5.5.2 Analysis of Dispersed Excursions
Let S be a Łukasiewicz step set where 0 6∈ S. In this setting, we define a dispersed Łukasiewicz
excursion to be an S-excursion where, additionally, horizontal steps “→” can be taken

whenever the path is on its starting altitude. Observe that, by our definition of r-ascents,

these horizontal steps do not contribute towards ascents, as only the non-negative steps from

S are relevant.

The motivation to study this specific family of Łukasiewicz paths originates from [34],
where the authors investigate the total number of 1-ascents in dispersed Dyck paths using

elementary methods. Our goal in this section is to find asymptotic expansions for the number

of dispersed Łukasiewicz excursions of given length as well as for the expected number of

r-ascents in these paths.

We begin our analysis by constructing a suitable bivariate generating function enumerating

dispersed Łukasiewicz excursions with respect to their length and the number of r-ascents.

Proposition 5.5.3.

Let r ∈ N and V (z, t) as in Proposition 5.2.2 or Corollary 5.3.2. Then the generating function

D(z, t) enumerating dispersed S-excursions where z marks the length of the excursion and t
marks the number of r-ascents is given by

D(z, t) =
1
z

V (z, t)
1− V (z, t)

. (5.17)
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Proof ([28]). Let E denote the combinatorial class of S-excursions. The corresponding

bivariate generating function is given by V (z, t)/z, as proved in Corollary 5.3.2.

By the symbolic method (see [21, Chapter I]), the combinatorial class D of dispersed

excursions can be constructed as

D = (E →)∗E .

Translating this combinatorial construction in the language of (bivariate) generating func-

tions, we find

D(z, t) =
1

1− V (z,t)
z z

V (z, t)
z

,

and simplification immediately yields (5.17).

In preparation for the analysis of the generating function D(z, t), we have to investigate the

structure of the dominant singularities. In particular, the following lemma states that in most

cases, the dominant singularity of D(z, 1) comes from the dominant square root singularities

on the radius of convergence of V (z).

Lemma 5.5.4.

The radius of convergence of D(z, 1) (as well as for the corresponding partial derivatives

with respect to t, i.e., ∂ ν

∂ tν D(z, t)|t=1) is given by ρ = 1/S(τ), where τ > 0 is the structural

constant with respect to the step set S.

Proof ([28]). As V (z) is a power series with non-negative coefficients, we have

|V (z)| ≤ V (|z|)≤ V (ρ) = τ≤ 1

for |z| ≤ ρ by Lemma 5.4.4. By the same lemma and because we assumed 0 6∈ S, equality

holds only in case of S = {−1,1}. Thus, the denominator 1 − V (z) of D(z, 1) does not

contribute a pole for |z|< ρ.

Lemma 5.5.4 tells us that in the general case of τ 6= 1, the singularities of D(z, 1) are of the

same type as the singularities of V (z). Therefore, the precise description of the singular

structure of V (z) given in Corollary 5.4.3 allows us to carry out the asymptotic analysis.

Recall that Dn,r is the random variable modeling the number of r-ascents in a random

dispersed Łukasiewicz excursion of length n with respect to some step set S.

Theorem 5.5.5.

Let p ≥ 1 be the period of the step set S. Assume additionally that for the structural constant

τ we have τ 6= 1.

Then dn, the number of dispersed Łukasiewicz excursions of length n, satisfies

dn =
1
p

2π

pτk(τp(p− k− 1) + k+ 1)
(1−τp)2

√

√S(τ)3

S′′(τ)
S(τ)nn−3/2 +O(S(τ)nn−5/2) (5.18)
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for n≡ k mod p and 0≤ k ≤ p− 1. Furthermore, the expected number of r-ascents grows

with n→∞ according to the asymptotic expansion

EDn,r =
(τS(τ)− 1)r

(τS(τ))r+2
n+O(1). (5.19)

The O-constants depend implicitly on both r as well as on the residue class of n modulo p.

In a nutshell, the proof of this theorem involves a rigorous analysis of the generating functions

D(z, 1) (for the overall number of dispersed excursions), as well as of Dt(z, 1) = 1
z

Vt (z)
(1−V (z))2

(for the expected number of ascents in these paths). All computations are carried out in

the corresponding SageMath worksheet, lukasiewicz-dispersed-excursions.ipynb.

Furthermore, while our results as stated in (5.18) and (5.19) only list the asymptotic main

term, expansions with higher precision are available in the worksheet as well (they just

become rather messy very quickly).

Proof. Before we delve into the analysis, let us recall the setting we have to deal with. As

the period of the step set S is p, the function V (z) (and corresponding derivatives with

respect to t) has p dominant square root singularities, located at ζ/S(τ) with ζ ∈ G(p) (see

Corollary 5.4.3).

Furthermore, as τ 6= 1, Lemma 5.5.4 tells us that the singular structure of D(z, 1) (and its

derivatives with respect to t) is directly inherited from V (z), meaning that the singularities

of D(z, 1) are of the same type as the singularities of V (z).

Thus, after rewriting

D(z, 1) =
1
z

V (z)
1− V (z)

=
1
z

�

1
1− V (z)

− 1
�

,

we can use the expansion of V (z) for z→ ζ/S(τ) from (5.11) to compute the expansion for

D(z, 1) with z→ ζ/S(τ), yielding

D(z, 1)
z→ζ/S(τ)
=

τS(τ)
1−τζ

−
1

(1−τζ)2

√

√2 S(τ)3

S′′(τ)

�

1−
z

ζ/S(τ)

�1/2

+O
�

1−
z

ζ/S(τ)

�

.

By applying singularity analysis we are able to determine the contribution of the singularity

located at ζ/S(τ) to the overall growth of the coefficients of D(z, 1), which can then be

obtained by summing up the contributions of all singularities on the radius of convergence.

In our case, this translates to summing over all pth roots of unity ζ ∈ G(p).

After doing so, we see that in the main term all roots of unity can be grouped together such

that we find
1
p

2π

�

∑

ζ∈G(p)

ζ−n

(1−τζ)2

�

√

√S(τ)3

S′′(τ)
S(τ)nn−3/2.

https://benjamin-hackl.at/downloads/lukasiewicz-ascents/lukasiewicz-dispersed-excursions.ipynb


130 5 Ascents in Non-Negative Lattice Paths

In fact, when studying these expansions with higher precision, the corresponding sums that

occur have the shape
∑

ζ∈G(p)

ζ`−n

(1−τζ)m

for some integers `, m≥ 0. To find an explicit expression for this sum, we first recall (5.10)

as well as another elementary property of roots of unity, namely

(1− ζτ)
p−1
∑

j=0

(τζ) j = 1−τp.

Now let n≡ k mod p with 0≤ k ≤ p− 1. Then we can rewrite

∑

ζ∈G(p)

ζ`−n

(1−τζ)m
=

1
(1−τp)m

∑

ζ∈G(p)

ζ`−k(1+τζ+ (τζ)2 + · · ·+ (τζ)p−1)m.

By (5.10) we only need to determine those summands in (1+τζ+ · · ·+(τζ)p−1)m involving

τ j with 0≤ j ≤ m(p− 1) and j ≡ k− ` mod p. This can be done easily for explicitly given

values of m and `, for example

∑

ζ∈G(p)

ζ−n

(1−τζ)2
=

pτk(τp(p− k− 1) + k+ 1)
(1−τp)2

.

Plugging this into the previously obtained asymptotic expansion for the growth of the

coefficients of D(z, 1) yields (5.18).

For the expected value we focus on the generating function

Dt(z, 1) =
Vt(z)

z
1

(1− V (z))2

and proceed similarly to above. Using (5.11) and (5.12) we are again able to compute the

singular expansion of Dt(z, 1) for z→ ζ/S(τ), namely

1
(1−τζ)2

(τS(τ)− 1)r

S(τ)rτr+2
p

2 S(τ)S′′(τ)

�

1−
z

ζ/S(τ)

�−1/2

+O(1).

Extracting the contributions of the singularity at ζ/S(τ), summing up the contributions of

all p singularities, and then finally normalizing the result by dividing by the overall number

of dispersed excursions of length n we arrive at (5.19).

By Lemma 5.4.4, the only family of Łukasiewicz paths that is not covered by Theorem 5.5.5

is S = {−1, 1}, the case of dispersed Dyck paths. However, as everything is explicitly given,

the analysis is quite straightforward.
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Proposition 5.5.6.

Let dn denote the total number of dispersed Dyck paths of length n, and let Dn,r denote the

random variable modeling the number of r-ascents in a random dispersed Dyck path of

length n.

Then, dn is given by

dn =
�

n
bn/2c

�

=

√

√ 2
π

2nn−1/2 −
2− (−1)n

2
p

2π
2nn−3/2 +O(2nn−5/2), (5.20)

and the expected number of r-ascents satisfies

EDn,r =
n

2r+2
−
s

π

2
r − 2
2r+2

n1/2 +
(r − 1)(r − 4)

2r+3

−
s

π

2
(r − 2)(2− (−1)n)

2r+4
n−1/2 +O(n−1).

(5.21)

Proof. In the case where τ = 1, the zero in the denominator of 1
1−V (z) combines with the

square root singularity from V (z) itself. From Example 5.5.2 we know that

V (z) =
1−
p

1− 4z2

2z
and Vt(z) = z

(1−
p

1− 4z2 )r(1+
p

1− 4z2 )

2r+1
p

1− 4z2
.

The number dn of dispersed Dyck paths of length n can be read off as the coefficients of

D(z, 1) =
1
z

V (z)
1− V (z)

=
1
2z

�

√

√1+ 2z
1− 2z

− 1
�

=
1

p
1− 4z2

+
1
2z

�

1
p

1− 4z2
− 1

�

.

This proves (5.20), where the asymptotic part can be obtained by means of singularity

analysis. The explicit formula for dn in (5.20) is also stated in [34, Lemma 2].

For the expected number of r-ascents, we consider

Dt(z, 1) =
1
z

Vt(z)
(1− V (z))2

=
(1−

p
1− 4z2)r(1− 4z2 +

p
1− 4z2(1− 2z2))

2r+1(1+ 2z)(1− 2z)2
.

Just as before, the coefficients of this function can also be extracted by means of singularity

analysis; the dominant singularities can be found at z = ±1/2. Extracting the coefficients

and dividing by dn yields (5.21).

This completes our analysis of r-ascents in dispersed Łukasiewicz excursions.

5.5.3 Analysis of Meanders
In this section we study ascents in meanders, i.e., non-negative Łukasiewicz paths without

further restriction. The corresponding generating function can be obtained from (5.1) by

setting v = 1, which allows arbitrary ending altitude of the path.
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In accordance to the results from [2, Theorem 4], the behavior of meanders depends on the

sign of the drift (i.e., the quantity S′(1)). The following theorem handles the case of positive

drift (which, in our setting, is equivalent to τ 6= 1).

Recall that Mn,r is the random variable modeling the number of r-ascents in a random

non-negative Łukasiewicz path of length n with respect to some given step set S.

Theorem 5.5.7.

Let τ > 0 be the structural constant, i.e., the unique positive solution of S′(τ) = 0, and

assume that τ 6= 1.

Then, with ξ = 1/S(1), the expected number of r-ascents in Łukasiewicz meanders of length

n as well as the corresponding variance grow with n →∞ according to the asymptotic

expansions

EMn,r = µn+
(S(1)− 1)r(2 S(1)− 1− r)

S(1)r+2
+
(S(1)− 1)r Vz(ξ)

S(1)r+1(1− V (ξ))
−

Vt(ξ)
1− V (ξ)

+O
�

n5/2
�

S(τ)
S(1)

�n�

, (5.22)

and

VMn,r = σ
2n+O(1), (5.23)

where µ and σ2 are given by

µ=
(S(1)− 1)r

S(1)r+2
and σ2 =

(S(1)− 1)r

S(1)r+2
+
(S(1)− 1)2r(2 S(1)− 3− 2r)

S(1)2r+4
.

Moreover, for n→∞, Mn,r is asymptotically normally distributed, i.e., for x ∈ R we have

P
�Mn,r −µn
p
σ2n

≤ x
�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2).

All O-constants depend implicitly on r.

Proof. Just as in the analysis of excursions and dispersed excursions, the first quantity we

require is mn, the total number of meanders of length n associated to S. Setting v = t = 1

in (5.1) and simplification yields

F(z, 1, 1) =
1− V (z)
1− z S(1)

.

From Corollary 5.4.3 we know that V (z) has radius of convergence 1/S(τ). As S(u) is strictly

convex for u > 0 and τ solves S′(τ) = 0, this means that S(τ) < S(u) for all u > 0 with

u 6= τ. Hence, as 1/S(1)< 1/S(τ), the dominant singularity of F(z, 1, 1) is the simple pole

located at ξ := 1/S(1). Extracting coefficients yields

mn = [z
n]F(z, 1, 1) = (1− V (ξ))S(1)n +O(n−3/2 S(τ)n). (5.24)
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The error term can directly be deduced from the fact that the next relevant singularity

of F(z, 1, 1) is of square-root type with modulus 1/S(τ) (coming from V (z)). Observe

that (5.24) could also have been obtained by applying [2, Theorem 4] for our given step set

S.

In order to determine the expectation EMn,r , we differentiate F(z, t, 1) with respect to

t, set t = 1, and then extract the coefficients of the resulting generating function. By

construction, these coefficients are mn ·EMn,r , allowing us to obtain an asymptotic expansion

after normalizing the result.

Carrying out the computations leads to

∂

∂ t
F(z, t, 1)

�

�

t=1 =
(cz)r(cz − 1)2(1− V (z))

(1− z S(1))2
−

Vt(z)
1− z S(1)

,

where, for the sake of brevity, we define c := S(1)− 1= S+(1). Determining the growth of

the coefficients then gives

c r(1− V (ξ))
S(1)r+2

n S(1)n +
�

(1− V (ξ))c r(2 S(1)− 1− r) + c r S(1)Vz(ξ)
S(1)r+2

− Vt(ξ)
�

S(1)n

+O(n−1/2 S(τ)n),

which, after dividing by the expansion of mn, proves (5.22).

Analogously, for the second partial derivative of F(z, t, 1) with respect to t, we find

∂ 2

∂ t2
F(z, t, 1)

�

�

t=1 = −
2z(cz)2r(cz − 1)3(1− V (z))

(1− z S(1))3
−

2(cz)r(cz − 1)2Vt(z)
(1− z S(1))2

−
Vt t(z)

1− z S(1)
,

allowing us to determine the asymptotic growth of the unnormalized second factorial moment,

mnE(Mn,r(Mn,r − 1)). Dividing by mn and computing the variance by means of VMn,r =
E(Mn,r(Mn,r − 1)) +EMn,r − (EMn,r)2 then yields (5.23).

In order to prove that Mn,r is asymptotically normally distributed [28], we observe that

F(z, t, 1) =
(1− V (z, t))(1+ (t − 1)(1− cz)(cz)r)

1− z S(1)− (t − 1)(1− cz)(cz)r

has a unique simple pole at z = 1/S(1) for t = 1 and, by Rouché’s theorem for |z| < ρ,

it has a single pole for sufficiently small |t − 1|. Then, in order to apply the theorem on

singularity pertubation for meromorphic functions [21, Theorem IX.9], which proves the

normal limiting distribution, all that remains to show is that the main term σ2 ≥ 0 of the

asymptotic expansion of the variance does not vanish.

Setting σ2 = 0 is equivalent to the equation

(3+ 2r − 2S(1))(S(1)− 1)r = S(1)r+2,
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where all occurring quantities are integer-valued. As we have gcd(S(1)− 1, S(1)) = 1, this

equation can only be valid if S(1) = 2. However, in this case, the equation reduces to

(2r − 1) = 2r+2, which is impossible for parity reasons.

Remark (Computation of constants).

Within (5.22) and (5.23), the asymptotic expansions for the expected number and variance

of r-ascents in meanders, constants of the type V (ξ), Vz(ξ), Vt(ξ), where ξ = 1/S(1), occur.

For higher precision than in the theorem, also higher derivatives (as well as mixed derivatives)

occur.

Although the function V (z, t) is only given implicitly, by the following observation all of those

constants can actually be computed. By taking the functional equation (5.8) and rewriting it

as
1
z
= S(V (z)),

we can see that for z = 1/S(1) we obtain the relation

S(1) = S
�

V
�

1
S(1)

��

.

Then, because we know that V (1/S(1))> 0 and that S(u) is strictly convex for u> 0, the

constant can be determined as the unique positive solution of S(u) = S(1) satisfying u 6= 1.

For determining the value of the constants involving derivatives, we make use of the same

approach as used in Corollary 5.4.3. By means of implicit differentiation we are able to

rewrite any derivative of the form ∂ ν1+ν2

∂ tν1∂ zν2 V (z, t)|t=1 in terms of V (z), allowing us to express

all constants in terms of V (ξ).

By Lemma 5.4.4, Theorem 5.5.7 covers all step sets except for S = {−1, 1} and S = {−1, 0, 1}.
In these cases, we have a similar situation to what we had in Section 5.5.2: the square root

singularity coming from V (z) combines with the zero in the denominator.

The following propositions close this gap.

Proposition 5.5.8.

The expected number of r-ascents in the Łukasiewicz meanders of length n associated to

S = {−1,1} as well as the corresponding variance grow with n → ∞ according to the

asymptotic expansions

EMn,r =
n

2r+2
+
p

2π(r − 2)
2r+3

n1/2 −
r2 − r − 8

2r+3
+
p

2π((2− (−1)n)(r − 2)
2r+5

n−1/2 +O(n−1),
(5.25)
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and

VMn,r =
2r+3 − r2(π− 2) + 4r(π− 3)− 4π+ 10

22r+5
n

+
p

2π(2r+2(r − 2)− r3 + 3r2 − 2r + 4)
22r+5

n1/2 +O(1). (5.26)

Proof. The analysis of ascents in this case is pretty much straightforward, as3

V (z) =
1−
p

1− 4z2

2z
,

and therefore all generating functions involved in this analysis are given explicitly.

The total number of meanders can now either be obtained by following [2, Theorem 4], or

simply by extracting the coefficients of

F(z, 1, 1) = −
1− 2z −

p
1− 4z2

2z(1− 2z)
,

where the dominant singularities are located at z = ±1/2. In any case, we find that for

n→∞ there are
√

√ 2
π

2nn−1/2 −

√

√ 2
π

2− (−1)n

4
2nn−3/2 +

√

√ 2
π

13− 12(−1)n

32
2nn−5/2 +O(2nn−7/2) (5.27)

meanders with steps S = {−1, 1} of length n.

Then, by plugging in

Vt(z) =
z(1−

p
1− 4z2)r(1+

p
1− 4z2)

2r+1
p

1− 4z2

and the formula for V (z) into

∂

∂ t
F(z, t, 1)

�

�

t=1 =
z r(1− z)2(1− V (z))

(1− 2z)2
−

Vt(z)
1− 2z

,

we have an explicit representation of the generating function for the expected number of

r-ascents before normalization. Extracting the coefficients by means of singularity analysis

(the location z = ±1/2 of the dominant singularities is known from above) and then dividing

by (5.27) yields (5.25).

For computing the variance, we proceed similarly: we determine the asymptotic behavior of

the second factorial momentE(Mn,r(Mn,r−1)) by extracting the coefficients of ∂ 2

∂ t2 F(z, t, 1)|t=1

and normalizing the result by dividing by (5.27). Then, (5.26) follows from

VMn,r = E(Mn,r(Mn,r − 1)) +EMn,r − (EMn,r)
2.

3See also Example 5.5.2.
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Proposition 5.5.9.

The expected number of r-ascents in the Łukasiewicz meanders of length n associated to

S = {−1,0,1} as well as the corresponding variance grow with n→∞ according to the

asymptotic expansions

EMn,r =
2r

3r+2
n+
p

3π(r − 4)2r−2

3r+2
n1/2 − (3r2 − r − 96)

2r−4

3r+2

+
p

3π(r − 4)2r−6

3r
n−1/2 +O(n−1) (5.28)

and

VMn,r =
3r+22r+4 − 22r(3r2(π− 2)− 8r(3π− 10) + 48π− 144)

16 · 32r+4
n

+
p

3π(72(r − 4)6r − 22r(3r3 − 9r2 − 28r − 32))
32 · 32r+4

n1/2 +O(1). (5.29)

Proof. The asymptotic expansions for expectation and variance can be obtained with an

analogous approach as in the proof of Proposition 5.5.8. In this case, we have

V (z) =
1− z −

p
1− 2z − 3z2

2z
,

and the dominant singularity of F(z, 1, 1) (as well as for the corresponding derivatives with

respect to t) is located at z = 1/3.
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