
Benjamin Hackl

Asymptotic Analysis

of Lattice Paths and

Related Structures

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

STUDIUM

Technische Mathematik

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

BETREUER

Univ.-Prof. Dr. Clemens Heuberger

Institut für Mathematik

Klagenfurt, 2. Juli 2015





iii

Eidesstattliche Erklärung
Ich versichere an Eides statt, dass ich

• die eingereichte wissenschaftliche Arbeit selbständig verfasst und andere als die an-

gegebenen Hilfsmittel nicht benutzt habe,

• die während des Arbeitsvorganges von dritter Seite erfahrene Unterstützung, ein-

schließlich signifikanter Betreuungshinweise, vollständig offengelegt habe,

• die Inhalte, die ich aus Werken Dritter oder eigenen Werken wortwörtlich oder sinn-

gemäß übernommen habe, in geeigneter Form gekennzeichnet und den Ursprung der

Information durch möglichst exakte Quellenangaben (z.B. in Fußnoten) ersichtlich

gemacht habe,

• die Arbeit bisher weder im Inland noch im Ausland einer Prüfungsbehörde vorgelegt

habe und

• zur Plagiatskontrolle eine eingereichte digitale Version der Arbeit eingereicht habe,

die mit der gedruckten Version übereinstimmt.

Ich bin mir bewusst, dass eine tatsachenwidrige Erklärung rechtliche Folgen haben wird.

Benjamin Hackl Klagenfurt, 2. Juli 2015



iv

Acknowledgements
Like with almost any other large project, writing this thesis would not have been possible

without the support from my family, colleagues, and friends. The following lines are devoted

to them.

I want to thank my advisor Clemens Heuberger for continuously offering helpful advice over

the course of this thesis, as well as for the time and resources he devoted to this project.

I believe that a harmonic work environment is crucial for delivering good results—and I

want to thank my colleagues from the Department of Mathematics for providing such an

environment. I also want to thank my international colleagues, especially Helmut Prodinger
and Stephan Wagner, for the fruitful collaboration.

Furthermore, I want to thank my friends (Markus, Julia, Christina, Thomas, Christian, Si-
mon, Florian, and many more. . . ) for their support and the numerous memorable moments

we have shared.

Finally, I want to express my sincere gratitude to my parents Peter and Natascha as well as

to my brother Paul for actively supporting me in any of my life choices.

Thank you!

This work was supported financially by the Austrian Science Fund (FWF): P 24644-N26.



Abstract
While classical combinatorics is mostly “just” about enumerating discrete objects, the field

of Analytic Combinatorics is about the precise analysis of the corresponding asymptotic be-

havior. A broad spectrum of mathematical disciplines is involved in such an “asymptotic

analysis”—most prominently, results from classical combinatorics, complex analysis, and

probability theory are used.

The central (discrete) objects of study within this thesis are lattice paths and trees. After

giving an introduction to some central ideas and methods from Analytic Combinatorics,

we discuss various special classes of lattice paths and trees. The analyses of these objects

are powered by several different ideas ranging from simple consequences of the fundamen-

tal analytic framework up to (new) approaches that are specifically tailored for the given

problem structure. The results of these novel approaches have also been submitted for

publication in an international journal.

Zusammenfassung
Während sich die klassische Kombinatorik normalerweise “nur” mit dem Abzählen diskre-

ter Objekte beschäftigt, interessieren wir uns im Rahmen der analytischen Kombinatorik für

präzise Analysen des entsprechenden asymptotischen Verhaltens. Für eine solche asympto-

tische Analyse werden Resultate aus einem breiten Spektrum von mathematischen Diszipli-

nen, wie beispielsweise der klassischen Kombinatorik, der Funktionentheorie, und auch der

Wahrscheinlichkeitstheorie verwendet.

Innerhalb dieser Masterarbeit spielen Gitterpunktpfade sowie Bäume eine zentrale Rolle.

Nachdem wir zunächst einige fundamentale Ideen und Methoden aus der analytischen Kom-

binatorik vorstellen, widmen wir uns danach der asymptotischen Analyse von diversen spe-

ziellen Klassen von Gitterpunktpfaden und Bäumen. Die für diese Analysen verwendeten

Ansätze reichen hierbei von einfachen Konsequenzen des zugrundeliegenden analytischen

Grundgerüsts bis hin zu (neuen) Ansätzen, die speziell auf den jeweiligen Problemtyp zu-

geschnitten sind. Die daraus entstandenen neuen Ergebnisse wurden auch bei einem inter-

nationalen Journal zur Publikation eingereicht.
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Introduction

This thesis revolves around various central aspects of Analytic Combinatorics, the discipline

in which the asymptotic behavior of discrete objects is investigated and determined with the

help of analytic methods.

In Chapter 1 some of the most common tools from Analytic Combinatorics are discussed.

In particular, Section 1.2 introduces the so-called Symbolic Method, which essentially is a

specification language for combinatorial structures. As soon as a structure is specified with

the help of this language, the construction can be “translated” into the world of generating
functions. In Section 1.3 we discuss two common frameworks that can be used in order to

extract the asymptotic behavior of some combinatorial structure from the associated gen-

erating function. Our brief introduction to the general analytic framework is concluded in

Section 1.4, where we introduce some related concepts from probability theory.

Then, with this basic framework at hand we consider so-called lattice paths in Chapter 2. In

Section 2.2 and Section 2.3 we revisit some well-known results on the exact and asymptotic

behavior of these special lattice paths. Section 2.4 discusses previously unknown results:

among others, a recent conjecture of Zhao that was posed in the Journal of Number Theory

is proved. This section is joint work with Clemens Heuberger, Helmut Prodinger, and Stephan
Wagner. A standalone version of it can be found in [19], which has been submitted for pub-

lication in an international journal. Note that these deliberations are supported by source

code that can be found in Appendix A.

In Chapter 3 we discuss the asymptotic behavior of trees. Because of their special recursive

structure, the analytic methods introduced in Chapter 1 cannot be applied directly. However,

they can be generalized and extended such that trees can be investigated with the same

machinery as well. This is discussed and illustrated in Section 3.2. Finally, we discuss some

well-known results on the number of deepest nodes in a tree in Section 3.3.

1



1 Preliminaries

1.1 Introduction
The mathematical discipline of Analytic Combinatorics is a fascinating area of research. Com-

binatorics (or, to be more precise, Enumerative Combinatorics) is the mathematical field of

study in which discrete objects are enumerated. However, sometimes we would like to have

more information than a answer from Enumerative Combinatorics provides. For example,

consider the following question:

Assume that we are playing a very simple game (without participation fee), in which we can
either win or loose one Euro in every round. If we play 2n rounds, how many possible “zero-sum
game series” are there? That is, how many possible outcomes are there such that we neither
loose nor earn any money in the end?

In terms of Enumerative Combinatorics, the answer can be obtained easily: if we neither

loose nor earn any money, then obviously we have to win equally many rounds as we loose.

This means that the question of counting all possible “zero-sum game series” reduces to

counting the number of game series in which exactly n out of 2n games are won. This

number is exactly given by the binomial coefficient
�2n

n

�

. Alternatively, the problem could

also be reduced to counting binary words (i.e. words over the alphabet {0, 1}) of length 2n
that have equally many zeros as ones.

From the Enumerative Combinatorics point of view this problem is solved and completely

answered. Yet—as stated above—there are still open questions. Actually, we have no idea

how the number of “zero-sum game series” behaves if n gets large: is this logarithmic,

polynomial, or even exponential growth?

In order to answer this, we have to analyze the quantity
�2n

n

�

asymptotically—and this is

where analytic methods come into play. In general, a thorough investigation of the analytic-

ity of the associated generating function1 yields the asymptotic behavior (and in many cases

even the limiting distribution, i.e. the stochastic pendant of the asymptotic behavior) of the

objects we are interested in.

1The notion of generating functions is an extremely powerful tool: essentially, these objects represent an

entire infinite sequence.

2



1.2 Combinatorial Classes 3

In this chapter, preliminaries for the application of methods from Analytic Combinatorics to

discrete structures like, for example, lattice paths and trees are discussed. In Section 1.2, the

notion of combinatorial classes will be introduced, which will also direct us to the concept

of generating functions, which were also mentioned above.

Section 1.3 introduces some analytic concepts and tools like the framework of Singular-
ity Analysis as well as the Mellin transform. These introductions are accompanied by the

discussion of some classical examples.

Of course, there is a strong relation between counting objects, investigating asymptotic

structures, and probability theory. The nature of this relation will be explored in Section 1.4.

In this brief introduction to some probability theoretic concepts we will also encounter one of

the central objects of this thesis: lattice paths. Furthermore, the role of generating functions

in probability theory with respect to the asymptotic analysis of discrete structures shall be

stressed explicitly.

As the results and methods from this chapter are generally well-known, we will refrain

from giving proofs and refer to the respective literature instead: when it comes to Analytic
Combinatorics, P. Flajolet’s and R. Sedgewick’s impressive book [17] is a standard reference.

Additionally, there are some excellent concise overviews in [6].

1.2 Combinatorial Classes
The importance of generating functions cannot be underestimated (see, for example, [18,

Section 5.4]). In this section, we introduce the framework of “combinatorial classes”, which

will help us understand naturally how generating functions and operations on them can be

interpreted. This section is mainly based on [17, Chapter I].

Definition 1.2.1 (Combinatorial class).

Let A be a set and define a size function | · | : A → N0 such that for all n ∈ N0 we have

an := #{a ∈A : |a|= n}<∞. Then the tuple (A, | · |) is called a combinatorial class.

In a nutshell, combinatorial classes are sets where each element has a certain “size”. The

number of elements of size n in a combinatorial class A is denoted as an, and the sequence

(an)n∈N0
is referred to as the counting sequence of the combinatorial class A.

Based on the counting sequence, we may now also define the generating function of such a

sequence.

Definition 1.2.2 (Ordinary generating function).

Let (an)n∈N0
be a sequence. Then the ordinary generating function (OGF) of this sequence is
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the formal power series
A(z) :=

∑

n≥0

anzn.

Furthermore, [zn]A(z) shall denote the coefficient of zn in A(z), i.e. [zn]A(z) = an.

Remark (Polynomials and formal power series).

Algebraically, polynomials over a unitary commutative ring R are defined as sequences

(an)n∈N0
⊆ R where almost all coefficients are 0. Formal power series are defined similarly,

only the restriction on the coefficients is dropped, meaning that formal power series can be

identified with the set of sequences over R. In both cases, the “indeterminate” corresponds

to the sequence (0,1, 0, . . .), and the multiplication is defined by means of convolution.

Although formal power series are defined algebraically as elements of such a formal power

series ring (denoted as R¹zº), we will often treat them like analytic objects and investigate,

for example, their radius of convergence.

Remark (Notational convention for combinatorial classes).

In this thesis, we stick to the following convention: unless stated otherwise, combinatorial

classes are written in calligraphic letters (e.g. A), the corresponding generating functions

are written with capital Latin letters (A(z) in this case), and the associated counting sequence

is denoted with lowercase Latin letters, i.e. A(z) =
∑

n≥0 anzn.

Example 1.2.3.

Consider the combinatorial class W of words over the alphabet {a, b, c} where the size of

a word within the combinatorial class is its length. That is, if ε denotes the empty word
(which is the unique word of length 0), then we have

W = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . .}.

For the number of objects of size n (denoted as wn), we observe w0 = 1, w1 = 3, w2 = 9. In

general, we have wn = 3n: for each of the n letters in a word of length n we have 3 possible

choices, therefore there are 3n words of length n.

Based on the explicit formula for wn, we may also give the generating function

W (z) =
∑

n≥0

wnzn =
∑

n≥0

3nzn =
∑

n≥0

(3z)n =
1

1− 3z
.

In this case, the generating function can be interpreted as a complex function analytic in a

neighborhood of 0 (the power series
∑

n≥0(3z)n has radius of convergence 1
3). 4

Example 1.2.4.

As another example, consider the combinatorial class P of permutations (i.e. bijective func-

tions on a finite domain). To be precise, we consider bijective functions ϕ : {1,2, . . . , n} →
{1, 2, . . . , n} where n ∈ N0. The size of a permutation within P is the size of its domain.
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It is a well-known fact that there are n! permutations of size n (there are n choices for

the first object, n − 1 for the second, and so on . . . ), which directly implies pn = n!. The

corresponding generating function is

P(z) =
∑

n≥0

pnzn =
∑

n≥0

n!zn.

Analytically, this function is only defined for z = 0 with P(0) = p0 = 1, and the radius of

convergence of the power series is 0. Nevertheless, in this case we resort to the definition

of P(z) as a formal power series. 4

Remark.

It is not very surprising that in Example 1.2.3 we could observe a relation between the radius

of convergence of the generating functions and the growth of the counting sequence: the

magnitude of growth of the counting sequence grows with shrinking radius of convergence.

Within analytic combinatorics, the technique of Singularity Analysis makes use of this pro-

found connection between the location and type of the singularities of the generating func-

tion, and the asymptotic behavior of the counting sequence. We will introduce the most

basic aspects of Singularity Analysis in Section 1.3.1.

Definition 1.2.5 (Operations on combinatorial classes).

Let A and B be combinatorial classes with size functions | · |A and | · |B, respectively. Then

we define the following operations on these classes:

• Sum of combinatorial classes: A + B := {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B} where

|(1, a)|= |a|A and |(2, b)|= |b|B.

• Product of combinatorial classes: A × B := {(a, b) | a ∈ A, b ∈ B} where |(a, b)| =
|a|A + |b|B.

• Kleene-Closure or Sequence construction: assuming that there is no object of size 0

in A, we set A∗ := {ε}+A+A2 +A3 + · · · , where |ε|= 0 in A∗.

• Powerset construction: PSet(A) is the class of all finite subsets of A.

• Multiset construction: MSet(A) is the class containing all finite multisets2 consisting

of elements from A.

For the powerset and multiset construction, the size is given as the sum of sizes of the

elements in the powerset and multiset, respectively.

From a combinatorial point of view, the operations from the previous definition arise natu-

rally when studying combinatorial structures. For example, words over an alphabet A are

2Multisets are sets where elements are allowed to occur multiple times. A multiset corresponds to the class

of all permutations of a finite sequence.
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elements from A∗. Another prominent example is the class of integer partitions P , which

can be seen as MSet(I), the multiset construction over the combinatorial class of the positive

integers I = {1,2, 3, . . .}.

However, these operations are only useful if we are also able to construct the respective

counting sequences efficiently. The following theorem will establish this link: it translates

the operations on combinatorial classes to operations on their generating functions.

Theorem 1.2.6 (Operations on generating functions).

Let A, B, and C be combinatorial classes with ordinary generating functions A(z), B(z),
and C(z), respectively. Then the operations on combinatorial classes from Definition 1.2.5

translate into the following operations on their generating functions:

• If C =A+B, then C(z) = A(z) + B(z), and especially cn = an + bn for all n ∈ N0.

• If C =A×B, then C(z) = A(z) · B(z), and especially cn =
∑

j≤n a j bn− j.

• If B =A∗, then B(z) = 1
1−A(z) .

• If B = PSet(A), then we have

B(z) =
∏

k≥1

(1+ zk)ak = exp
�∑

k≥1

(−1)k−1

k
A(zk)

�

.

• If B =MSet(A), then we have

B(z) =
∏

k≥1

(1− zk)−ak = exp
�∑

k≥1

1
k

A(zk)
�

.

Proof. See [17, Theorem I.1].

Basically, this theorem powers the Symbolic Method. It is used to find the generating function

of a combinatorial class by exploiting the structure of the class using the operations from

Definition 1.2.5. This shall be illustrated by the following examples.

Example 1.2.7 (Symbolic Method: words over an alphabet).

As a first example, we consider words over the alphabet A = {a, b, c}. The size of the

combinatorial objects (i.e. the words) shall be their length. In this sense, the alphabet A is

a combinatorial class as well—and its generating function is given by A(z) = 3z. As stated

above, from a combinatorial point of view, words over an alphabet can be interpreted as

finite sequences of letters. Therefore, the combinatorial class of words over A is given by

W :=A∗, which yields W (z) = 1
1−A(z) =

1
1−3z .

Expanding this function yields

W (z) = 1+ 3z + (3z)2 + (3z)3 + · · ·=
∑

n≥0

3nzn.

Therefore, there are 3n words of length n over an alphabet with three letters. 4
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Example 1.2.8 (Symbolic Method: binary words without consecutive ones).

We consider the combinatorial class A of all words over the alphabet {0, 1} (“binary words”)

where consecutive ones are not allowed. It is easy to see that the class A may be constructed

as

A= {0, 10}∗ × {ε, 1},

and therefore the respective generating function is given by

A(z) =
1

1− (z + z2)
· (1+ z) =

1+ z
1− z − z2

.

One easily checks that this generating function generates the shifted Fibonacci sequence

( fn+2)n≥0 (see A000045 in [34] for the sequence of Fibonacci numbers). The class A is

strongly related to the concept of so-called non-adjacent forms (NAFs), which are (in their

simplest incarnation) digit expansions over the digit set {−1,0, 1}, where consecutive non-

zero digits are not allowed. 4

Example 1.2.9 (Symbolic Method: rooted plane trees).

We discuss yet another combinatorial class constructed by such elementary operations: the

class of rooted plane trees3 T . The class T may be described recursively, as trees are nothing

else than a vertex with a sequence (because of the “left-to-right” order) of subtrees; see also

Figure 1.1.

T ¬

T T T · · · T

Figure 1.1: Rooted plane trees – symbolic equation

Therefore, symbolically, we may write T = {•} × T ∗, which translates into the equation

T (z) = z · 1
1−T (z) for the corresponding generating function. From that point, simple algebra

yields T (z) = 1
2(1 ±

p
1− 4z), where the correct sign has yet to be determined. We will

return to the analysis of rooted plane trees in Section 3.2. 4

Concerning the applications of combinatorial structures, it is not only desirable to analyze

the growth of the structure, but also the asymptotic behavior of other parameters. A concrete

example of such a parameter can be given in the context of the second example from before:

consider the weight of a binary word without consecutive ones, i.e. the number of ones in

3See the introduction of Chapter 3 for an introduction to the terminology of trees.

http://oeis.org/A000045
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such a word with fixed length4. Technically, this can be done by embedding the idea of

generating functions in a multivariate setting.

Example 1.2.10 (Average weight, bivariate generating function).

Let ak,n denote the number of binary words without consecutive ones of length n with weight

k. Then

A(z, u) :=
∑

k,n≥0

ak,nukzn

is the corresponding bivariate generating function5. As we are interested in the average
weight, we investigate

an :=
0 · a0,n + 1 · a1,n + 2 · a2,n + · · ·

a0,n + a1,n + a2,n + · · ·
=

∑

k≥0 k · ak,n
∑

k≥0 ak,n
=

∑

k≥0 k · ak,n

fn+2
,

where fn denotes the n-th Fibonacci number.

Fortunately, the quantity
∑

k≥0 k ·an,k can be determined by manipulating the bivariate gen-

erating function: observe that we have

Au(z, u) :=
∂ A
∂ u

�

�

�

(z,u)
=
∑

k,n≥0

k · ak,nuk−1zn =⇒ Au(z, 1) =
∑

k,n≥0

k · ak,nzn.

In Example 1.2.8 we have seen that the combinatorial class of these binary words can be

given as A = {0, 10}∗ × {ε, 1}. The bivariate generating functions of {0, 10} and {ε, 1} are

z + uz2 and 1 + uz, where u and z correspond to the weight and the length of a word,

respectively.

It can be shown that the statement of Theorem 1.2.6 directly translates into the multivariate

setting. Thus, the bivariate generating function is given by

A(z, u) =
1

1− (z + uz2)
· (1+ uz) =

1+ uz
1− z − uz2

.

This yields Au(z, 1) = z
(1−z−z2)2 , which is strongly related to the generating function z2

(1−z−z2)2

of the sequence of Fibonacci numbers convoluted with themselves, enumerated by A001629

in [34]. This means that Au(z, 1) enumerates the same sequence, but with offset 1.

By partial fraction decomposition (or Singularity Analysis) the generating functions Ay(1, z)
and A(1, z) yield that

∑

k≥0 k · an,k and
∑

k≥0 an,k = fn+2 asymptotically behave like n
5ϕ

n+1

and 1p
5
ϕn+2, respectively, where ϕ = 1+

p
5

2 denotes the golden ratio. Therefore, we obtain

an =

∑

k≥0 k · an,k
∑

k≥0 an,k
∼ n ·

1

ϕ
p

5
for n→∞.

4For NAFs, this is of great interest: practically, they are used for efficient scalar multiplication in the area of

Elliptic Curve Cryptography. Assume we want to compute nP for n ∈ N and a point P on the elliptic curve,

then the weight of the NAF expansion of n determines the number of “expensive” point additions.
5In a nutshell, multivariate generating functions are generating functions with a separate variable for every

parameter that is investigated.

http://oeis.org/A001629
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Note that “∼” stands for “asymptotically equal to”. This and more tools for working with

asymptotic expressions are discussed in detail in Section 1.3. 4

This concludes our introduction to the idea of combinatorial classes. Note that the ideas

from this section can be adopted in order to deal with labeled structures as well (see, for

example, [17, Chapter II]).

1.3 Analytic methods
In this section, we will discuss several analytic preliminaries and techniques that are needed

and used throughout this thesis. First and foremost, as we will encounter many asymptotic
expressions, i.e. expressions that describe the behavior of some function when the argument

tends to some fixed value (for asymptotic considerations, this will primarily be ∞ or 0).

The motivation for the following definition is due to Bachmann and Landau (see Knuth’s

remark [29] for more background on the history).

Definition 1.3.1 (Asymptotic notations, [17, A.2]).
Let S be a set equipped with some topology, and let s∗ ∈ S be an inner point (i.e. there are

infinitely many elements of S in every neighborhood of s∗). Furthermore, let f and g be

two functions from S \ {s∗} to R or C, and assume that g(s) 6= 0 for all s ∈ S \ {s∗}.

(a) Big-Oh notation: if f (s)
g(s) stays bounded for s→ s∗, then we write f (s)

s→s∗
= O(g(s)). To

be more precise, we say that f is “Big-Oh” of g if there is a neighborhood U of s∗ as

well as a constant C > 0 such that | f (s)| ≤ C |g(s)| for all s ∈ U \ {s∗}.

(b) Little-Oh notation: we write f (s)
s→s∗
= o(g(s)) if f (s)

g(s) tends to 0 for s → s∗. This is

equivalent to the condition that for every ε > 0 we find a neighborhood Uε of s∗ such

that | f (s)| ≤ ε|g(s)| for all Uε \ {s∗}.

(c) Asymptotic equivalence: If f (s)
g(s) converges to 1 for s→ s∗, then f is said to be asymptot-

ically equivalent to g for s→ s∗; we write f (s) s→s∗∼ g(s).

(d) Omega- and Theta notation: Where the Big-Oh notation states that the growth of f (s)
is bound by the growth of g(s), the Omega notation states the exact opposite: we

write f (s)
s→s∗
= Ω(g(s)) if g(s)

s→s∗
= O( f (s)). In particular, this means that f is of order

at least g near s∗.

And finally, if both f (s)
s→s∗
= O(g(s)) and f (s)

s→s∗
= Ω(g(s)) hold, then we say that f is

of order exactly g near s∗ and write f (s)
s→s∗
= Θ(g(s)).

Remark.

The standard scenario is that we analyze the behavior of a function near∞, so in this thesis

we will omit the s →∞ and just write f (s) = O(g(s)) and so on. Very often, we also use
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the Big-Oh notation within an equation like f (s) = g(s)+O(h(s)), meaning that the growth

of the difference f (s)− g(s) is bounded by the growth of h(s).

Furthermore, if we write

f (s)∼
∞
∑

`=−L

a`s
−`,

this shall translate to

f (s) =
R−1
∑

`=−L

a`s
−` +O(s−R)

for all integers R> −L, even if the series does not converge.

Later on, we have to deal with specific multivariate expansions; these shall be treated anal-

ogously to above. In particular, the notation

f (r, s)∼
∞
∑

`=−L

J(`)
∑

j=0

b` j
r j

s`

is to be understood as

f (r, s) =
R−1
∑

`=−L

J(`)
∑

j=0

b` j
r j

s`
+O(r J(R)s−R).

Over the course of this thesis, sometimes we encounter series that are related to the theta

series θ (τ) =
∑

n∈Z exp(iπτn2) (for example, see Theorem 2.4.8). In order to find another

representation of these series, the following tool is used.

Theorem 1.3.2 (Poisson summation formula).

Let f ∈ L1(R). Then the series
∑

n∈Z f (n) converges, and we have
∑

n∈Z

f (n) =
∑

n∈Z

f̂ (n),

where f̂ (x) :=
∫∞
−∞ f (t)exp(−2πi x t) dt is the Fourier transform of f .

Proof. See [44, Chapter VII, Corollary 2.6] for a discussion of this theorem in the n-

dimensional Euclidean space Rn.

In the following two sections we will introduce two key ideas from asymptotic analysis.

Singularity Analysis, on the one hand, is a very powerful framework that essentially allows

to extract information on the asymptotic growth of some counting sequence out of (appro-

priate) singularities of the generating function. The Mellin transform, on the other hand, is

an integral transform which will also provide some sort of translation between the asymp-

totic growth of the counting sequence and the poles of a transformation of the generating

function.
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1.3.1 Singularity Analysis
The aim of this section is to introduce a powerful method which determines the asymptotic

growth of a counting sequence by analyzing the location of its poles. Basically, the frame-

work of Singularity Analysis (which originated in [16]) consists of two equally-important

parts. On the one hand, there is the basic transfer that provides a precise asymptotic analy-

sis for the counting sequences of generic “building blocks” like F(z) = (1− z/ρ)−α. And on

the other hand, the so-called transfer theorem allows to control the error that is made when

applying the basic transfer to local expansions of more complicated generating functions.

Recall that in Example 1.2.3 and 1.2.4 (as well as in the consecutive remark) we observed

that the radius of convergence of a generating function F(z) is connected to the asymptotic

behavior of the corresponding sequence in the sense that a radius of convergence of ρ corre-

sponds to an exponential growth of ρ−n. This connection can be explained easily: Assume

that F(z) has a singularity6 at ρ ∈ C \ {0}. Then let G(z) := F(ρz), and by elementary

properties of the Taylor expansion we find

[zn]F(z) = ρ−n[zn]F(ρz) = ρ−n[zn]G(z),

where G(z) has a singularity at z = 1. We will see that (under suitable assumptions on the

type of singularity) the remaining growth is of at most polynomial order. Combined with

what we observed above, this means that the location and the structure of a singularity

determine the exponential and the (at most) polynomial growth factor of the corresponding

counting sequence, respectively.

Ultimately, this also means that we are only interested in those singularities closest to the

origin (which we will call dominant singularities): the coefficient growth induced by sin-

gularities of greater modulus decays exponentially compared to the growth induced by the

dominant singularities. If there are multiple dominant singularities, then under some tech-

nical conditions on the area of analyticity of the generating function7, the respective contri-

butions from every singularity can be summed up.

Now let us turn to the core of the Singularity Analysis framework as introduced in [16, §2]
(where also the proofs to the following statements can be found).

Theorem 1.3.3 (Basic transfer: standard scale).

Let α be an arbitrary complex number in C \ −N0. Then the coefficients in the function

6Singularity Analysis is not suited for the case of singularities in the origin. In general, this case corresponds

to a sequence with super-exponential growth.
7To be precise, analyticity on a “indented disk” around the origin (the indentations exclude the singularities),

a so-called ∆-domain is required. See Figure 1.2 for an illustration.
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F(z) = (1− z)−α admit the following asymptotic expansion in descending powers of n:

[zn]F(z)∼
nα−1

Γ (α)

�

1+
∞
∑

k=1

ek(α)
nk

�

, (1.1)

where the ek(α) are computable polynomials in α of degree 2k. In particular, we find

[zn]F(z) =
nα−1

Γ (α)

�

1+
α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O(n−3)

�

Remark.

The asymptotic scale introduced by this theorem handles the most basic case encountered

when analyzing singularities of generating functions, thus the name “standard scale”. The

ideas of the respective proof, however, can be generalized in order to control a more general

situation (logarithmic and iterated logarithmic scales). For example, we have

[zn](1− z)−α
�1

z
log

1
1− z

�β

∼
nα−1

Γ (α)
(log n)β .

By exploiting Cauchy’s integration formula, the asymptotic analysis of these “building

blocks” can be transferred in order to control the error made when analyzing local expan-

sions of generating functions.

1 ϕ

r

Figure 1.2: ∆(r,ϕ)-region

Theorem 1.3.4 (Asymptotic transfer, standard scale).

Assume that the function F(z) is analytic on the ∆(r,ϕ)-region (subset of C) illustrated in

Figure 1.2 except in z = 1. Furthermore, let α ∈ R. Then the following statements hold:

(a) “Big Oh transfer”: if F(z) = O((1−z)−α) for z→ 1 in∆(r,ϕ), then [zn]F(z) = O(nα−1)
for n→∞.
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(b) “Little Oh transfer”: if F(z) = o((1−z)−α) for z→ 1 in∆(r,ϕ), then [zn]F(z) = o(nα−1)
for n→∞.

(c) “Transfer of asymptotic equality”: if F(z)∼ (1−z)−α in a neighborhood of z = 1 (within

∆(r,ϕ)), then [zn]F(z)∼ nα−1/Γ (α).

In a nutshell, the transfer theorem allows to transfer the error made when expanding the

generating function locally (in order to analyze the type of the present singularity) directly
to the coefficients. Also, note that there are analogous transfer theorems for the other

asymptotic scales.

There are many more facets to this framework. For example, within Chapter 3 we will intro-

duce the necessary concepts in order to deal with implicitly defined generating functions of

a certain type by means of Singular Analysis. The method can also be extended to deal with

more complicated generating functions that include, e.g., polylogarithms. Nevertheless, we

leave those generalizations for the reader to find in the literature: see, for example, [40,

Sections 2.17, 2.18] for an overview including some typical examples, and [17, Chapter VI]
for an extensive treatment including technical details.

1.3.2 Mellin transform
The second central concept from Analytic Combinatorics we introduce is the so-called Mellin
transform. Other than Singularity Analysis, the technique featuring Mellin transforms does

not investigate the poles of the generating function itself, but rather the poles of the corre-

sponding Mellin transform.

This approach is particularly useful when the function of interest is a so-called harmonic
sum—which, in fact, occurs quite often. The following deliberations are primarily based on

[15].

We begin with the definition of the Mellin transform.

Definition 1.3.5 (Mellin transform).

Let f : (0,∞)→ R be a locally integrable function. Then the Mellin transform of f is defined

by

f ∗(s) =M( f )(s) :=

∫ ∞

0

x s−1 · f (x) d x

for s ∈ C such that the integral exists. The largest open set where the Mellin transform

exists is called the fundamental strip, and it is easy to see that the fundamental strip has to

have the form 〈α,β〉 := {z ∈ C | α < Re s < β} for α, β ∈ R.

Of course, the allowed choices for s ∈ C strongly depend on the growth of the function f
itself—but in general, if the real part of s is too large, then x s−1 f (x) grows unbounded for
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x →∞; and if it is too small, then x s−1 f (x) tends to ∞ for x → 0+. Furthermore, note

that the Mellin transform is an analytic function on its fundamental strip.

Example 1.3.6.

A striking example for the Mellin transform of a function is f (x) = e−x . By definition, we

have

M(e−x)(s) =

∫ ∞

0

x s−1e−x d x =: Γ (s),

where the fundamental strip of this transform is 〈0,∞〉. We will use the exponential func-

tion throughout this section in order to illustrate the properties of the Mellin transform. 4

The following lemma summarizes some important properties of the Mellin transform that

are immediate consequences of the definition.

Lemma 1.3.7 (Functional properties).

Let f : (0,∞)→ R be a locally integrable function with Mellin transform M( f ) ≡ f ∗ with

fundamental strip 〈α,β〉. Then the following holds:

(a) The operator M is linear.

(b) For µ ∈ R>0, the scaled function g(x) := f (µx) has Mellin transform g∗(s) = µ−s f ∗(s)
with the same fundamental strip 〈α,β〉.

(c) For ρ ∈ R×, the function g(x) = f (xρ) has Mellin transform g∗(s) = 1
|ρ| f

∗
�

s
ρ

�

with

fundamental strip 〈ρα,ρβ〉 or 〈ρβ ,ρα〉.

(d) For a finite index set I and scalars (λk)k∈I ⊆ R, (µk)k∈I ⊆ R>0 we find

M
�

∑

k∈I

λk f (µk x)

�

(s) =

�

∑

k∈I

λkµ
−s
k

�

f ∗(s).

Proof. While (a) follows from the linearity of the integral, (b) and (c) are consequences of

the transformation rules for integrals, and (d) is implied directly by (a) and (b).

In many applications, the generating function related to the combinatorial class of interest

can be expressed a a sum of the shape f (x) =
∑

k≥0λk g(µk x) where limk→∞µk ∈ {0,∞}.
These sums are so-called harmonic sums8, and under some technical conditions we can

extend the linearity of the Mellin transform to infinitely many summands. This also requires

a little knowledge of Dirichlet sums.

Definition 1.3.8 (Dirichlet sum).

Consider the sequences (λk)k∈N0
and (µk)k∈N0

where limk→∞µk =∞. Then the complex

function Λ(s) with

Λ(s) :=
∑

k≥0

λkµ
−s
k

8Without loss of generality, we may assume µk →∞ for k→∞—otherwise, we investigate f (1/x) instead.
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is said to be a Dirichlet series, where s ∈ C is chosen such that the series converges.

Remark.

For a survey on the general theory of Dirichlet series, we refer to [21]. In particular, we recall

the result that a Dirichlet series is guaranteed to have a (complex) half-plane of absolute

convergence of the form {s ∈ C | Re(s)> σa} for some σa ∈ R.

A generalized form of linearity for the Mellin transform then states as follows:

Lemma 1.3.9.

Assume that g : (0,∞) → R is a locally integrable function whose Mellin transform g∗(s)
exists on a strip 〈α,β〉. Furthermore, let G(x) :=

∑

k≥0λk g(µk x) where (λk)k∈N0
⊆ R,

(µk)k∈N0
⊆ R>0 and limk→∞µk =∞ and assume that the half-plane of absolute convergence

of Λ(s) :=
∑

k≥0λkµ
−s
k has a non-empty intersection ∆ with the strip 〈α,β〉. Then the

function G(x) is defined for all x ∈ (0,∞), and the corresponding Mellin transform G∗(s)
is well-defined on ∆ and factors as

G∗(s) = Λ(s) · g∗(s).

Proof. See [15, Lemma 2].

Now we shed some light on the framework that makes the Mellin transform interesting from

an asymptotic point of view. As stated in the introduction of this section, there is a relation

between the so-called singular expansion of the Mellin transform and the asymptotic growth

of the base function.

Definition 1.3.10 (Singular expansion).

Let the complex-valued function f be meromorphic on Ω ⊆ C and let P denote the set of

isolated poles. Let
∑∞

j=−r c j(z − z0) j be the Laurent series of f at z0 ∈ P. Furthermore, let

Pz0
(z) :=

∑−1
j=−r c j(z− z0) j denote the principal part of the Laurent series. Then the singular

expansion of f (z) in Ω is given by
∑

z0∈P Pz0
(z), which we write as

f (z)�
∑

z0∈P

Pz0
(z).

Example 1.3.11.

First, let us consider an easy example. By partial fraction decomposition it becomes clear

that we have
1

z2(z + 1)
�

1
z + 1

+
1
z2
−

1
z

.

A more challenging example is the gamma function Γ (s). It is well-known [11, §5.2(i)] that

the gamma function has simple poles for s ∈ −N0 with Res(Γ (s), s = −n) = (−1)n

n! . Thus, the

singular expansion of Γ (s) is given by

Γ (s)�
∑

n≥0

(−1)n

n!
1

s+ n
. 4

http://dlmf.nist.gov/5.2.i
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Given some simple conditions with respect to the growth of the functions involved, the fol-

lowing two theorems power the translation between the asymptotic growth of some function

and the singular expansion of the respective Mellin transform.

Theorem 1.3.12 (Direct mapping theorem, [15, Theorem 3]).
Let f : (0,∞)→ R have a Mellin transform f ∗(s) with nonempty fundamental strip 〈α,β〉.

(a) Assume that for x → 0+, the asymptotic expansion

f (x)
x→0+
=

∑

(k,`)∈I

ck,`x
k log` x +O(xγ)

holds, where the index set I is chosen such that `≥ 0, −γ < −k ≤ α. Then there exists

a meromorphic continuation of f ∗(s) to the strip 〈−γ,β〉 where the transformation

admits the singular expansion

f ∗(s)�
∑

(k,`)∈I

ck,`
(−1)``!
(s+ k)`+1

for s ∈ 〈−γ,β〉.

(b) Similar to (a), but this time we assume that the asymptotic expansion

f (x)
x→∞
=

∑

(k,l)

ck,`x
k log` x +O(xγ)

holds, where I is chosen such that ` ≥ 0 and β ≤ −k < −γ. Then there exists a

meromorphic continuation of f ∗(s) to 〈α,−γ〉. The singular expansion of f ∗(s) can be

expressed as

f ∗(s)� −
∑

(k,`)∈I

ck,`
(−1)``!
(s+ k)`+1

for s ∈ 〈α,−γ〉.

Basically, the direct mapping theorem translates from an asymptotic expansion of a function

f (x) at 0 or ∞ to poles of the respective Mellin transform. The terms in the asymptotic

expansion near 0 induce poles of the Mellin transform left of the fundamental strip; terms

in the asymptotic expansion near∞ induce poles right of the fundamental strip.

Theorem 1.3.13 (Converse mapping theorem, [15, Theorem 4]).
Let f : (0,∞)→ R be a continuous function with Mellin transform f ∗(s) with non-empty

fundamental strip 〈α,β〉.

(a) Continuation to the left. Assume f ∗(s) has a meromorphic continuation on 〈−γ,β〉
which is analytic on the vertical line Re(s) = −γ with finite singular expansion (i.e.

finite index set I)

f ∗(s)�
∑

(k,`)∈I

dk,`
1

(s+ k)`+1
.
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Furthermore, assume that there is an η ∈ (α,β) such that f ∗(σ+ i t)
t→∞
= O(|t|−r) for

some r > 1, uniformly for −γ≤ σ ≤ η. Then the function f (x) admits the asymptotic

expansion

f (x)
x→0
=

∑

(k,`)∈I

dk,`
(−1)`

`!
x k log` x +O(xγ).

(b) Continuation to the right. Similarly, assume that f ∗(s) has a meromorphic continuation

on 〈α,−δ〉which is analytic on the vertical line Re(s) = −δ with finite singular expan-

sion as above. Additionally, if there is an η ∈ (α,β) such that f ∗(σ + i t) = O(|t|−r)
for r > 1 uniformly for η≤ σ ≤ −δ, then f (x) admits the asymptotic expansion

f (x)
x→∞
= −

∑

(k,`)∈I

dk,`
(−1)`

`!
x k log` x +O(xδ).

Example 1.3.14.

Take f (x) = e−x and the corresponding Mellin transform, f ∗(s) = Γ (s). From the last

example we already know the singular expansion of Γ (s), namely Γ (s)�
∑

n≥0
(−1)n

n!
1

s+n . Once

again, it is well-known (cf. [11, 5.11.9]) that the gamma function decays exponentially fast

along vertical lines of the complex plane. Thus, the converse mapping theorem may be

applied.

In this case, a summand (−1)n

n!
1

s+n in the singular expansion of the transformation can be

translated into a factor of (−1)n

n! xn. Actually, this is not very surprising—recall that the Taylor

series of e−x around 0 is given by
∑

n≥0
(−x)n

n! =
∑

n≥0
(−1)n

n! xn.

This nicely illustrates the profound relation between the asymptotic expansion of a function

and the singular expansion of the corresponding Mellin transform. 4

Remark (Harmonic sums and converse mapping).

In order to guarantee that the converse mapping strategy can be applied to harmonic sums of

the form G(x) =
∑

k≥0λk g(µk x), we need some additional growth estimates for the Dirchlet

series Λ(s) =
∑

k≥0λkµ
−s
k and the transformed base function g∗(s). In particular, we require

Λ(s) to grow slowly (at most polynomially) and g∗(s) has to decay faster than polynomially

along certain vertical lines of the complex plane. For a more detailed treatment see [15,

Theorem 5].

1.4 Probability theory
There is a deep connection between the asymptotic analysis of parameters of combinatorial

objects and certain tools from probability theory. For instance, it is common practice to

consider combinatorial objects over a suitable probability space such that the respective

probability distribution of the parameters can be studied. In essence, this is also what we

http://dlmf.nist.gov/5.11.E9
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did in Example 1.2.10: there, we considered binary words to be uniformly distributed,

i.e. words of equal length occur with the same probability. This enabled us to consider

the “average weight”, which is nothing else than the expected value of a random variable

mapping a binary word without consecutive ones to its weight.

The intention of this section is to give a short introduction into some central concepts from

probability theory that are used within analytic combinatorics. For a rigorous introduction

to probability theory see [13] and [14], or, for a less extensive introduction from a measure-

theoretic point of view, see [4].

We begin by recalling some elementary definitions.

Definition 1.4.1 (Random variable, Stochastic process).

A Borel measurable function X from some probability space (Ω,F ,µ) to R is called (real-
valued) random variable. The corresponding pushforward measure on R is denoted by PX ,

that is PX (A) = µ(X−1(A)) for Borel sets A⊆ R.

Furthermore, a (real-valued) stochastic process (X t)t∈T is a family of real-valued random

variables. If the index set T is countable (especially for T = N0), the process (X t)t∈T is

called discrete-time process or stochastic chain.

Remark.

If it is clear from the context which random variable induces the pushforward measure PX ,

we simply write P. For example, for sets like {ω ∈ Ω | X (ω) ≤ x} =: {X ≤ x}, we write

PX (X ≤ x) = P(X ≤ x).

Example 1.4.2 (Random walks).

A common example for stochastic processes are random walks: for n ∈ N0, a stochastic chain

(Sk)0≤k≤n is called simple symmetric random walk on Z of length n starting at 0, if we have

P(S0 = 0) = 1, as well as

P(Sk = j − 1 | Sk−1 = j) = P(Sk = j + 1 | Sk−1 = j) =
1
2

for k ≥ 1.

In Figure 1.3, the state diagram for simple symmetric random walks on Z is illustrated.

There are some popular modifications to the idea of random walks, for example the intro-

duction of reflecting or absorbing barriers. If the process runs into a reflective barrier, it has

to return to its previous state with probability 1. If it runs into an absorbing barrier, it cannot

leave the respective state again.

For example, a symmetric random walk onZ has a reflective barrier in 0 if we have P(Sk = 1 |
Sk−1 = 0) = 1. Such a random walk only visits states from N0—and may thus be considered

as a random walk on N0. We will investigate several classes of random walks (or, to be

precise, their realizations: lattice paths) over N0 and Z thoroughly in Chapter 2. 4
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Figure 1.3: State diagram for symmetric random walks on Z

Definition 1.4.3 (Expectation).

The expectation or expected value of a real-valued random variable X is defined as the

Lebesgue integral

EX :=

∫

x dP(x).

Furthermore, for a real Borel-measurable function g : R→ R, the expected value of g(X ) is

defined to be

Eg(X ) :=

∫

g(x) dP(x).

In a combinatorial context, we often study random variables with values in N0. For these

variables, we may also define a special type of generating function: probability generating
functions.

Definition 1.4.4 (Probability generating functions).

Let X be a random variable with values inN0. Then define the probability generating function
(PGF) of X as

PX (z) :=
∑

j≥0

P(X = j) · z j.

Lemma 1.4.5 (Properties of PGFs).

Let X and Y be random variables with values in N0. Then the following properties hold:

(a) The PGF of X+Y is given as the product of the PGFs of X and Y : PX+Y (z) = PX (z)·PY (z).

(b) The expected value EX is given by P ′X (1).

(c) For the second derivative we have P ′′X (1) = E[X (X − 1)] = EX 2 −EX .

Proof. These statements follow directly from the definition of the expected value and the

probability generating function.

As we will see later, probability generating functions will play an important role when it

comes to investigating the asymptotic behavior of the modeled parameter. However, before

we can discuss this in more detail, we need to introduce the concept of limiting distributions

and limit laws.
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1.4.1 Limiting distributions
For the contents of this thesis, we will mainly focus on the distinction between central and

local limit laws, as well as asymptotic normality. For a rigorous treatment of the concept of

limiting distributions (from a combinatorial point of view), we refer to [17, Chapter IX].

Let A be an arbitrary combinatorial class whose elements also have another integer-valued

parameter χ that we want to investigate. For example, think of A as the set of binary words

without consecutive ones, and let χ(α) denote the weight of a word α ∈ A. For fixed size

n, we can describe the behavior of the elements with respect to the parameter χ by means

of a probability distribution:

Assume that all elements in A with the same size are equally likely, that is for α ∈ A with

|α|= n we have

P(α | |α|= n) =
1
an

.

Then let χn : {α ∈A | |α|= n} → N0 denote the random variable that maps elements of size

n to their respective value of χ. Trivially, this discrete random variable can be characterized

by

P(χn = k) =
|{α ∈A | χ(α) = k, |α|= n}|

an
.

Naturally, we are interested in the asymptotic behavior of the sequence (χn)n∈N0
of random

variables. From a probability theoretic point of view, central and local limit laws provide

information on the asymptotic distribution of such a random variable. Central limit laws
state that the sequence (Fn)n∈N0

of associated cumulative distribution functions converges

to some cumulative distribution function F pointwise at each point of continuity. This is

also known as convergence in distribution.

In this case, the distribution related to F is called limiting distribution. Note that we do

not necessarily actually investigate the parameter χn itself: for example, when consid-

ering a continuous limiting distribution, the CDFs of the scaled random variables (χn −
Eχn)/

p

Var(χn) are investigated in general. Local limit laws, on the other hand, describe

the asymptotic behavior of the probabilities P(χn = k).

Like in general probability theory, the normal distribution plays a very special role when

it comes to limiting distributions. In this context, the framework of quasi-powers (which,

in some sense, can be seen as an analogue or even a generalization of the central limit

theorem) is very well-known. Essentially, this framework allows us to conclude whether

the parameter of a combinatorial structure follows an asymptotic normal distribution simply

from checking whether the respective probability generating function has a certain shape.

The following statement is due to H. K. Hwang (cf. [24]):
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Theorem 1.4.6 (Hwang’s Quasi-Power theorem).

Let (Xn)n∈N0
be a sequence of real-valued random variables such that their moment generat-

ing function can be written as

Mn(s) := EeXns = exp(Hn(s))
�

1+O
� 1
κn

��

uniformly for |s|< ρ for some fixedρ > 0 with Hn(s) := u(s)βn+v(s) such that the following

properties hold:

(1) The functions u, v, and Mn are analytic for |s|< ρ,

(2) The sequences (βn)n∈N0
and (κn)n∈N0

converge to∞, limn→∞βn = limn→∞κn =∞,

(3) The variability condition: u′′(0) 6= 0.

Then the scaled random variable (Xn − u′(0)βn)/
p

u′′(0)βn has an asymptotic normal dis-

tribution, that is

P
�

Xn − u′(0)βn
p

u′′(0)βn

≤ x
�

=
1
p

2π

∫ x

−∞
e−

1
2 t2

d t +O
�

1
p

βn

+
1
κn

�

,

and for the expected value and variance of Xn we have

EXn = u′(0)βn + v′(0) +O
� 1
κn

�

, Var(Xn) = u′′(0)βn + v′′(0) +O
� 1
κn

�

.

Proof. This slightly modified version of Hwang’s original statement ([24, Theorem 1]) can

be found in [17, Lemma IX.1] (including a proof).

Remark.

This remarkable theorem strongly builds upon the Berry-Esseen inequality (cf. [14, p. 538,

(3.13)]), which provides an estimate for the maximal difference between the cumulative

distribution function of two random variables.

Furthermore, Heuberger generalized Hwang’s theorem to the two-dimensional case in [22].

A slightly weaker version of the classical central limit theorem (because we require the

first three moments to exist) can now also be seen as a corollary of Hwang’s Quasi-Power

theorem:

Corollary 1.4.7 (Central limit theorem, [17, Theorem IX.6]).
Let (Xn)n∈N be a sequence of identical and independently distributed random variables such

that their respective first, second, and third moments exist. Then the standardized sum

(
∑n

j=1 X j− nEX1)/
p

n Var(X1) is asymptotically normally distributed with mean 0 and vari-

ance 1. In particular, we have

P
�

∑n
j=1 X j − nEX1
p

n Var(X1)
≤ x

�

=
1
p

2π

∫ x

−∞
e−

t2
2 d t +O

�

1
p

n

�

.
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Proof. Let Sn =
∑n

j=1 Xn. Then, the moment generating function of Sn is given by

Mn(s) = EeSns =
n
∏

j=1

EeX js = M(s)n = exp(n log M(s)),

where M(s) denotes the moment generating function of X1. In this case, there is no approx-

imation error O(1/κn), as the moment generating function could be given exactly. In the

notation of Hwang’s theorem, we find Hn(s) = n · log M(s), that is βn = n, u(s) = log M(s),
and v(s) = 0. The other requirements of the Quasi-Power theorem are also easily checked,

and the statement of the central limit theorem follows.

As we already mentioned in the introduction above, another simple consequence of the

Quasi-Power theorem can be used to ensure asymptotic normality simply by investigating

the sequence of probability generating functions. In fact, this consequence also illuminates

why the corresponding framework is called “Quasi-Power framework”.

Corollary 1.4.8 ([17, Theorem IX.8]).
Let (Xn)n∈N0

be a sequence of random variables with probability generating functions

(pn(u))n∈N that can be written as

pn(u) = A(u)B(u)βn

�

1+O
�

1
κn

��

such that the functions pn(u), A(u), and B(u) are analytic in a neighborhood of u = 1.

Assume that additionally, the following properties hold:

(1) For u= 1, B evaluates to 1: B(1) = 1,

(2) The sequences (βn)n∈N0
, (κn)n∈N0

converge to∞, limn→∞βn = limn→∞κn =∞,

(3) The variability condition: B′′(1) + B′(1)− B′(1)2 6= 0.

Then (Xn)n∈N0
is asymptotically normally distributed with an error of O(1/

p

βn + 1/κn).
Furthermore, we have

EXn = B′(1)βn +O(1), Var(Xn) = (B
′′(1) + B′(1)− B′(1)2)βn +O(1).

Proof. Note that between the moment and the probability generating function the following

relation holds: if P(u) is the probability generating function of aN0-valued random variable,

then P(eu) is the moment generating function. Therefore, the Quasi-Power theorem may be

applied with u(s) = log B(es) and v(s) = log A(es).

In other words, this corollary states that if the sequence of probability generating functions

behaves roughly like a sequence of powers of a constant function (“Quasi-Powers”), then

under some technical conditions, asymptotic normality holds.



1.4 Probability theory 23

Up to now, we primarily concentrated on the asymptotic analysis under the assumption that

intrinsic properties of the investigated sequence of random variables (like the respective

moment or the probability generating functions) are known. However, in a combinatorial

context we have to construct these generating functions from the multivariate generating

function obtained by the symbolic method (like illustrated in Example 1.2.10). The follow-

ing theorem (cf. [17, Theorem IX.9]) allows us to skip this explicit construction:

Theorem 1.4.9 (Meromorphic Pertubation).

Let F(z, u) be a bivariate generating function, and Xn be the N0-valued random variable

defined by9

P(Xn = k) =
[ukzn]F(z, u)
[zn]F(z, 1)

.

Assume that additionally, the following properties hold:

(1) For a suitable neighborhood of y around 1 and |z| ≤ r for a r > 0, the generating

function can be decomposed as F(z, u) = A(z,u)
C(z,u) such that the functions A(z, u) and

C(z, u) are analytic in this region. Furthermore, C(z, 1) has a unique simple zero ρ

with |ρ|< r and A(ρ, 1) 6= 0.

(2) We have ∂ C
∂ z (ρ, 1) 6= 0. Therefore, by the implicit function theorem, there is a unique

analytic function ρ(u) in a suitable neighborhood of u = 1 such that C(ρ(u), u) = 0

and ρ(1) = ρ.

(3) The variability condition: σ2 = −(ρ′′(1)+ρ′(1))ρ+ρ′(1)2

ρ2 6= 0.

Then (Xn)n∈N0
is asymptotically normally distributed with error O(1/

p
n) and

EXn = −
ρ′(1)
ρ

n+O(1), Var(Xn) = σ
2n+O(1).

The following example shall demonstrate the application of Theorem 1.4.9.

Example 1.4.10 (Average weight).

Once again, we return to the example with the binary words without consecutive ones. This

time we are interested in the asymptotic distribution of the weight. In Example 1.2.10 we

already constructed the bivariate generating function

F(z, u) =
1+ uz

1− z − uz2
,

where [ukzn]F(z, u) = ak,n is the number of admissible binary words with length n and

weight k. The random variable Xn then represents the weight of a NAF of length n. With

the notation of Theorem 1.4.9, we obviously choose the decomposition A(z, u) = 1 + uz
and C(z, u) = 1− z − uz2. The functions A(z, u) and C(z, u) are analytic everywhere, and

9Analogous to ordinary generating functions, [ukzn]F(z, u) denotes the coefficient of ukzn in F(z, u).



24 1 Preliminaries

C(z, 1) = 1− z − z2 has the two zeros −1±
p

5
2 . For us, the zero closest to 0 is relevant, so we

choose ρ = −1+
p

5
2 ≈ 0.618 and fix r = 1. Also, A(ρ, 1) = 1+ρ 6= 0.

Furthermore, Cz(ρ, 1) := ∂ C
∂ z (ρ, 1) = −1− 2ρ 6= 0. Thus, by the implicit function theorem,

we have a unique analytic functionρ(u) in a neighborhood of u= 1 such that C(ρ(u), u) = 0

and ρ(1) = ρ.

By implicit differentiation we may also compute the derivatives of this function ρ; we find

ρ′(1) = −
Cu(ρ, 1)
Cz(ρ, 1)

, ρ′′(1) = −
Cuu(ρ, 1) + 2Cuz(ρ, 1) ·ρ′(1) + Czz(ρ, 1) ·ρ′(1)2

Cz(ρ, 1)
.

With the help of SageMath [45], we find that σ2 =
p

5
25 6= 0.

Overall, all conditions of Theorem 1.4.9 are met and therefore we obtain that (Xn)n∈N0
is

asymptotically normal distributed with error O(1/
p

n) and

EXn = n ·
1

ϕ
p

5
+O(1), Var(Xn) = n ·

p
5

25
+O(1),

where ϕ = 1
ρ =

1+
p

5
2 denotes the golden ratio. The expression for the expected weight

coincides with the result of Example 1.2.10. 4

This concludes our short introduction to limiting distributions and particularly asymptotic

normality.

1.4.2 Martingales and stopping times
Martingales are a very specific kind of stochastic process that can, in some sense, be inter-

preted as “fair games”. In this section we present some important definitions and theorems

with respect to martingale theory. As it turns out, we can use martingale theory in Sec-

tion 2.4.1 in order to prove a relation between Chebyshev polynomials and a special type

of random walks (Proposition 2.4.4) in a very elegant way.

The concept of martingales builds upon a generalization of the expected value. Consider the

following observations based on a real-valued random variable X : Ω→ R on a probability

space (Ω,F ,µ):

• By definition, X is F -measurable. Furthermore, X contains all the information nec-

essary to construct a minimal sub-σ-algebra C over which X is measurable (“induced

σ-algebra”, C = {X−1(B) | B ⊆ R, B Borel set}).

• However, in general, X is not measurable over an arbitrary sub-σ-algebra C of F .

For real-valued random variables, the expected value (as long as it exists) is a real number—

which can again be interpreted as a (constant) real-valued random variable. Following this
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interpretation, the expected value yields a random variable which is measurable over every
sub-σ-algebra of F ; in particular with respect to the trivial (and smallest) sub-σ-algebra

{;,Ω}.

In this context, the following theorem provides the theoretic foundation in order to gener-

alize the expected value.

Theorem 1.4.11.

Let X be an µ-integrable real-valued random variable over the probability space (Ω,F ,µ)
and C ⊆ F a sub-σ-algebra of F . Then, up to almost sure equality, there is a unique µ|C-

integrable random variable Y over the probability space (Ω,C,µ|C) such that for all C ∈ C
the equation

∫

C

Y dµ|C =
∫

C

X dµ (1.2)

holds.

Proof. This is Theorem 15.1 in [4, §15], the proof is given there on p. 117 f.

Definition 1.4.12 (Conditional expectation).

With the notation of Theorem 1.4.11, the random variable Y is called conditional expectation
of X with respect to the sub-σ-algebra C. We write Y =: E[X |C].

The conditional expectation E[X |C] can be interpreted as a “simplified” version of the ran-

dom variable X in such a sense that measurability over some given sub-σ-algebra C is con-

structed.

Lemma 1.4.13.

Let X , Y be integrable real-valued random variables over the probability space (Ω,F ,µ),
and let C be a sub-σ-algebra of F . Then the following properties hold:

(a) The (classical) expected value is the conditional expectation with respect to the trivial

sub-σ-algebra, EX = E[X |{;,Ω}] almost surely.

(b) The conditional expectation is linear: for α, β ∈ R we have almost surely

E[αX + βY |C] = αE[X |C] + βE[Y |C].

(c) If the random variable X is C-measurable, then E[X |C] a.s.
= X as well as E[X · Y |C] a.s.

=
X ·E[Y |C].

Proof. Properties (a) and (b) both follow directly from the definition of the conditional

expectation. For property (c), we refer to the statement from (15.21) in [4, §15].

Definition 1.4.14 (Martingale).

Let T be a totally ordered index set and let (Mt)t∈T be a stochastic process that is adopted to
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the filtration (Ft)t∈T , meaning that (Ft)t∈T is an increasing family of sub-σ-algebras of F
(i.e. Fs ⊆ Ft for s ≤ t) such that Mt is a Ft-measurable random variable over the probability

space (Ω,F ,µ) for all t ∈ T . Then (Mt)t≥0 is called a martingale if for all s < t

E[Mt |Fs] = Ms almost surely.

In the context of “fair games” this property may be interpreted such that the “best prognosis”

for a future observation is the last available observation.

Remark (Discrete-time martingales).

In the case of discrete-time processes, (Mn)n∈N0
is a martingale if

E|Mn|<∞ and E[Mn+1|M0, M1, . . . , Mn] = Mn

holds for all n ∈ N0, where the random variables in the conditional part of the expected

value represent the sigma algebra that they induce naturally.

Example 1.4.15 (Symmetric random walks).

We demonstrate that symmetric random walks (Sn)n∈N0
on Z are martingales.

Without loss of generality assume S0 = 0 almost surely. Then, obviously, E|Sn| ≤ n for all

n ∈ N0 as after n steps, the random walk cannot be farther away from the origin than n
steps. Furthermore, as the next state of the random walk only depends on the current state,

we may write

E[Sn+1|S0, S1, . . . , Sn] = E[Sn+1|Sn] =
1
2
· (Sn + 1) +

1
2
· (Sn − 1) = Sn,

which follows from the definition of the symmetric random walk (if the current state is m,

then the choices for the next state are m + 1 and m − 1, both with probability 1/2). This

proves that symmetric random walks are martingales. 4

The interpretation of martingales as “fair games” can be stressed even further: in principle,

when playing a fair game, observations should not influence future predictions. In other

words, we would expect EMn = EM0 to hold. And indeed, this follows directly from the

characteristic property (1.2) of the conditional expectation. Moreover, in the context of

stopping times, this is known as the optional stopping theorem.

Definition 1.4.16 (Stopping time).

Let T be a totally ordered index set and (Ft)t∈T a filtration with respect to the σ-algebra

F . Then a function τ : Ω → T is said to be a stopping time, if for all t ∈ T the property

{τ≤ t}= {ω ∈ Ω | τ(ω)≤ t} ∈ Ft holds.

Theorem 1.4.17 (Optional stopping theorem for martingales).

Let (Xn)n∈N0
be a martingale adopted to the filtration (Fn)n∈N0

. Furthermore, let τ be a
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stopping time with respect to the same filtration. Then the stopped process (Xτ∧n)n∈N0
where

Xτ∧n(ω) := Xmin{τ(ω),n}(ω) is also a martingale. In particular, we have EXτ = EX0.

Proof. See statement 17.6 in [4, §17].

Example 1.4.18 (Hitting time).

Let (Xn)n∈N0
be a real-valued stochastic process over (Ω,F ,µ) adapted to the filtration

(Fn)n∈N0
of F . Then for a Borel set A⊆ R we find that τA : Ω→ N0 ∪ {∞} with

τA(ω) := inf{n ∈ N0 | Xn(ω) ∈ A}

is a stopping time and is called hitting time of (Xn)n∈N0
in A. 4

At this point, we end our digression on martingale theory as we have all the tools necessary

for the alternative proof of Proposition 2.4.3. For a rigorous treatment of martingale theory,

we refer to [4, Chapter IV] and [5, Section 35].

Overall, this concludes our short introduction to some of the most central tools within the

asymptotic analysis of discrete structures. In Chapter 2 and Chapter 3 these tools will be uti-

lized in order to perform a precise asymptotic analysis of the behavior of several parameters

related to special classes of lattice paths and trees, respectively.
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2.1 Introduction
Lattice paths as well as their stochastic incarnation—random walks—are interesting and

classical objects of study. Several authors have investigated a variety of parameters related

to lattice paths. For example, Banderier and Flajolet gave an asymptotic analysis of the

number of special lattice paths (walks/paths, bridges, meanders, and excursions) in [3]. De

Brujin, Knuth, and Rice [10] analyzed the expected height of certain lattice paths, and

Panny and Prodinger [38] determined the asymptotic behavior of such paths with respect to

several notions of height. However, lattice paths (and/or random walks) are more than just

mathematically fascinating objects—they do have a vast variety of real-world applications in

Biology (e.g. [8], [9]), Physics and Chemistry (e.g. [32], [41, Chapter 5]), language theory

and complexity theory (e.g. [2], [20]), and many more.

Within this chapter, we analyze several special classes of lattice paths, i.e. lattice paths

that fulfill certain restrictions (for instance the class of non-negative paths) asymptotically.

These analyses are particularly interesting, as not only most of the concepts we introduced

in Chapter 1 are used, but also some very special approaches are developed.

Formally, we define a lattice path as follows:

Definition 2.1.1 (Lattice path).

Let S ⊆ Z be a set of integers and n ∈ N0. Then every integer sequence (sk)0≤k≤n is called

lattice path of length n relative to S if we have sk+1 − sk ∈ S for all k ∈ {0, 1, . . . , n− 1}. The

elements in S are called allowed steps. Furthermore, lattice paths with S = {−1,1} are said

to be simple lattice paths.

Remark.

As we have already mentioned in Section 1.4, lattice paths can be interpreted as realizations

of special stochastic processes: random walks. We use this connection heavily in Section 2.4,

where we provide an asymptotic analysis for a special class of lattice paths by investigating

the respective probabilities.

Visually, we will represent lattice paths as so-called directed lattice paths, i.e. instead of

28



2.1 Introduction 29

considering the lattice path as a sequence of integers (sk)0≤k≤n, we consider the points

(k, sk)0≤k≤n in the plane. For example, see Figure 2.1 for such a representation. Thus, we
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Figure 2.1: Directed (simple) lattice paths starting at 0

may also refer to positive and negative steps in S as up-steps and down-steps, respectively.

Furthermore, notions like height or altitude seems quite natural for directed lattice paths.

The various classes of lattice paths we will investigate within this thesis are given in the

following definition.

Definition 2.1.2 (Special lattice paths).

Let (sk)0≤k≤n be a lattice path relative to S ⊆ Z starting at 0 (so s0 = 0).

(a) If the path ends in 0 (that is sn = 0), then the lattice path is called bridge.

(b) If the lattice path visits only non-negative integers (i.e. sk ≥ 0 for all k ∈ {0, 1, . . . , n}),
then the lattice path is said to be a meander.

(c) If a lattice path is a bridge as well as a meander, then it is called an excursion.

(d) If a lattice path is never farther away from the start than at the end, we call it extremal.
Formally, this means max0≤k≤n |ak|= |an|.

(e) Finally, an extremal meander is said to be a culminating path.
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Figure 2.2: Illustration of a bridge, a meander, and an excursion (all simple)

Bridges, meanders and excursions are illustrated in Figure 2.2, culminating paths and ex-

tremal lattice paths are treated separately in Section 2.4.

In the following three sections we will discuss how these special classes of lattice paths

can be analyzed asymptotically. While the basic analysis of unrestricted paths and bridges

is rather straightforward, we need to develop special techniques for parameters of simple

unrestricted paths as well as for meanders and excursions. Note that Section 2.2 and Sec-

tion 2.3 are loosely based on [3] and [38], and in 2.4 we discuss some previously unknown

results for culminating paths. This section is an adapted version of [19], which is a paper

that was written in cooperation with Clemens Heuberger, Helmut Prodinger, and Stephan

Wagner.

2.2 Unrestricted Paths and Bridges
First of all, note that the main difference between all of the special classes of lattice paths

introduced in Definition 2.1.2 is the allowed height. Therefore, a bivariate generating func-

tion modeling the final height of a lattice path starting at 0 is desirable. Fortunately, a minor

adaption of the symbolic method from Section 1.2 can be used to construct this object.

Let S := {b1, . . . , bm} ⊆ Z be the set of allowed steps. Furthermore, let c := −min j b j and

d :=max j b j, and assume additionally that both c and d are positive. This means that there

is both a positive as well as a negative allowed step, which ensures the existence of bridges

and excursions.

When constructing combinatorial classes, we assumed that the size of the respective combi-

natorial objects is a non-negative integer. In this case, as we want to model the altitude of

termination, it makes sense to drop this restriction. In particular, this means that we may in-

terpret S as a combinatorial class with corresponding generating function S(u) :=
∑m

j=1 ub j ,

which is said to be the characteristic (Laurent) polynomial of S.

For Laurent polynomials (i.e. polynomials in u and u−1), all the operations on combinatorial

classes work in exactly the same way. In particular, we know that Sn contains all possible

choices for lattice paths of length n, where the size of such an object exactly is its terminating

height. The coefficient of uk (k ∈ Z) in the corresponding generating function S(u)n gives

the number of lattice paths relative to S that terminate at height k after exactly n steps.
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Example 2.2.1.

Consider the class of simple lattice paths, i.e. the class of paths relative to S = {−1,1}. The

corresponding generating function for the height is S(u) = u−1 + u. By the argumentation

above, for lattice paths of length n we find

S(u)n = (u−1 + u)n =
n
∑

k=0

�

n
j

�

un−2 j.

Thus, for k ≡ n mod 2, we find that [uk]S(u)n =
� n
(n−k)/2

�

. Because of the simple form of the

generating function of the height of such paths, we are already able to derive the number

of unrestricted lattice paths relative to S of length n as 2n (which follows from summing

over all possible heights—which can be done by setting u = 1), and
�2n

n

�

for the number of

bridges of length 2n relative to S. Combinatorially, this follows immediately from the fact

that a bridge has to have equally many “down-steps” as “up-steps”. 4

However, if S is larger, then the analysis becomes more complicated. We are not quite

finished with constructing the bivariate generating function: the variable u corresponds to

the terminating height of the lattice path—but we also want to keep track of the length.

Therefore, we consider the class {→} × S, where “→” represents a step of length 1 (the

corresponding generating function is z 7→ z).

From what we know regarding the symbolic method, the class of lattice paths can now be

constructed as ({→}×S)∗, and the respective bivariate generating function is given by

W (z, u) =
1

1− zS(u)
,

where the exponent of z marks the length of the lattice path, and the exponent of u the

terminating height. As usual, we are interested in singularities of W (z, u). These are deter-

mined by the equation 1− zS(u) = 0, or equivalently, the polynomial equation

uc − zucS(u) = 0. (2.1)

The investigation of (2.1) will provide fruitful results for enumerating some of the special

classes of lattice paths we want to study. Note that this equation is also called kernel equa-
tion, and the quantity K(z, u) := uc − z(ucS(u)) is said to be the kernel of the lattice paths

determined by S. Also, observe that the kernel equation defines a plane algebraic curve

which we will refer to as the characteristic curve of S.

The following lemma summarizes our findings up to here and provides the analysis for

unrestricted paths.

Lemma 2.2.2 (Analysis of unrestricted paths, [3, Theorem 1]).
We follow [3, Proof of Theorem 1]. The bivariate generating function of lattice paths (with
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z marking length and u marking final height) relative to a set S ⊆ Z of allowed steps with

characteristic polynomial S(u) is a rational function of the form

W (z, u) =
1

1− zS(u)
.

In particular, there are precisely S(1)n = |S|n (unrestricted) lattice paths relative to S.

Proof. The form of the generating function has already been proved above. For the number

of unrestricted lattice paths just note that the coefficient of zn in W (z, 1) exactly counts the

number of lattice paths of length n with arbitrary height. Then, because of

W (z, 1) =
1

1− S(1)z
= 1+ S(1)z + S(1)2z2 + . . .

the statement follows.

Apart from our proof via the generating function, it is trivial to see that the number of

unrestricted paths of length n is given by S(1)n—after all, we know S(1) = |S|, and a lattice

path can be thought of as a sequence of n allowed steps. However, this does not really

help us for the asymptotic analysis of bridges: this actually requires that we have a close

look at the kernel equation. And for doing so, it will prove convenient to represent the

characteristic polynomial as S(u) =
∑d

k=−c skuk, where sk = 1 if k ∈ S and sk = 0 otherwise.

Observe that examining the kernel equation 1 − zS(u) = 0 near z = 0 reveals that the

equation can only be satisfied, if one of the relations

zu−c ∼ 1 or zud ∼ 1 for z→ 0 (2.2)

holds. We know that the characteristic equation uc− z(ucS(u)) = 0 is an equation of degree

c + d. Such an equation is known to have c + d roots, which (in dependence of z) are said

to be the branches of the characteristic curve defined by the kernel equation.

As suggested by (2.2), we expect c “small branches” (which we will denote as u1, . . . , uc),

and d “large branches” (denoted as v1, . . . , vd). “Small” and “large” relates to the behavior

of the branch near 0, meaning that

u j(z)∼ exp
�2i( j − 1)π

c

�

z1/c, vk(z)∼ exp
�2i(k− 1)π

d

�

z−1/d

for z → 0 and j ∈ {1,2, . . . , c}, k ∈ {1,2, . . . , d}. As stated in [3], this very informal discus-

sion is backed up by the theory of Newton-Puiseux expansions, for which we refer to [42,

Section 2.5]. In combination with some fundamental results from complex analysis, we are

able to prove the following characterization of bridges.
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Theorem 2.2.3 (Bridges and paths with fixed final height, [3, Theorem 1]).
The generating function of bridges (i.e. lattice paths that end in 0) relative to a set of allowed

steps S is an algebraic function given by

V (z) = z ·
c
∑

j=1

u′j(z)

u j(z)
= z ·

d
dz

log(u1(z)u2(z) · · ·uc(z)), (2.3)

where u1(z), u2(z), . . . , uc(z) denote all the small branches of the kernel equation. Generally,

the generating function Wk(z) corresponding to the paths that end at height k is, for −∞<

k < c

Wk(z) = z ·
c
∑

j=1

u′j(z)

u j(z)k+1
, (2.4)

and if v1(z), v2(z), . . . , vd(z) denote the large branches of the kernel equation, then for

−d < k <∞ we have

Wk(z) = −z ·
d
∑

j=1

v′j(z)

v j(z)k+1
. (2.5)

Proof. We follow [3, Proof of Theorem 1]. In Lemma 2.2.2 we already established that the

bivariate generating function W (z, u) of lattice paths relative to S (where z marks the length

of the lattice path and u marks the final height) has the form

W (z, u) =
1

1− zS(u)
.

By definition, we have Wk(z) = [uk]W (z, u) and especially V (z) = [u0]W (z, u). The prin-

cipal idea behind this proof is that we want to apply Cauchy’s integral formula in order to

obtain the desired generating functions.

For |z|< 1/S(|u|), W is an analytic function in both arguments. Note that for fixed positive

u, the radius of convergence of z 7→W (z, u) is precisely 1/S(u). Furthermore, we know that

the radius of convergence of Wk(z) has to be at least 1/S(1). This is due to the fact that there

are certainly more unrestricted lattice paths relative to S than those ending in k, meaning

that the coefficients of Wk(z) are dominated by the coefficients of W (z, 1)—and as W (z, 1)
has radius of convergence 1/S(1), Wk(z) cannot have a smaller radius of convergence.

Let us concentrate on |z| < r, where r := 1
2S(1)−1. Observe that as 1/S(u) is a continuous

function on R>0, there has to be an interval (α,β) ⊆ R>0 such that 1/S(u) > r on this

interval. Thus, the function W (z, u) is analytic on the product domain {z ∈ C | |z|< r}×{u ∈
C | α < |u|< β}, as the restrictions imply |zS(u)|< 1.

Therefore, with γ= α+β
2 , Cauchy’s integral formula can be applied, yielding

Wk(z) = [u
k]W (z, u) =

1
2πi

∮

|u|=γ

W (z, u)
uk+1

du.
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Recall that for z → 0, the large branches tend to ∞, while the small branches tend to 0.

Thus, for sufficiently small z, we have |v j(z)|> γ for all j ∈ {1,2, . . . , d} and distinct values

for all small branches u j(z). Therefore, the integrand W (z,u)
uk+1 =

1
uk+1(1−zS(u)) has c simple poles

at u = u j(z) for j ∈ {1,2, . . . , c}. Furthermore, in order to avoid the case where we have

a singularity at 0, we assume k < c: as 1
uk+1(1−zS(u))

u→0
= O(uc−(k+1)) for fixed z the condition

k < c ensures boundedness for u→ 0.

Now, by the residue theorem (and with u j = u j(z)) we find

Wk(z) =
1

2πi

∮

|u|=γ

1
uk+1(1− zS(u))

du

=
c
∑

j=1

Res
�

1
uk+1(1− zS(u))

, u= u j

�

=
c
∑

j=1

−1

zuk+1
j S′(u j)

.

Observe that substituting any branch u(z) in the kernel equation and differentiating with

respect to z yields −S(u(z)) − zS′(u(z))u′(z) = 0 from which 1
S′(u(z)) = −z2u′(z) can be

obtained by using the kernel equation again. Substituting this into the expression for Wk(z)
from above proves (2.4) and because k = 0< c this also proves (2.3).

For (2.5) we note that 1
uk+1(1−zS(u))

|u|→∞
= O(u−d−(k+1)), which results in 1

uk+1(1−zS(u)) = o(u−1)
for |u| →∞ as long as k > −d. In particular, this causes 1

uk+1(1−zS(u)) to decay sufficiently fast

such that the contribution of the integral vanishes if the radius of the circle of integration

tends towards ∞. Then, by subtracting the residues at the “large branches”, and with

v j = v j(z) this results in

Wk(z) = −
d
∑

j=1

Res
�

1
uk+1(1− zS(u))

, u= v j

�

=
d
∑

j=1

1

zvk+1
j S′(v j)

.

Then, following the same strategy as above proves (2.5).

The following examples shall illustrate how the “small” and “large” branches of a kernel can

be obtained, and how information on the generating function is then extracted.

Example 2.2.4 (Counting bridges).

(a) Consider the set of simple lattice paths induced by S = {−1, 1}. The associated charac-

teristic polynomial is given by S(u) = u−1+u. Thus, the bivariate generating function

for all paths (as of Lemma 2.2.2) is

W (z, u) =
1

1− z(u−1 + u)
,

and the kernel equation is given by u−z(1+u2) = 0. Solving this equation for u yields

a small branch u1 and a large branch v1, namely

u1(z) =
1−
p

1− 4z2

2z
, v1(z) =

1+
p

1− 4z2

2z
.
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As mentioned above, these branches come from solving the kernel equation. The

decision which of the two solutions constitutes the small branch and the large branch

is simple, because v1 has a pole in 0 and thus tends towards∞ for z→ 0. Therefore,

v1 indeed is the large branch, which leaves u1 to be the small branch.

By Theorem 2.2.3, the generation function of simple bridges is therefore given by

V (z) = z ·
u′1(z)

u1(z)
=

1
p

1− 4z2
= (1− 4z2)−1/2.

From the considerations in the example above we know that [z2n]V (z) =
�2n

n

�

—and

we may now use Singularity Analysis (Theorem 1.3.3, α= 1/2) in order to obtain an

asymptotic estimate for this central binomial coefficient:
�

2n
n

�

= [z2n](1− 4z2)−1/2 = [zn](1− 4z)−1/2 ∼
4n

p
nπ

.

Note that this also solves the problem from the introduction of Chapter 1 (determining

the number of “zero-sum game series”) in a more satisfactory manner.

(b) Now consider the slightly more complicated case S = {−1,0, 1}. In this case, the

bivariate generating function is given by W (z, u) = 1
1−z(u−1+1+u) , which yields the kernel

equation u− z(1+u+u2) = 0. Like before, this equation can be solved and we obtain

u1(z) =
1− z −

p
1− 2z − 3z2

2z
, v1(z) =

1− z +
p

1− 2z − 3z2

2z

for the small and large branch, respectively. Thus, the generating function of bridges

is given by

V (z) =
1

p
1− 2z − 3z2

=
1

p

(1+ z)(1− 3z)
.

As the singularity at z = 1/3 is the dominant one, with the help of Theorem 1.3.3 we

find [zn]V (z)∼
q

3
4

3n
p

nπ . Alternatively, by following the same idea with the character-

istic polynomial as above, we find [zn]V (z) = [u0](u−1 + 1+ u)n = [un](1+ u+ u2)n,

which are exactly the trinomial numbers enumerated by sequence A002426 in [34].

(c) Finally, let us have a look at S = {−2,1}. Determining the branches is slightly

harder in this case as a cubic equation is involved: the bivariate generating function

is W (z, u) = 1
1−z(u−2+u) , and the corresponding kernel equation is u2 − z(1+ u3) = 0.

The corresponding characteristic curve is illustrated in Figure 2.3. As can be seen in

the figure, there are two branches that join into 0 for z→ 0+ (“small branches”), and

one branch that escapes towards∞ for z→ 0− (“large branch”).

With the help of SageMath [45], we are able to compute all those branches as well as

the generating function for bridges relative to S. However, as the resulting expressions

https://oeis.org/A002426
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Figure 2.3: Characteristic curve u2 − z(1+ u3) = 0 in the (z, u)-plane

are rather complicated we only give the Newton-Puiseux and power series expansions

for the two small branches and the generating function, respectively:

u1(z) = z1/2 +
1
2

z2 +
5
8

z7/2 + z5 +
231
128

z13/2 +
7
2

z8 + . . .

u2(z) = −z1/2 +
1
2

z2 −
5
8

z7/2 + z5 −
231
128

z13/2 +
7
2

z8 ∓ . . .

V (z) = 1+ 3z3 + 15z6 + 84z9 + 495z12 + . . . .

Therefore, we cannot easily obtain an asymptotic estimate by means of Singularity

Analysis: we cannot access the singularities of V (z). However, we can revert to the

approach that uses powers of the characteristic polynomial:

[z3n]V (z) = [u0](u−2 + u)3n = [u6n](1+ u3)3n =
�

3n
n

�

. 4

Actually, this last example also brings us back to the central theme of this thesis: we would

like to have asymptotic results for the number of bridges relative to a set of allowed steps

S in all cases, and not only in those where we are actually able to determine the dominant

singularities. However, before we discuss such a result for bridges, we have to define two

lattice path parameters.

Definition 2.2.5 (Structural constant and lattice path period).

Let S ⊆ Z be a set of allowed steps.

(a) Then the unique positive solution τ > 0 of the equation S′(u) = 0, where S(u) is the

Laurent polynomial associated to S, is said to be the structural constant of S.
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(b) Let p ∈ Z be the largest integer such that the characteristic Laurent polynomial S(u)
can be written as S(u) = ub · T (up) for some b ∈ Z and another Laurent polynomial

T (u). Then the system of paths induced by S is said to have period p. Furthermore,

we call such a system of paths reduced, if gcd(b, p) = 1 holds.

Remark.

The period p of a system of paths can be interpreted combinatorially: note that S(u) =
ub · T (up) implies S(u)n = ubn · T (up)n. This means that the height of a path from this

system that has length n is congruent to nb mod p. Therefore, it takes the height of a path

a minimum of `= p
gcd(b,p) steps to return to the “original” congruence class.

Systems of non-reduced paths can be scaled in order to obtain an equivalent system of

reduced paths.

Now, the following theorem provides an asymptotic result for bridges based on the so-called

saddle-point method. Essentially, this approach approximates the integral obtained when

applying Cauchy’s integral formula to the generating function in a way such that the error

can be controlled. Consult [17, Chapter VIII] for a thorough discussion of the saddle-point

method.

Theorem 2.2.6 (Asymptotic analysis of bridges, [3, Theorem 3]).
Let τ > 0 be the structural constant of a set of allowed steps S ⊆ Z that induces a reduced

system of paths with period p. Then the number of bridges admits the asymptotic behavior

[znp]V (z)∼
p
τ

√

√ S(τ)
S′′(τ)

S(τ)np

p

2πnp

and [zn]V (z) = 0 for n - p.

Proof. See [3, Proof of Theorem 3] as well as the remark on periodic paths in [3, Section

3.3].

Example 2.2.7.

Let us revisit (c) from Example 2.2.4; consider S = {−2,1}. As we are able to write the

characteristic Laurent polynomial as S(u) = u−2 + u = u−2(1+ u3), we can observe that the

period of the walk is p = 3. Furthermore, the structural constant is the unique positive

solution of the equation S′(τ) = 0, which is equivalent to −2τ−3+1= 0, and thus τ= 3p2.

Applying Theorem 2.2.6 then yields that for the number of bridges relative to S, we have

�

3n
n

�

= [z3n]V (z)∼
3

3p2

√

√

√
3 3p2/2

3 3p2
2
/2

(27/4)n
p

6πn
=

3
2
(27/4)n
p

3πn
. 4

Before turning to the analysis of meanders and excursions, we want to get back to simple
lattice paths, i.e. lattice paths relative to S = {−1,1}. Remember that the structure of these
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paths was so simple that we could basically read off their behavior—and exactly because

of this simplicity, the class of simple paths is an excellent candidate for investigating more

complex parameters.

In particular, following the deliberations of Prodinger and Panny in [38], we want to sketch

the asymptotic analysis of the so-called maximal deviation of a simple lattice path.

Definition 2.2.8 (Maximal deviation).

Let (sk)0≤k≤n be a simple lattice path of length n starting in 0. Then the parameter δ(n)max :=
max{|sk| | 0 ≤ k ≤ n} is called maximal deviation. Simultaneously, δ(n)max is considered as

a random variable assigning each of the 2n possible (and equally likely) lattice paths their

maximal deviation.

Note that, for example, the maximal deviations of the lattice paths represented in Figure 2.2

are 3, 6, and 5, respectively.

We are interested in determining Eδ(n)max, the expected (or average) maximal deviation for

simple lattice paths of length n. As usual, we will determine an exact formula for this

expected value first, and then carry out an asymptotic analysis based on that. Let us start

with an useful observation for paths with a given bound h for the deviation that end on a

fixed altitude `. For the sake of clarity, let ψh,`(z) denote the generating function of this

class of paths, that is [zn]ψh,` gives the number of simple lattice paths starting in 0 and

ending in `, for which δ(n)max ≤ h holds.

Proposition 2.2.9 ([38, Theorem 2.1]).
With the substitution z = v/(1+ v2), we have

ψh,`(z) = v|`|
1+ v2

1− v2

1− v2(h−|`|+1)

1+ v2h+2
.

Proof. We follow [38, Proof of Theorem 2.1]. First of all, note that there are some relations

between the generating functionsψh,`: Assume that for some lattice path we know δ(n−1)
max ≤

h, and assume that this path ends in (n − 1,`) (i.e. this path would be counted by the

coefficient [zn−1]ψh,`(z)). Such a path can be continued to a path that ends in (n,`± 1)—
and also vice versa: every path with h-bounded maximal deviation that ends in (n,`) can

be constructed from a path that ends in (n− 1,`± 1) (as long as |`± 1| ≤ h). Overall, this

yields the relations

ψh,−h(z) = zψh,−h+1(z), ψh,h(z) = zψh,h−1(z),

as well as

ψh,`(z) = zψh,`−1(z) + zψh,`+1(z) for |`|< h, ` 6= 0
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and ψh,0(z) = 1+ zψh,−1(z) + zψh,1(z), because we have to account for the path of length

0. Rewriting this system of linear recurrences in a matrix yields
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−z 1 −z
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.

By Cramer’s rule and the fact that the determinant of a block-triangular matrix is the product

of the determinants of the matrices on the main diagonal, we find

ψh,`(z) =
z|`|ah(z)ah−|`|(z)

a2h+1(z)
,

where a j(z) denotes the determinant of the matrix from the system above with j rows.

Using Laplace’s method for computing the determinants, it is easy to prove the recurrence

a j+1(z) = a j(z)− z2a j−1(z) with a0(z) = a1(z) = 1.

In [27, Proof of Theorem 1] the very same sequence of determinants has been analyzed. In

particular, it is easy to check that with z = v/(1+ v2),

a j(z) =
1

1− v2

1− v2 j+2

(1+ v2) j

solves the linear recurrence. Substituting this solution into the representation of ψh,`(z)
obtained above, we find

ψh,`(z) = v|`|
1+ v2

1− v2

1− v2(h−|`|+1)

1+ v2h+2
.

As a simple corollary, we find a representation of ψh(z) :=
∑

|`|≤hψh,`(z), the generating

function of all simple paths with maximal deviation less than or equal to h. This only uses

the fact that due to symmetry we may write ψh(z) =ψh,0(z) + 2
∑h
`=1ψh,`(z).

Corollary 2.2.10 ([38, Theorem 2.2]).
The generating function ψh(z) of all simple lattice paths with maximal deviation less than

or equal to h can be represented as

ψh(z) =
(1+ v2)(1− vh+1)2

(1− v)2(1+ v2h+2)
,

where we used the substitution z = v/(1+ v2).
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For the rest of this section, let c(h)n and d(h)n denote the number of simple lattice paths with

maximal deviation ≤ h and > h, respectively. By construction, we have ψh(z) =
∑

n≥0 c(h)n zn

and d(h)n = 2n − c(h)n . Now, by exploiting Cauchy’s integral formula, we can obtain an exact

formula for these coefficients.

Proposition 2.2.11 ([38, Theorem 2.3, Corollary 2.7]).
The quantities c(h)n and d(h)n are given by

c(h)n = 2n − 2
∑

λ≥0

∑

0≤`≤h

�

�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

+
�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

�

(2.6)

and

d(h)n = 2
∑

λ≥0

∑

0≤`≤h

�

�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

+
�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

�

. (2.7)

Proof. We follow [38, Proof of Theorem 2.3]. Let γ be a small contour that winds around the

origin once. Then, by using Cauchy’s integral formula and the substitution z = v/(1+ v2),
we find

c(h)n =
1

2πi

∮

γ

ψh(z)
dz

zn+1
=

1
2πi

∮

γ̃

(1+ v2)n(1+ v)(1− vh+1)2

(1− v)(1+ v2h+2)
dv

vn+1

= [vn]
(1+ v2)n(1+ v)(1− vh+1)2

(1− v)(1+ v2h+2)
.

In order to extract the coefficient of vn, we split the term into two summands.

c(h)n = [v
n]
(1+ v2)n(1+ v)(1− vh+1)2

(1− v)(1+ v2h+2)
= [vn]

(1+ v2)n(1+ v)((1+ v2h+2)− 2vh+1)
(1− v)(1+ v2h+2)

= [vn]
(1+ v2)n(1+ v)

1− v
− 2[vn−(h+1)]

(1+ v2)n(1+ v)
(1− v)(1+ v2h+2)

. (2.8)

Consider the first summand in (2.8). By expanding everything, we find

[vn]
(1+ v2)n(1+ v)

1− v
= [vn]

∑

λ≥0

∑

j≥0

�

n
j

�

v2 j+λ(1+ v) =
bn/2c
∑

j=0

�

n
j

�

+
b(n−1)/2c
∑

j=0

�

n
j

�

= 2n.

This also implies that the second summand in (2.8) is equal to dn(h), as d(h)n = 2n − c(h)n . In

order to analyze this summand we need to expand the denominator 1
(1−v)(1+v2h+2) :

1
(1− v)(1+ v2h+2)

=
∑

λ≥0

∑

`≥0

(−1)λv2λ(h+1)+` =
∑

λ≥0

∑

`≥0

v4λ(h+1)+` −
∑

λ≥0

∑

`≥0

v(4λ+2)(h+1)+`

=
∑

λ≥0

2h+1
∑

`=0

v4λ(h+1)+`.
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Therefore, we can write

d(h)n = 2[vn−(h+1)]
�∑

j≥0

�

n
j

�

v2 j
��∑

λ≥0

2h+1
∑

`=0

v4λ(h+1)+`
�

(1+ v)

= 2[vn−(h+1)]
�∑

j≥0

�

n
j

�

v2 j
��∑

λ≥0

2h+1
∑

`=0

v4λ(h+1)+`
�

+ 2[vn−(h+2)]
�∑

j≥0

�

n
j

�

v2 j
��∑

λ≥0

2h+1
∑

`=0

v4λ(h+1)+`
�

.

The statement of the proposition then follows from investigating the cases n≡ h mod 2 and

n 6≡ h mod 2 and then using the floor and ceiling notation to obtain one result for both

cases.

Remember that the coefficients d(h)n give the number of simple lattice paths of length n
starting at 0 that leave the interval [−h, h] at least once. Therefore, the difference d(h−1)

n −d(h)n

gives the number of lattice paths with maximal deviation exactly h. This idea enables us to

compute the expected maximal deviation.

Theorem 2.2.12 (Expected maximal deviation, exact; [38, Theorem 2.8]).
Assuming that all simple lattice paths of length n are equally likely, the expected maximal

deviation for simple lattice paths is given by

Eδ(n)max = 2−n
∑

h≥0

d(h)n

= 2−n+1
∑

h,λ≥0
0≤`≤h

�

�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

+
�

n
� n−(h+2)

2

�

− 2λ(h+ 1)− `

�

�

.

Proof. As explained above, the number of simple lattice paths with maximal deviation h is

given by d(h−1)
n − d(h)n . Therefore, the expected value is given by the sum

Eδ(n)max =
n
∑

h=0

h ·
d(h−1)

n − d(h)n

2n
= 2−n

n
∑

h=0

h(d(h−1)
n − d(h)n ).

By summation by parts this can be rewritten as

2−n
n
∑

h=0

h(d(h−1)
n − d(h)n ) = 2−n

�

n
∑

h=0

d(h)n − ((n+ 1)d(n)n − 0 · d(−1)
n )

�

= 2−n
∑

h≥0

d(h)n .

Determining the asymptotic behavior of Eδ(n)max is rather technical. We follow the approach

presented in [38]. First of all, like the original authors we only consider the case of even

path lengths. Now, note that the problem in approximating Eδ(2n)
max is that binomial sums of

the form

2−2n
∑

a≤k≤b

�

2n
n+ k

�



42 2 Analysis of Lattice Paths

appear. As it turns out, the complement of the error function,

erfc(x) :=
2
p
π

∫ ∞

x

e−t2
d t

can be used in order to obtain the main term of the asymptotic contribution of these sums.

Proposition 2.2.13 ([38, Theorem 2.9]).
Let ε > 0. Assume 0≤ a ≤ b = O(n1/2+ε) and k = O(n1/2+ε). Then the following holds:

(a) For the scaled sum of shifted central binomial coefficients we have

2−2n
∑

a≤k≤b

�

2n
n+ k

�

=
1
2

�

erfc
�a− 1/2
p

n

�

− erfc
� b+ 1/2
p

n

�

�

(1+O(n−1+ε)).

(b) The shifted central binomial coefficient itself can be estimated by

2−2n
�

2n
n+ k

�

=

�

erfc
� k
p

n

�

− erfc
�k+ 1/2
p

n

�

+
1
2

ke−k2/n

p
πn3

�

(1+O(n−1+ε)),

as well as

2−2n
�

2n
n+ k

�

=

�

erfc
�k− 1/2
p

n

�

− erfc
� k
p

n

�

−
1
2

ke−k2/n

p
πn3

�

(1+O(n−1+ε)).

Sketch of the proof. There are three central concepts to this proof: first of all, the asymptotic

equality

2−2n
�

2n
n+ k

�

∼ 2−2n
�

2n
n

�

e−k2/n

holds if k = O(n1/2+ε). Furthermore, from Example 2.2.4 we already know the second

central concept, namely the asymptotic equality

2−2n
�

2n
n

�

∼
1
p

nπ
.

It can be shown that these two results can be combined in the sense that we have

2−2n
�

2n
n+ k

�

=
e−k2/n

p
nπ
(1+O(n−1+ε))

for k = O(n1/2+ε). Finally, the third central idea of this proof is to replace the summation

over a ≤ k ≤ b by integration over (a − 1/2, b + 1/2) (i.e. with continuity correction).

Carefully controlling the error made by this approximation then proves the statement of the

proposition above.

Note that in Section 2.4 we will present another approach for estimating the shifted central

binomial coefficients that does not require the complement of the error function.
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In any case, with these estimates we are able to give a first approximation of Eδ(2n)
max . In

order to do so, we need to define the following two arithmetic functions:

σ(m) :=
∑

m=(4λ+1)(h+1),
λ,h≥0

1, τ(m) :=
∑

m=(4λ+3)(h+1),
λ,h≥0

1.

Proposition 2.2.14 ([38, Theorem 2.10]).
The expected maximal deviation of simple lattice path with length 2n can be expressed as

Eδ(2n)
max =

�

2
∑

m≥1

�

(σ(m)−τ(m))erfc
� m

2
p

n

�

�

+
1
p

n3π

∑

m≥1

�

(σ(m)−τ(m))me−m2/n
�

�

(1+O(n−1+ε)).

Proof. We follow the approach from [38, Proof of Theorem 2.10]. Starting from the repre-

sentation proved in Theorem 2.2.12, splitting the sums according to the parity of h yields

2−2n+2
∑

h,λ≥0
h even

∑

0≤`≤h

�

2n
n+ h+2+4λ(h+1)+2`

2

�

for even h and

2−2n+1
∑

h,λ≥0
h odd

�

∑

0≤`≤h−1

2
�

2n
n+ h+3+4λ(h+1)+2`

2

�

+
�

2n
n+ h+1+4λ(h+1)

2

�

+
�

2n
n+ 3h+3+4λ(h+1)

2

�

�

for odd h. The binomial coefficients have already been rewritten such that the estimates

from Proposition 2.2.13 can be applied. Doing so and estimating the sums over the ranges

0≤ `≤ h and 0≤ `≤ h−1 by the result from (a), and the two separate binomial coefficients

by the two estimates from (b), respectively, gives

Eδ(n)max = 2
∑

h,λ≥0

�

erfc
�(4λ+ 1)(h+ 1)

2
p

n

�

− erfc
�(4λ+ 3)(h+ 1)

2
p

n

�

�

(1+O(n−1+ε))

+
1
p

n3π

∑

k,λ≥0

�

(4λ+ 1)(k+ 1)exp
�−[(4λ+ 1)(k+ 1)]2

n

�

− (4λ+ 3)(k+ 1)exp
�−[(4λ+ 3)(k+ 1)]2

n

�

�

(1+O(n−1+ε)).

Note that the second sum comes from the estimates from (b), and as this sum is only over

all odd h, we may substitute and sum over k = 2h+1 instead. Furthermore, by tails pruning

and tails completion, the error made when expanding the range of summation to infinity

is exponentially small. Finally, the statement of the theorem follows by definition of σ(m)
and τ(m).
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From the asymptotic expansion in Proposition 2.2.14, we can obtain the main contribution

by computing the Mellin transform of erfc(x) and applying Mellin inversion, we find (like

described in [38, (2.21)])

erfc(x) =
1

2πi
1
p
π

∫ c+i∞

c−i∞

1
z
Γ
�z + 1

2

�

x−z dz, for c, x > 0.

Using this substitution in the expressions above, bringing everything under the integral, and

then shifting the line of integration to the left (while adding back the residues of the poles

we pass) then gives a nice asymptotic expansion.

Proposition 2.2.15 ([38, Theorem 2.12]).
The asymptotic contribution of the first sum in the representation from Proposition 2.2.13

is

2
∑

m≥1

�

(σ(m)−τ(m))erfc
� m

2
p

n

�

�

=
p

nπ−
1
2
+O(n−r) (2.9)

for all r > 0.

Before we sketch the proof for this statement, we observe the following: by definition of

σ(m) and τ(m) and some simple rewriting, we find

∑

m≥1

σ(m)−τ(m)
ms

= ζ(s)β(s),

where β(s) is the Dirichlet beta function.

Remark.

The Dirichlet beta function is also often called Catalan beta function, and it is defined by

β(s) =
∞
∑

k=0

(−1)k

(2k+ 1)s
.

It can be expressed in terms of the Hurwitz zeta function as β(s) = 4−s(ζ(s, 1/4)−ζ(s, 3/4)).
Amongst many other interesting properties, it satisfies the zeta-like functional equation (cf.

[36, Table 3.7.1])
β(1− s) = (π/2)−s sin(πs/2)Γ (s)β(s),

which also implies that β(s) has zeros at all negative odd integers.

Proof of Proposition 2.2.15. We follow the approach from [38, Proof of Theorem 2.12]. The

left-hand side of (2.9) can be rewritten as

∑

m≥1

(σ(m)−τ(m))
1

2πi
2
p
π

∫ c+i∞

c−i∞

1
z
Γ
�z + 1

2

�� m
2
p

n

�−z
dz.
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As sketched in [38, Proof of Theorem 2.12], summation and integration may be inter-

changed (assuming c > 1) such that we obtain

1
2πi

2
p
π

∫ c+i∞

c−i∞

1
z
(2
p

n)zζ(z)β(z)Γ
�z + 1

2

�

dz.

The integrand has only two simple poles for z = 1 and z = 0 as the poles of the gamma

function cancel against the zeros of the beta function. Shifting the line of integration to the

left thus produces a contribution of
p

nπ (from the pole at z = 1) and −1/2 (from the pole

at 0). Computing these residues requires the values β(1) = π/4 and β(0) = 1/2, which can

be taken from, for example, [35, Table 3.7.1]. As the integrand has no other poles and as

all of the occurring functions behave sufficiently well, the line of integration may be shifted

arbitrarily far to the left (which also yields the error term in (2.9)). Overall, the statement

follows.

Remark.

By using a similar technique, we can prove that the other sum contributes the following:
∑

m≥1

(σ(m)−τ(m))me−m2/n =
nπ
8
+O(n−r)

for all r > 0. For more details, see [38, Theorem 2.13].

Combining the results from this remark and Proposition 2.2.15, we find the following ex-

pansion:

Theorem 2.2.16 (Expected maximal deviation, asymptotics; [38, Theorem 2.14]).
Let ε > 0 and n ∈ N0. Assuming that all simple lattice paths of length 2n are equally likely,

the expected maximal deviation for simple lattice paths is given asymptotically by

Eδ(2n)
max =

p
nπ−

1
2
+O(n−1/2+ε).

This concludes our section on unrestricted lattice paths and bridges. Nevertheless, note that

there is a plethora of other interesting parameters of lattice paths (like returns to 0, number

of peaks, other notions of height like the maximal span, or even the area between a lattice

path/bridge and the positive axis, . . . ).

2.3 Meanders and Excursions
Now, let us turn to the investigation of special restricted lattice paths: meanders and ex-

cursions. Recall that a meander is a non-negative walk and an excursion is a non-negative

bridge. In particular, this means that depending on the current position of a meander, not

all steps in the set of allowed steps S might be admissible—which, in turn, complicates the
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process of finding a suitable representation of the generating function that can be used for

analyzing meanders and excursions.

Fortunately, the problems introduced by this restriction can be solved by means of the kernel
method, which basically makes use of the small branches u j(z) of the characteristic curve

that we encountered before in order to express the generating function of meanders in a

similar way as the generating function of unrestricted paths from Lemma 2.2.2.

Let us denote the bivariate generating function of meanders as

M(z, u) :=
∑

n,k≥0

mn,kznuk =
∑

n≥0

µn(u)z
n =

∑

k≥0

Mk(z)u
k,

where z and u correspond to the length and the final height of a meander, respectively. In

particular, mn,k denotes the number of meanders of length n that end in k. The function

µn(u) holds information on the possible ending heights after n steps, and Mk(z) encodes

the number of lattice paths that end in k. As the number of meanders and excursions is

dominated by the number of unrestricted paths and bridges, M(z, u) has to be analytic for

|u| < 1 and |z| < 1/S(1), where S(u) is the characteristic Laurent polynomial of the set of

allowed steps S.

For the given problem, a recursive approach arises naturally: meanders of length n can be

extended to meanders of length n+ 1 as long as only those steps are chosen that keep the

walk above the x-axis. With the quantities we just defined, this can be expressed as1

µ0(u) = 1, µn+1(u) = S(u)µn(u)− {u<0}S(u)µn(u).

This is because multiplying µn(u) with S(u) yields the Laurent polynomial encoding all

possible heights that can be reached by taking an arbitrary step in S from a meander of

length n. In order to ensure that we obtain only meanders, the part of µn(u)S(u) that

corresponds to “non-meanders” has to be subtracted.

Multiplying this equation with zn and summing over n then gives

M(z, u)− 1
z

= S(u)M(z, u)− {u<0}S(u)M(z, u).

By simple manipulation we obtain the fundamental functional equation for meanders. It is

given by

M(z, u) = 1+ zS(u)M(z, u)− z{u<0}S(u)M(z, u). (2.10)

Note that because S is a finite set, S(u) also only involves finitely many negative powers.

Especially, we have

{u<0}S(u)M(z, u) = {u<0}S(u)
c−1
∑

k=0

Mk(z)u
k =

c−1
∑

k=0

Mk(z) · {u<0}S(u)uk.

1For a Laurent polynomial f (u), the notation {u<0} f (u) denotes the principal part of u, i.e. the summands

of f (u) that contain a negative power of u.
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By defining rk(u) := {u<0}S(u)uk, we can rewrite (2.10) in the following way:

M(z, u)(1− zS(u)) = 1− z
c−1
∑

k=0

Mk(z)rk(u). (2.11)

This is the point where we apply the kernel method: observe that (2.11) currently contains

c+1 unknown functions, which makes it impossible to tackle the problem directly. However,

remember that the small branches u j(z) are solutions of the kernel equation 1− zS(u) = 0

near z = 0. Therefore, substituting any of the small branches u1(z), . . ., uc(z) into (2.11)

lets the left-hand side vanish and produces an equation in the c unknown functions M0(z),
. . . , Mc−1(z).

However, the kernel method is even more powerful than that: we investigate the equations

that result from substituting the small branches into (2.11) in a small neighborhood of the

origin, such that the following conditions hold:

(a) The neighborhood is sufficiently small such that |z|< 1/S(1) holds,

(b) All the small branches are distinct and satisfy |u j(z)|< 1.

Observe that as the large branches tend towards infinity for z → 0, (b) can only hold for

small branches in a suitable neighborhood of the origin. Then, by multiplying with u j(z)c in

order to clear the denominators of the rk(u), we obtain the following system of c equations:

u j(z)
c − z

c−1
∑

k=0

u j(z)
c rk(u j(z))Mk(z) = 0, j ∈ {1, 2, . . . , c}.

Following the argumentation in [3], the determinant of this system is a Vandermonde-type

determinant—and thus not 0. Nevertheless, in order to compute the unknown functions

Mk(z), we follow another strategy. In [7, Remark after the proof of Theorem 13], the authors

remark that for z in the small neighborhood of the origin from before, the quantity

N(z, u) := uc − z
c−1
∑

k=0

uc rk(u)Mk(z)

is a monic polynomial in u with u1(z), . . . , uc(z) as roots. Therefore, it factors as

N(z, u) =
c
∏

j=1

(u− u j(z)). (2.12)

Altogether, these considerations are the core of the proof of the following theorem.

Theorem 2.3.1 (Meanders and excursions, [3, Theorem 2]).
For a finite allowed set of steps S ⊆ Z, the bivariate generating function of meanders (where

z marks the length of the path and u marks the final height) is algebraic and has the shape

M(z, u) =

∏c
j=1(u− u j(z))

uc(1− zS(u))
= −

1
z

d
∏

j=1

1
u− v j(z)

, (2.13)
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where u j(z) and v j(z) denote the small and large branches of the characteristic curve of S,

respectively. In particular, the generating function of excursions, E(z) = M(z, 0), is given

by

E(z) =
(−1)c−1

z

c
∏

j=1

u j(z) =
(−1)d−1

z

d
∏

j=1

1
v j(z)

. (2.14)

Proof. By (2.11) and the factorization (2.12), we directly obtain

M(z, u)uc(1− zS(u)) = uc − z
c−1
∑

k=0

uc rk(u)Mk(z) =
c
∏

j=1

(u− u j(z)).

With a similar argument for 1− zS(u) as for N(z, u) above, it is easy to see that the kernel

factors in the following way:

uc(1− zS(u)) = −z ·
c
∏

j=1

(u− u j(z)) ·
d
∏

j=1

(u− v j(z)).

Combining these results yields (2.13). Finally, (2.14) can be obtained simply by using

E(z) = M(z, 0).

Before discussing an example for generating functions of meanders and excursions, we re-

mark how the asymptotic behavior of the number of excursions looks like. Similarly to

Theorem 2.2.6, the following result is based on the saddle-point method—and again, we do

not discuss the proof in detail. Recall from Definition 2.2.5 that the structural constant of a

set of allowed steps S ⊆ Z is the unique positive solution to the equation S′(τ) = 0, and that

the period of the class of paths induced by S is the largest integer p such that the Laurent

polynomial S(u) can be written as S(u) = ubT (up) for some b ∈ Z and some other Laurent

polynomial T .

Furthermore, note that in [3, Section 3] it is shown that among the small branches, there is

exactly one analytic positive branch (u1, for example) that dominates all other branches in

modulus in the sense of

|u j(z)|< u1(|z|) for j ∈ {2,3, . . . , c} and 0< |z| ≤ 1/S(τ).

We call this special dominating small branch the principal branch. As we will see in the

following theorem, the asymptotic behavior of excursions depends on the non-principal

branches.

Theorem 2.3.2 (Asymptotic analysis of excursions, [3, Theorem 3]).
Let S ⊆ Z be a finite set of allowed steps with structural constant τ > 0 that induces a

reduced system of paths with period p. Then the number of excursions admits the following

asymptotic behavior:

[znp]E(z)∼ p(−1)c−1

√

√2S(τ)3

S′′(τ)
Y1

�

1
S(τ)

�

S(τ)np

2
p

πn3p3
,
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where the function Y1(z) is defined as the product of all non-principal branches, Y1(z) :=
u2(z) · · ·uc(z), and [zn]E(z) = 0 for n - p.

In other words, the number of excursions of length np is of order Θ(S(τ)np/
p

n3).

To conclude this section, let us illustrate the results from Theorem 2.3.1 and Theorem 2.3.2

in an example.

Example 2.3.3 (Excursions and Catalan paths).

For the sake of simplicity, let us revisit the example from the introduction of this thesis:

simple zero-sum games. We already know from Example 2.2.4 that simple zero-sum game

series can be interpreted as bridges relative to S = {−1, 1}. In the context of these games,

meanders and excursions also have interesting interpretations: meanders correspond to a

series of games where after each new round we still have won at least as many games as

we have lost. And naturally, excursions correspond to zero-sum game series of this kind. In

fact, non-negative simple lattice paths that end in 0 are called Catalan paths, or Dyck paths.

Recall that S(u) = u−1 + u = u−1(1+ u2). Thus, the period of S is 2, and it is easy to show

that the structural constant is τ= 1.

Solving the kernel equation 1− zS(u) = 0 yields the small and large branches

u1(z) =
1−
p

1− 4z2

2z
, and v1(z) =

1+
p

1− 4z2

2z
,

respectively. Thus, by (2.13), the generating function of meanders relative to S = {−1, 1}
is given by

M(z, u) =
2zu− 1+

p
1− 4z2

2zu− 2z2 − 2z2u2
,

and by (2.14), the corresponding generating function of excursions is

E(z) =
1−
p

1− 4z2

2z2
.

Because of the simple form of E(z), we can analyze the asymptotic behavior of the cor-

responding counting sequence both by means of singularity analysis as well as through

Theorem 2.3.2.

When studying E(z) in the context of singularity analysis (α= −1/2), we obtain

[z2n]E(z) = [z2n]
1−
p

1− 4z2

2z2
=

1
2
[z2n+2](1−

p

1− 4z2) =
−1
2
[z2n+2](1− 4z2)1/2

=
−1
2
[tn+1](1− 4t)1/2 =

−1
2

4n+1[tn+1](1− t)1/2

∼ 4n+1 n−3/2

−2Γ (−1/2)
=

4n

p
πn3

.
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On the other hand, consider the statement of Theorem 2.3.2. As we only have one small

branch (c = 1), the function Y1(u) is constant with value 1. Furthermore, we already know

that p = 2 and τ= 1. And due to S′′(u) = 2u−3, we find

[z2n]E(z)∼ 2

√

√2S(1)3

S′′(1)
S(1)2n

2
p
πn323

=
4n

p
πn3

,

which is the same result as from singular analysis.

Alternatively, we can expand the function E(z) by means of the binomial series, such that

we obtain

[z2n]E(z) = [z2n]
1−
p

1− 4z2

2z2
=

1
2
[z2n+2](1− (1− 4z2)1/2)

=
1
2
[z2n+2]

�

1−
∑

k≥0

(−1)k
�

1/2
k

�

(4z2)k
�

=
4n+1

2
(−1)n

�

1/2
n+ 1

�

=
4n+1

2
(−1)n

(1/2)(−1/2)(−3/2) · · · (1/2− n)
(n+ 1)!

=
(2n)!

(n+ 1)! n!

=
1

n+ 1

�

2n
n

�

.

The integers generated by this sequence appear very often within enumerative combina-

torics: the Catalan numbers, 1
n+1

�2n
n

�

= Cn. They arise in a vast number of different prob-

lems like, for example, triangulation of convex polygons, counting the number of “balanced

parenthesis”-expressions, counting special classes of trees2, and many more. Catalan num-

bers are enumerated by sequence A000108 in [34], and by the analysis above, asymptoti-

cally we have Cn ∼
4n
p
πn3 . For an extensive collection of problems involving Catalan numbers

see [43]. 4

2.4 Culminating paths
In this section3 we will concentrate on the asymptotic analysis of the culminating paths and

extremal lattice paths from Definition 2.1.2. Note that culminating paths have also been

studied in [8]—however, for the sake of consistency, we stick to the terminology introduced

in [19] and refer to culminating paths as admissible lattice paths.

All investigations within this chapter strongly depend on the interpretation of lattice paths

as realizations of random walks. In particular, we will see that extremal lattice paths can be

analyzed as a special case of admissible lattice paths by a simple reflection argument. With

this in mind, the following definition of the stochastic pendant of admissible lattice paths

will prove very useful.
2This is discussed in detail in Section 3.2.
3Note that this is an adapted version of a paper written in cooperation with Clemens Heuberger, Helmut

Prodinger, and Stephan Wagner, see [19].

http://oeis.org/A000108
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Definition 2.4.1 (Admissible random walks).

Let (Sk)0≤k≤n be a simple symmetric random walk on N0 or Z of length n starting at 0. That

is, we have P(S0 = 0) = 1 as well as

P(Sk = j − 1 | Sk−1 = j) = P(Sk = j + 1 | Sk−1 = j) =
1
2

for j ≥ 1,

P(Sk = 1 | Sk−1 = 0) = 1,

for random walks defined on N0, and

P(Sk = j − 1 | Sk−1 = j) = P(Sk = j + 1 | Sk−1 = j) =
1
2

for j ∈ Z

for random walks on Z. Then (Sk)0≤k≤n is said to be admissible of height h if the random

walk stays within the interval [0, h] and ends in h, i.e. Sk ∈ [0, h] for all k with 0 ≤ k ≤ n
and P(Sn = h) = 1. It is called admissible if the random walk is admissible of any height

h ∈ N.

Note that based on this definition, the admissible lattice paths encountered above are exactly

the realizations of admissible random walks.

In order to simplify our investigations, we let p(h)n and q(h)n denote the probability that a

simple symmetric random walk on N0 and Z is admissible of height h, respectively. Further-

more, we denote the probability that a random walk over N0 and Z is admissible at all with

pn :=
∑

h≥0 p(h)n and qn :=
∑

h≥0 q(h)n .

Remember that an admissible lattice path is a non-negative lattice path ending in its maxi-

mum. This special class is also visualized in Figure 2.4, where all admissible lattice paths of

length 5 are depicted. There are three admissible lattice paths of height 3, and one of height

1 and 5, respectively. Note that when considering simple random walks on Z, every possible

lattice path has the same probability 2−n. Admissible random walks on Z are enumerated

by sequence A167510 in [34].

Figure 2.4: Admissible lattice paths of length 5

However, in the case of random walks onN0, the probability depends on the number of visits

to 0: if there are v such visits (including the initial state), then the path occurs with prob-

ability 2−n+v. Note that by “folding down” (i.e., reflecting about the x-axis) some sections

http://oeis.org/A167510
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between consecutive visits to 0, or the section between the last visit and the end, 2v lattice

paths on Z can be formed, where the random walk is never farther away from the start than

at the end. These are exactly extremal lattice paths—and by construction, the number of

extremal lattice paths of length n is given by pn2n. To illustrate this idea of extremal lattice

paths, all paths of this form of length 3 are given in Figure 2.5.

Figure 2.5: Extremal lattice paths of length 3

One of our motivations for investigating admissible random walks originates from a conjec-

ture in [47]. There, Zhao introduced the notion of a bidirectional ballot sequence:

Definition 2.4.2 ([47, Definition 3.1]).
A 0-1 sequence is called a bidirectional ballot sequence if every prefix and suffix contains

strictly more 1’s than 0’s. The number of bidirectional ballot sequences of length n is denoted

by Bn.

Bidirectional ballot sequences are strongly related to admissible random walks on Z. In fact,

every bidirectional ballot sequence of length n+ 2 bijectively corresponds to an admissible

lattice path of length n on Z: given an admissible lattice path, every up-step corresponds to

a 1, and down-steps correspond to 0. Adding a 1 both at the beginning and at the end of

the constructed string gives a bidirectional ballot sequence of length n+ 2.

Therefore, bidirectional ballot walks may also be seen as lattice paths with unique minimum

and maximum.

In [47], Zhao also shows that Bn = Θ(2n/n), states (without detailed proof) that Bn ∼
2n/(4n) and conjectures that

Bn

2n
=

1
4n
+

1
6n2
+O

� 1
n3

�

.

In this section, we want to give a detailed analysis of the asymptotic behavior of admissible

random walks. By exploiting the bijection between admissible random walks and bidirec-

tional ballot sequences, we also prove a stronger version of Zhao’s conjecture.

In order to do so, we use a connection between Chebyshev polynomials and the probabilities

p(h)n and q(h)n (cf. Proposition 2.4.3 and Proposition 2.4.4, respectively), which we explore in
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detail in Section 2.4.1. This allows us to determine explicit representations of the probabil-

ities pn and qn, which are given in Theorem 2.4.5. The analysis of the asymptotic behavior

of admissible random walks of given length shall focus in particular on the height of these

random walks. In this context, we define random variables Hn and eHn by

P(Hn = h) :=
p(h)n

pn
, P( eHn = h) :=

q(h)n

qn
.

These random variables model the height of admissible random walks on N0 and Z, respec-

tively. Besides an asymptotic expansion for pn and qn, we are also interested in the behavior

of the expected height and its variance. The asymptotic analysis of these expressions, which

is based on an approach featuring the Mellin transform, is carried out in Section 2.4.2 and

Section 2.4.3, and the results are given in Theorem 2.4.8 and Theorem 2.4.10, respectively.

Finally, Zhao’s conjecture is proved in Corollary 2.4.11.

2.4.1 Chebyshev Polynomials and Random Walks
We denote the Chebyshev polynomials of the first and second kind by Th and Uh, respectively,

i.e.,

Th+1(x) = 2x Th(x)− Th−1(x) for h≥ 1, T0(x) = 1, T1(x) = x ,

Uh+1(x) = 2xUh(x)− Uh−1(x) for h≥ 1, U0(x) = 1, U1(x) = 2x .

In the following propositions, we show that these polynomials occur when analyzing ad-

missible random walks.

Proposition 2.4.3 ([23]).
The probability that a simple symmetric random walk (Sk)0≤k≤n of length n onZ is admissible

of height h is

q(h)n = P(0≤ S0, S1, . . . , Sn ≤ h and Sn = h) = 2[zn+1]
1

Uh+1(1/z)
(2.15)

for h≥ 0 and n≥ 0.

Proof. We follow [23] and consider the (h+ 1)× (h+ 1) transfer matrix

Mh =

























0 1
2 0 · · · · · · 0

1
2 0 1

2 · · · · · · 0

0 1
2 0

... 0
...

...
. . . . . . . . .

...
...

...
. . . . . . 1

2

0 0 0 . . . 1
2 0

























,
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which has the following simple yet useful property: if w(h)n,k is the probability that 0 ≤
S0, S1, . . . , Sn ≤ h and Sn = k, then the recursion

w(h)n ·Mh = w(h)n+1,

holds for the vectors w(h)n = (w
(h)
n,0, w(h)n,1, . . . , w(h)n,h). In particular, we have w(h)n = w(h)0 ·M

n
h . The

initial vector is w(h)0 = e0 = (1,0, . . . , 0). Since we also want that Sn = h, we multiply by

the vector eh = (0, . . . , 0, 1)> at the end to extract only the last entry w(h)n,h. This yields the

generating function
∑

n≥0

q(h)n zn =
∑

n≥0

e0M n
h ehzn = e0(I − zMh)

−1eh.

Cramer’s rule yields
∑

n≥0

q(h)n zn =
zh2−h

det(I − zMh)
.

The determinant of I − zMh can be computed recursively in h by means of row expansion,

see (for instance) [1, p.97]:

det(I − zMh+2) = det(I − zMh+1)−
z2

4
det(I − zMh).

Comparing this with the recursion for the Chebyshev polynomials and checking the initial

values, we find that 2h+1 det(I−zMh)
zh+1 = Uh+1(1/z). Therefore, we obtain

∑

n≥0

q(h)n zn =
2

zUh+1(1/z)

from which (2.15) follows by extracting the coefficient of zn.

An analogous statement holds for admissible random walks on N0 with the sole difference

that in this case, the Chebyshev polynomials of the first kind occur.

Proposition 2.4.4 ([23]).
The probability that a random walk (Sk)0≤k≤n of length n on N0 is admissible of height h is

given by

p(h)n = P(0≤ S0, S1, . . . , Sn ≤ h and Sn = h) = 2[zn+1]
1

Th+1(1/z)
(2.16)

for h≥ 0 and n≥ 1.
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Proof. Following the approach discussed in [23], we observe that for random walks with a

reflective barrier at 0, the (h+ 1)× (h+ 1) transfer matrix has the form

eMh =

























0 1 0 · · · · · · 0
1
2 0 1

2 · · · · · · 0

0 1
2 0

... 0
...

...
. . . . . . . . .

...
...

...
. . . . . . 1

2

0 0 0 . . . 1
2 0

























.

By the same approach involving Cramer’s rule as in the proof of Proposition 2.4.3, we find

the generating function

∑

n≥0

p(h)n zn = e0(I − z eMh)
−1eh =

zh21−h

det(I − z eMh)
,

where we have the recursion

det(I − z eMh+2) = det(I − z eMh+1)−
z2

4
det(I − z eMh)

for the determinant of I − z eMh. Finally, (2.16) follows from 2h−1 det(I−z eMh−1)
zh = Th(1/z), which

can be proved again by verifying that the same recursion holds for the Chebyshev-T poly-

nomials and that the initial values agree.

A rather interesting fact is that this result can also be obtained by a completely different

stochastic approach, namely by means of martingale theory:

Alternate martingale proof [46]. Note that all the probability-theoretic concepts necessary

for this approach are given in Section 1.4.2.

Let (Sk)k≥0 be a simple symmetric random walk on Z. We have already seen in Exam-

ple 1.4.15 that every symmetric random walk on Z is a martingale itself. Based on this

random walk we define the stochastic process (Mk)k≥0 with Mk := ei tSk(cos t)−k, where t
with |t|< π

2 is a parameter. We want to show that (Mk)k≥0 is a martingale as well.

Recall that in order to do so, we have to show

E|Mk|<∞ as well as E[Mk+1|M0, M1, . . . , Mk] = Mk

for all k ≥ 0. The boundedness of the expected value follows immediately from the defini-

tion of Mk and because Sk is a real-valued random variable. In particular, we have

E|Mk|= E(|ei tSk |)
︸ ︷︷ ︸

=1

·| cos t|−k = | cos t|−k <∞,



56 2 Analysis of Lattice Paths

as |t|< π
2 . For the second martingale property we make use of the fact that we can write the

random variable Sk as a sum of identical and independently distributed random variables

(Xk)k≥0 with P(Xk = −1) = P(Xk = 1) = 1
2 , that is Sk =

∑k
j=1 X j. Then, we may write

E[Mk+1|M0, M1, . . . , Mk] = E[ei tSk+1(cos t)−(k+1)|M0, . . . Mk]

= (cos t)−1E[ei tXk+1 · ei tSk(cos t)−k
︸ ︷︷ ︸

=Mk

|M0, . . . , Mk].

As Mk is certainly measurable with respect to the σ-algebra induced by M0, . . . , Mk, we may

use statement (c) of Lemma 1.4.13.

E[Mk+1|M0, M1, . . . , Mk] = Mk · (cos t)−1E[ei tXk+1 |M0, . . . , Mk].

Furthermore, as ei tXk+1 is independent of M0, . . . , Mk by construction, the conditional ex-

pectation degenerates to the “standard” expected value, finally resulting in

E[Mk+1|M0, M1, . . . , Mk] = Mk · (cos t)−1Eei tXk+1 = Mk(cos t)−1
�1

2
ei t +

1
2

e−i t
�

︸ ︷︷ ︸

=cos t

= Mk.

This proves that (Mk)k≥0 actually is a martingale—and thus, we may apply the optional

stopping theorem, Theorem 1.4.17 with the hitting time τh := inf{k ∈ N0 | |Sk| = h}. This

yields

1= EM0 = EMτh
=

1
2

�

eiht + e−iht
�

E((cos t)−τh) = cos(ht)E((cos t)−τh).

After substituting t = arccos z, we find

1= cos(h arccos z) ·Ez−τh ⇐⇒ Ez−τh =
1

cos(h arccos z)
=

1
Th(z)

,

where the last equality holds due to [11, 3.11.6]. We can use this in order to get the prob-

ability generating function

∑

n≥0

P(τh = n)zn = Ezτh =
1

Th(1/z)
.

Note that due to the folding argument from the introduction of this section, P(τh = n) is also

the probability that a simple symmetric random walk on N0 reaches h for the first time after

n steps. Finally, p(h)n = [zn+1] 2
Th+1(1/z)

follows from the fact that every admissible random

walk of length n and height h hits h+1 for the first time with probability 1/2 after one more

step.

Remark.

The coefficients of 1
Th(1/z)

have also been studied in [25]. There, the case of fixed h is inves-

tigated, whereas we mostly focus on the asymptotic behavior of
∑

h≥0 p(h)n for n→∞.

http://dlmf.nist.gov/3.11.E6
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Using the results from Proposition 2.4.3 and Proposition 2.4.4, we may give explicit rep-

resentations of the probabilities p(h)n and q(h)n by investigating the Chebyshev polynomials

thoroughly.

Remark (Iverson’s notation).

We use the Iversonian notation

¹exprº=







1 if expr is true,

0 otherwise,

popularized in [18, Chapter 2].

In the following theorem and throughout the rest of the section, m will denote a half-integer,

i.e., m ∈ 1
2N = {

1
2 , 1, 3

2 , 2, . . .}. While this convention may seem unusual, it simplifies many

of our formulas and is therefore convenient for calculations.

Theorem 2.4.5 ([39]).
With τh,k := (h+ 1)(2k+ 1)/2 and υh,k := (h+ 2)(2k+ 1)/2, we have

p(h)2m−1 =
4

4m

∑

k≥0

(−1)k
τh,k

m

�

2m
m−τh,k

�

· ¹h+ 1≡ 2m mod 2º, (2.17)

q(h)2m−2 =
4

4m

∑

k≥0

2υ2
h,k −m

(2m− 1)m

�

2m
m−υh,k

�

· ¹h≡ 2m mod 2º (2.18)

for h≥ 0 and half-integers m ∈ 1
2N with m≥ 1.

Proof. The following approach is discussed in [23] and [39]. We begin with the analysis of

p(h)n . The probabilities are related to the Chebyshev-T polynomials by Proposition 2.4.4. It is

a well-known fact (cf. [36, 22:3:3]) that these polynomials have the explicit representation

Th(x) =
(x −

p
x2 − 1 )h + (x +

p
x2 − 1 )h

2
,

which immediately yields

1
Th(1/z)

= zh 2

(1−
p

1− z2 )h + (1+
p

1− z2 )h
=: zhY (z2). (2.19)

By applying Cauchy’s integral formula, we obtain the coefficients of the factor Y (t) encoun-

tered in (2.19). We choose a sufficiently small circle around 0 as the integration contour γ.

Thus, we get

[tn]Y (t) = [tn]
2

(1−
p

1− t )h + (1+
p

1− t )h

=
1

2πi

∮

γ

2

(1−
p

1− t )h + (1+
p

1− t )h
·

1
tn+1

d t.
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We want to simplify the expression
p

1− t in this integral. This can be achieved by the

substitution t = 4u
(1+u)2 , which gives us d t = (1− u) · 4

(1+u)3 du and
p

1− t = 1−u
1+u . Also, the

new integration contour is γ̃, which is still a contour that winds around the origin once.

Then, again by Cauchy’s integral formula, we obtain

[tn]Y (t) =
1

2πi

∮

γ̃

(1− u)
(1+ u)2n+h−1

22n+h−1(1+ uh)
·

1
un+1

du

= [un](1− u)
(1+ u)2n+h−1

22n+h−1(1+ uh)
.

Expanding the factor (1+u)2n+h−1

1+uh into a series with the help of the geometric series and the

binomial theorem yields

(1+ u)2n+h−1

1+ uh
=
∑

k≥0

(−1)kukh(1+ u)2n+h−1 =
∑

k≥0

(−1)kukh
2n+h−1
∑

j=0

�

2n+ h− 1
j

�

u j,

and therefore

[u`]
(1+ u)2n+h−1

1+ uh
=
∑

k≥0

(−1)k
�

2n+ h− 1
`− hk

�

.

This allows us to expand the expression encountered before, that is

[tn]Y (t) = [un](1− u)
(1+ u)2n+h−1

22n+h−1(1+ uh)

=
1

22n+h−1

∑

k≥0

(−1)k
��

2n+ h− 1
n− hk

�

−
�

2n+ h− 1
n− hk− 1

��

.

Using the binomial identity
�

N − 1
α

�

−
�

N − 1
α− 1

�

=
N − 2α

N

�

N
α

�

,

the expression above can be simplified so that, together with (2.19), we find

1
Th(1/z)

= 2
∑

n≥0

� z
2

�2n+h∑

k≥0

(−1)k
2hk+ h
2n+ h

�

2n+ h
n− hk

�

.

By plugging this into (2.16), we obtain

p(h)n = 2[zn+1]
1

Th+1(1/z)

= 4[zn+1]
∑

`≥0

� z
2

�2`+h+1∑

k≥0

(−1)k
2(h+ 1)k+ h+ 1

2`+ h+ 1

�

2`+ h+ 1
`− (h+ 1)k

�

=
1

2h−1
[zn−h]

∑

`≥0

� z
2

�2`∑

k≥0

(−1)k
2(h+ 1)k+ h+ 1

2`+ h+ 1

�

2`+ h+ 1
`− (h+ 1)k

�

.
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Combinatorially, it is clear that p(h)n = 0 for n and h of different parity, as only heights of

the same parity as the length can be reached by a random walk starting at the origin. This

can also be observed in the representation above. Assuming n ≡ h mod 2, we can write

n− h= 2` or equivalently n−h
2 = `. This gives us

p(h)n =
1

2n−1

∑

k≥0

(−1)k
2(h+ 1)k+ h+ 1

n+ 1

�

n+ 1
n−h

2 − (h+ 1)k

�

=
1

2n−1

∑

k≥0

(−1)k
(h+ 1)(2k+ 1)

n+ 1

�

n+ 1
n+1

2 −
1
2(h+ 1)(2k+ 1)

�

.

Substituting n = 2m − 1 with a half-integer m ∈ 1
2N such that h + 1 ≡ 2m mod 2, and

recalling that τh,k = (h+ 1)(2k+ 1)/2, the representation in (2.17) is proved.

For the second part, we consider the explicit representation

Uh(x) =
(x +

p
x2 − 1 )h+1 − (x −

p
x2 − 1 )h+1

2
p

x2 − 1

of the Chebyshev-U polynomials, which is equivalent to

1
Uh(1/z)

= zh 2
p

1− z2

(1+
p

1− z2 )h+1 − (1−
p

1− z2 )h+1
.=: zhỸ (z2).

Again, we investigate the factor Ỹ (t) based on Cauchy’s integration formula and the substi-

tution t = 4u
(1+u)2 :

[tn]Ỹ (t) =
1

2πi

∮

γ

2
p

1− t

(1+
p

1− t )h+1 − (1−
p

1− t )h+1
·

1
tn+1

d t

=
1

2πi

∮

γ̃

(1− u)2
2−(2n+h)(1+ u)2n+h−1

1− uh+1

1
un+1

du

= [un](1− u)2
2−(2n+h)(1+ u)2n+h−1

1− uh+1
.

By expanding (1+ u)2n+h−1 and 1
1−uh+1 , we find

[un](1− u)2
2−(2n+h)(1+ u)2n+h−1

1− uh+1

=
1

22n+h

∑

k≥0

��

2n+ h− 1
n− k(h+ 1)

�

− 2
�

2n+ h− 1
n− k(h+ 1)− 1

�

+
�

2n+ h− 1
n− k(h+ 1)− 2

��

,

and thus, because of 1
Uh(1/z)

= zhỸ (z2), we find

1
Uh(1/z)

=
∑

n≥0

� z
2

�2n+h

×
∑

k≥0

��

2n+ h− 1
n− k(h+ 1)

�

− 2
�

2n+ h− 1
n− k(h+ 1)− 1

�

+
�

2n+ h− 1
n− k(h+ 1)− 2

��

. (2.20)
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When investigating 1
Uh+1(1/z)

, the binomial coefficients on the right-hand side of (2.20) have

the form
�

2n+ h
n− k(h+ 2)

�

− 2
�

2n+ h
n− k(h+ 2)− 1

�

+
�

2n+ h
n− k(h+ 2)− 2

�

.

They can be simplified by using the binomial identity

�

2N
N −α+ 1

�

− 2
�

2N
N −α

�

+
�

2N
N −α− 1

�

=
4α2 − (2N + 2)
(2N + 1)(2N + 2)

�

2N + 2
N + 1−α

�

where 2N ∈ N0 and N −α ∈ N0. Thus, the expression above can be written as

(h+ 2)2(2k+ 1)2 − (2n+ h+ 2)
(2n+ h+ 1)(2n+ h+ 2)

�

2n+ h+ 2
n+ h

2 + 1− 1
2(h+ 2)(2k+ 1)

�

so that we obtain

1
Uh+1(1/z)

=
∑

n≥0

� z
2

�2n+h+1∑

k≥0

(h+ 2)2(2k+ 1)2 − (2n+ h+ 2)
(2n+ h+ 1)(2n+ h+ 2)

×
�

2n+ h+ 2
n+ h

2 + 1− 1
2(h+ 2)(2k+ 1)

�

.

By the same combinatorial argument as before, q(h)n = 0 holds for n and h of different

parities. The representation above is in accordance with this observation. Plugging this

representation of 1
Uh+1(1/z)

into (2.15) yields

q(h)n =
1
2n

∑

k≥0

(h+ 2)2(2k+ 1)2 − (n+ 2)
(n+ 1)(n+ 2)

�

n+ 2
n+2

2 −
1
2(h+ 2)(2k+ 1)

�

for n ≡ h mod 2. Finally, (2.18) follows from substituting n = 2m − 2 for a suitable half-

integer m ∈ 1
2N (such that 2m−2≥ 0) with h≡ 2m mod 2, and because υh,k := (h+2)(2k+

1)/2.

With explicit formulae for the probabilities p(h)n and q(h)n , we can start to work towards the

analysis of the asymptotic behavior of admissible random walks.

2.4.2 Admissible Random Walks on N0

In this section, we begin to develop the tools required for a precise analysis of the asymptotic

behavior of admissible random walks on N0.

Recalling the result of Theorem 2.4.5, we find that in the half-integer representation p(h)2m−1,

the shifted central binomial coefficient
� 2m

m−τh,k

�

appears. Hence, for the purpose of obtain-

ing an expansion for p2m−1 =
∑

h≥0 p(h)2m−1, analyzing the asymptotic behavior of binomial

coefficients in the central region is necessary.
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Lemma 2.4.6.

For n ∈ 1
2N and |α| ≤ n2/3 such that n−α ∈ N, we have

�

2n
n−α

�

∼
4n

p
nπ

exp
�

−
α2

n

�

· S(α, n)

with S(α, n) :=
∑

`, j≥0 c` j
α2 j

n` and

c` j = [α
2 jn−`]

�

∑

r≥0

dr

(2n)r

��

∑

r≥0

(−1)r dr

(n+α)r

��

∑

r≥0

(−1)r d j

(n−α)r

�

(2.21)

×
�

∑

r≥0

(−1)r
�

−1/2
r

�

α2r

n2r

��

∑

r≥0

1
r!
α4r

n3r

�

∑

t≥0

−1
(t + 2)(2t + 3)

α2t

n2t

�r�

,

where the coefficients dr come from the higher-order Stirling approximation of the factorial,

cf. (2.22). Additionally, the estimate

S(α, n) = 1+O
�

1+ |α|
n

�

holds for |α| ≤ n2/3 and we know that c00 = 1 as well as c` j = 0 if j > 2
3`.

If |α|> n2/3, the term
�

2n
n−α

�

/4n = O(exp(−n1/3))

decays faster than any power of n.

Proof. We begin by recalling the higher-order Stirling approximation (cf. [17, p. 760])

n!∼
p

2πn
�n

e

�n�∑

j≥0

d j

n j

�

. (2.22)

An explicit representation of the coefficients d j can be found in [33]. From the logarithmic

representation of the factorial (see [17, p. 766]), the expansion

1
n!
∼

1
p

2πn

� e
n

�n
�

∑

j≥0

(−1) jd j

n j

�

(2.23)

for the reciprocal factorial follows.

Let us assume |α| ≤ n2/3. Then, by applying (2.22) and (2.23) to the shifted central binomial

coefficient, we obtain
�

2n
n−α

�

=
(2n)!

(n−α)! (n+α)!

=
1
p

nπ

�

1−
α2

n2

�−1/2 (2n)2n

(n+α)n+α(n−α)n−α

×
�

∑

r≥0

dr

(2n)r

��

∑

r≥0

(−1)r dr

(n+α)r

��

∑

r≥0

(−1)r dr

(n−α)r

�

.
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The factor
�

1− α2

n2

�−1/2
can be expanded as a binomial series, resulting in

�

1−
α2

n2

�−1/2
=
∑

r≥0

(−1)r
�

−1/2
r

�

α2r

n2r
.

The remaining factor is handled by means of the identity nn = exp(n log n), which leads to

(2n)2n

(n+α)n+α(n−α)n−α
= exp(2n log(2n)− (n+α) log(n+α)− (n−α) log(n−α))

= exp(2n log2+ 2n log n− (n+α)(log n+ log(1+α/n))

− (n−α)(log n+ log(1−α/n)))

= 4n exp(α log(1−α/n)−α log(1+α/n)

− n log(1−α/n)− n log(1+α/n)).

By expanding the logarithm into a power series, we can simplify this expression to

(2n)2n

(n+α)n+α(n−α)n−α
= 4n exp

�

2
�

−
∑

t≥0

1
2t + 1

α2t+2

n2t+1
+
∑

t≥0

1
2t + 2

α2t+2

n2t+1

��

= 4n exp
�

−
α2

n

�

exp
�

−
α4

n3

∑

t≥0

1
(t + 2)(2t + 3)

α2t

n2t

�

= 4n exp
�

−
α2

n

�

�

∑

r≥0

1
r!
α4r

n3r

�

∑

t≥0

−1
(t + 2)(2t + 3)

α2t

n2t

�r�

.

We also use
1

n±α
=

1
n

1
1± α

n

=
1
n

∑

r≥0

�

∓
α

n

�r
.

By the symmetry of the binomial coefficient, the resulting asymptotic expansion has to be

symmetric in α. Assembling all these expansions yields the asymptotic formula

�

2n
n−α

�

∼
4n

p
nπ

exp
�

−
α2

n

�

· S(α, n),

where S(α, n) is defined as in the statement of the lemma.

Note that d0 = 1, and thus the first summand of the series in (2.21) is 1—which gives

c00 = 1. Only in the last series, the exponent of α is greater than the exponent of 1/n, with

the maximal difference being induced by α4r/n3r . Thus, if j > 2
3`, we have c` j = 0. Together

with |α| ≤ n2/3, this implies the estimate for S(α, n).

For |α|> n2/3, we can use the monotonicity of the binomial coefficient to obtain
�

2n
n−α

�

≤
�

2n
n− dn2/3e

�

,
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for which the exponential factor ensures fast decay,

exp
�

−
dn2/3e2

n

�

= O
�

exp
�

−n1/3
��

,

and as everything else is of polynomial growth, the statement of the lemma follows.

Now that we have an asymptotic expansion for the shifted central binomial coefficient, let

us look at our explicit formula in (2.17) again: we have

p(h)2m−1 =
4

4m

∑

k≥0

(−1)k
τh,k

m

�

2m
m−τh,k

�

· ¹h+ 1≡ 2m mod 2º,

where τh,k = (h+1)(2k+1)/2. Therefore, the total probability for a random walk of length

2m− 1 on N0 to be admissible is given by

p2m−1 =
∑

h≥0

p(h)2m−1 =
4

4m

∑

h,k≥0
h+1≡2m mod 2

(−1)k
τh,k

m

�

2m
m−τh,k

�

.

The terms where τh,k > m2/3 can be neglected in view of the last statement in Lemma 2.4.6,

as their total contribution decays faster than any power of m: note that there are only

O(m2) such terms (trivially, h, k ≤ m), each of which contributes O(m exp(−m1/3)) to the

sum. For all other values of h and k, we can replace the binomial coefficient by its asymptotic

expansion. This gives us, for any L > 0,

p2m−1 =
4
p

mπ

∑

h,k≥0,τh,k≤m2/3

h+1≡2m mod 2

(−1)k
τh,k

m
exp

�

−
τ2

h,k

m

�

L−1
∑

`=0

∑

j≥0

c` j

τ
2 j
h,k

m`

+O
�

1
p

m

∑

h,k≥0,τh,k≤m2/3

h+1≡2m mod 2

τ
2J(L)+1
h,k

mL+1

�

,

where J(L) ≤ 2
3 L since c` j = 0 for j > 2

3`. Since the sum clearly contains O(m4/3) terms,

the error is at most O(m−1/2+4/3+2/3(2J(L)+1)−(L+1)) = O(m1/2−L/9). The exponent can be made

arbitrarily small by choosing L accordingly. Finally, if we extend the sum to the full range

(all integers h, k ≥ 0 such that h+ 1≡ 2m mod 2) again, we only get another error term of

order O(exp(−m1/3)), which can be neglected. In summary, we have

p2m−1 ∼
4
p

mπ

∑

h,k≥0
h+1≡2m mod 2

(−1)k
τh,k

m
exp

�

−
τ2

h,k

m

� ∑

`, j≥0

c` j

τ
2 j
h,k

m`
. (2.24)

This sum can be analyzed with the help of the Mellin transform and the converse mapping

theorem (cf. Theorem 1.3.13). In order to follow this approach, we will investigate those
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terms in (2.24) whose growth is not obvious more precisely. That is, we will focus on the

contribution of terms of the form

∑

h,k≥0
h+1≡2m mod 2

(−1)kτ2 j+1
h,k exp

�

−
τ2

h,k

m

�

.

We are also interested in the expected height and the corresponding variance and higher

moments of admissible random walks. Asymptotic expansions for these can be obtained

by analyzing moments of the random variable Hn with P(Hn = h) := p(h)n
pn

, as stated in the

introduction. For the sake of convenience, let us consider the r-th shifted momentE(H2m−1+
1)r . We know

E(H2m−1 + 1)r =
∑

h≥0

(h+ 1)rP(H2m−1 = h) =

∑

h≥0(h+ 1)r p(h)2m−1

p2m−1
.

The asymptotic behavior of the denominator is related to the behavior of the sum from

above—and fortunately, the behavior of the numerator is related to the behavior of the very

similar sum
∑

h,k≥0
h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+ 1)r exp

�

−
τ2

h,k

m

�

.

The following lemma analyzes sums of this structure asymptotically.

Lemma 2.4.7.

Let j, r ∈ N0. Then we have

∑

h,k≥0
h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+ 1)r exp

�

−
τ2

h,k

m

�

= 2r−1Γ
�

j + 1+
r
2

�

β(r + 1)m j+1+r/2 +O(m−K) (2.25)

for any fixed K > 0, where β( · ) denotes the Dirichlet beta function.

Proof of Lemma 2.4.7. If we substitute m= x−2, the left-hand side of (2.25) becomes

f (x) :=
∑

h,k≥0
h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+ 1)r exp(−τ2

h,k x2).

This is a typical example of a harmonic sum, cf. [15, §3], and the Mellin transform can be

applied to obtain its asymptotic behavior. First of all, from Lemma 1.3.9 we know that the

Mellin transform of a harmonic sum of the form f (x) =
∑

k≥1 ak g(bk x) can be factored as
∑

k≥1 ak b−s
k g∗(s), provided that the half-plane of absolute convergence of the Dirichlet series
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Λ(s) =
∑

k≥1 ak b−s
k has non-empty intersection with the fundamental strip of the Mellin

transform g∗ of the base function g. In this particular case, the Dirichlet series is

Λ(s) :=
∑

h,k≥0
h+1≡2m mod 2

(−1)kτ2 j+1−s
h,k (h+ 1)r ,

and the base function is g(x) = exp(−x2), with Mellin transform g∗(s) = 1
2Γ
�

s
2

�

and funda-

mental strip 〈0,∞〉.

Now we simplify the Dirichlet series. For s ∈ C with Re(s)> 2 j + 2+ r, the sum

Λ(s) = 2s−(2 j+1)
∑

h,k≥0
h+1≡2m mod 2

(−1)k(h+ 1)2 j+1+r−s(2k+ 1)2 j+1−s

converges absolutely because it is dominated by the zeta function. In view of the definition

of the β function, this simplifies to

Λ(s) = 2s−(2 j+1)β(s− (2 j + 1))κ2m(s− (2 j + 1+ r)),

where κ2m(s) depends on the parity of 2m. We find

κ2m(s) =
∑

h≥0
h+1≡2m mod 2

(h+ 1)−s =







2−sζ(s) for m ∈ N,

(1− 2−s)ζ(s) for m 6∈ N.

Thus, the Mellin transform of f is

f ∗(s) = Λ(s)g∗(s) =
1
2
Γ
� s

2

�

2s−(2 j+1)β(s− (2 j + 1))κ2m(s− (2 j + 1+ r)).

By the converse mapping theorem (see Theorem 1.3.13), the asymptotic growth of f (x) for

x → 0 can be found by considering the analytic continuation of f ∗(s) further to the left of

the complex plane and investigating its poles. The theorem may be applied because Λ(s)
has polynomial growth and Γ (s/2) decays exponentially along vertical lines of the complex

plane.

We find that f ∗(s) has a simple pole at s = 2 j + 2+ r, which comes from the zeta function

in the definition of κ2m. There are no other poles: β is an entire function, and the poles of

Γ cancel against the zeros of β (at all odd negative integers, see the earlier remark).

The asymptotic contribution from the pole of f ∗ is

Res( f ∗, s = 2 j + 2+ r) · x−(2 j+2+r) =
1
2
Γ
�

j + 1+
r
2

�

2r+1β(r + 1)
1
2

x−(2 j+2+r)

= 2r−1Γ
�

j + 1+
r
2

�

β(r + 1)m j+1+r/2,

which does not depend on the parity of 2m, as the respective residue of κ2m is 1
2 in either

case. Finally, the O-term in (2.25) comes from the fact that f ∗ may be continued analytically

arbitrarily far to the left in the complex plane without encountering any additional poles.
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Remark.

In Lemma 2.4.7, particular values of the Dirichlet beta function are required. To compute

the asymptotic expansions for the first moments, we need β(1) = π/4, β(2) = G ≈ 0.91597,

as well as β(3) = π3/32, where G is the Catalan constant. These values are taken from [36,

Table 3.7.1].

At this point, all that remains to obtain asymptotic expansions is to multiply the con-

tributions resulting from Lemma 2.4.7 with the correct coefficients and contributions

from (2.24).

Theorem 2.4.8 (Asymptotic analysis of admissible random walks on N0).

The probability that a random walk on N0 is admissible can be expressed asymptotically as

pn =
s

π

2n
−

5
p

2π

24
p

n3
+

127
p

2π

960
p

n5
−

1571
p

2π

16128
p

n7
−

1896913
p

2π

184320
p

n9
+O

� 1
p

n11

�

, (2.26)

where
p

π/2≈ 1.25331. The expected height of admissible random walks is given by

EHn = 2G

√

√2n
π
− 1+

5
p

2G
6
p
πn
−

131
p

2G

720
p
πn3

+
1129

p
2G

12096
p
πn5

+O
� 1
p

n7

�

, (2.27)

where 2G
p

2/π≈ 1.46167, and the variance of Hn can be expressed as

VHn =
π3 − 32G2

4π
n+

π3 − 40G2

6π
−
π3 − 12G2

180πn
+

11π3 − 265G2

1890πn2
+O

� 1
n3

�

, (2.28)

where (π3−32G2)/(4π)≈ 0.33092. Generally, the r-th moment is asymptotically given by

EH r
n ∼

2r/2+2

π
Γ
� r

2
+ 1

�

β(r + 1)nr/2. (2.29)

Moreover, if η = h/
p

n satisfies 3/
p

log n < η <
p

log n/2 and h ≡ n mod 2, we have the

local limit theorem [46]

P(Hn = h) =
p(h)n

pn
∼

2φ(η)
p

n
=

8η
π
p

n

∑

k≥0

(−1)k(2k+ 1)exp
�

−
(2k+ 1)2η2

2

�

(2.30)

=
2
p

2π
η2
p

n

∑

k≥0

(−1)k(2k+ 1)exp
�

−
π2(2k+ 1)2

8η2

�

. (2.31)

Remark.

Note that the asymptotic behavior of the moments of Hn readily implies that the normalized

random variable Hn/
p

n converges weakly to the distribution whose density is given by

φ(η) (see [17, Theorem C.2]). The local limit law (2.30) is somewhat stronger.



2.4 Culminating paths 67

Proof. With (2.24) and the result of Lemma 2.4.7, obtaining an asymptotic expansion of

p2m−1 is only a question of developing the shifted central binomial coefficient and multi-

plying with the correct growth contributions from (2.25). By doing so (with the help of

SageMath [45]: corresponding SageMath code can be found in Appendix A or online at

http://arxiv.org/src/1503.08790/anc/random-walk_NN.ipynb), an asymptotic

expansion in the half-integer m is obtained. Substituting m= (n+ 1)/2 then gives (2.26).

The results in (2.27) and (2.28) are obtained by considering

E(Hn + 1)r =

∑

h≥0(h+ 1)r p(h)n

pn
,

making use of (2.24) and Lemma 2.4.7 again. Note that we have EHn = E(Hn + 1)− 1, as

well as VHn = E(Hn + 1)2 − [E(Hn + 1)]2. For higher moments, we only give the principal

term of the asymptotics, which corresponds to the coefficient c00 in (2.24), but in principle

it would be possible to calculate further terms as well.

The fact that the two series in (2.30) and (2.31) that represent the density φ(η) are equal

is a simple consequence of the Poisson sum formula, Theorem 1.3.2. In fact, as the sum

in (2.30) takes the same values for k and −(k+ 1), we can write

∑

k≥0

(−1)k(2k+ 1)exp
�

−
(2k+ 1)2η2

2

�

=
1
2

∑

k∈Z

(−1)k(2k+ 1)exp
�

−
(2k+ 1)2η2

2

�

.

This sum can be represented as the sum of the function

f (x) := (2x + 1)exp
�

−
(2x + 1)2η2

2
+ iπx

�

over all integers. The Fourier transform of f can be computed easily, we find

f̂ (t) =
p

2π3

4η3
(1− 2t)exp

�

−
π2(1− 2t)2

8η2
+ iπt

�

.

In particular, for an integer k ∈ Z we find f̂ (k + 1) =
p

2π3

4η3 (−1)k(2k + 1)exp
�

− π2(2k+1)2

8η2

�

.

Therefore, Theorem 1.3.2 yields

1
2

∑

k∈Z

(−1)k(2k+ 1)exp
�

−
(2k+ 1)2η2

2

�

=
p

2π3

8η3

∑

k∈Z

(−1)k(2k+ 1)exp
�

−
−π2(2k+ 1)2

8η2

�

,

which, considering the fact that a similar symmetry argument like above can be used for

this other sum, proves the equality of (2.30) and (2.31).

It remains to prove (2.30). To this end, we follow [46] and revisit the explicit expression

(recall that we set n= 2m− 1)

p(h)2m−1 =
4

4m

∑

k≥0

(−1)k
τh,k

m

�

2m
m−τh,k

�

.

http://arxiv.org/src/1503.08790/anc/random-walk_NN.ipynb
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First of all, we can eliminate all k with τh,k > m2/3, since their total contribution is at most

O(m exp(−m1/3)) as before. For all other values of k, we replace the binomial coefficient

according to Lemma 2.4.6 by

�

2m
m−τh,k

�

=
4m

p
πm

exp
�

−
τ2

h,k

m

��

1+O
�1+τh,k

m

��

.

Note here that

τh,k =
(h+ 1)(2k+ 1)

2
=

h
2
(2k+ 1)

�

1+O
�1

h

��

,

and likewise
τ2

h,k

m
=

h2(2k+ 1)2

2n

�

1+O
�1

h
+

1
n

��

.

It follows that

τh,k

m
exp

�

−
τ2

h,k

m

�

=
h(2k+ 1)

n
exp

�

−
h2(2k+ 1)2

2n

��

1+O
�1

h
+

hk2 + 1
n

��

.

We are assuming that τh,k ≤ m2/3 = ((n + 1)/2)2/3, which implies hk2/n = O(n1/3/h). In

view of our assumptions on h, this means that the error term is O(n−1/6
p

log n). Thus we

have

p(h)n = p(h)2m−1 =
4
p

2h
p
πn3

×
∑

k≥0
τh,k≤((n+1)/2)2/3

(−1)k(2k+ 1)exp
�

−
h2(2k+ 1)2

2n

��

1+O
�

p

log n
n1/6

��

+O
�

n exp(−(n/2)1/3)
�

.

Adding all terms τh,k > m2/3 = ((n+ 1)/2)2/3 back only results in a negligible contribution

that decays faster than any power of n again, but we need to be careful with the O-term

inside the sum, as we have to bound the accumulated error by the sum of the absolute

values. We have
∑

k≥0

(2k+ 1)exp
�

−
h2(2k+ 1)2

2n

�

= O(n/h2),

which can be seen e.g. by approximating the sum by an integral (or by means of the Mellin

transform again), so

p(h)n =
4
p

2h
p
πn3

∑

k≥0

(−1)k(2k+ 1)exp
�

−
h2(2k+ 1)2

2n

�

+O
�

p

log n
hn2/3

�

=
4
p

2η
p
πn

∑

k≥0

(−1)k(2k+ 1)exp
�

−
h2(2k+ 1)2

2n

�

+O
� log n

n7/6

�

.
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Since pn =
Æ

π
2n(1+O(n−1)), this yields

p(h)n

pn
=

8η
π
p

n

∑

k≥0

(−1)k(2k+ 1)exp
�

−
η2(2k+ 1)2

2

�

+O
� log n

n2/3

�

=
2φ(η)
p

n
+O

� log n
n2/3

�

.

We still have to show that this is a valid representation, i.e. 2φ(η)p
n has to be the dominant

contribution and may not be absorbed by the O-term. First, let us assume η≥ 1.

Note that (2k+ 1)exp
�

− η2(2k+1)2

2

�

is a monotonously decreasing sequence in k: we have

(2k+ 1)exp
�

−
η2(2k+ 1)2

2

�

≥ (2k+ 3)exp
�

−
η2(2k+ 3)2

2

�

⇐⇒
2k+ 1
2k+ 3

≥ exp(−η2(4k+ 4)),

which is valid because the sequence on the left-hand side is increasing, while the sequence

on the right-hand side is decreasing, as well as because the inequality holds for k = 0.

Thus, the sum
∑

k≥0(−1)k(2k+1)exp
�

− η2(2k+1)2

2

�

is an alternating sum where the Leibniz

criterion can be applied. Therefore, the estimate
∑

k≥0

(−1)k(2k+ 1)exp
�

−
η2(2k+ 1)2

2

�

≥ exp
�

−
η2

2

�

− 3exp
�

−
9η2

2

�

= exp
�

−
η2

2

��

1− 3 exp(−4η2)
�

= Ω
�

exp
�

−
η2

2

��

holds. By our assumptions on η we find that the sum can be bounded from below by

Ω(exp(−(log n)/8)) = Ω(n−1/8), which causes a lower bound of Ω
�

1

n5/8
p

log n

�

for 2φ(η)p
n . This

means that the first term indeed dominates the error term in this case.

For η < 1, we use the alternative representation (2.31). By applying the same estimate

from the argument with the alternating series above, we find that the sum can be bound

below by Ω(n−π
2/72). This gives an overall bound of

2φ(η)
p

n
= Ω

�

n−π
2/72

η2
p

n

�

= Ω

�

1

n
π2+36

72 log n

�

,

which lets us draw the same conclusion as above since (π2 + 36)/72< 2/3.

Remark.

As stated in the introduction, the number 2npn gives the number of extremal lattice paths on

Z—and thus, with the asymptotic expansion of pn, we also have an asymptotic expansion

for the number of extremal lattice paths on Z of given length.

This concludes our analysis of admissible random walks on N0. In the next section, we

investigate admissible random walks on Z.
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2.4.3 Ballot Sequences and Admissible Random Walks on Z
In principle, the approach we follow for the analysis of the asymptotic behavior of admissible

random walks on Z is the same as in the previous section. However, due to the different

structure of (2.18), some steps will need to be adapted.

With the notation of Lemma 2.4.6, we are able to express q2m−2 for a half-integer m ∈ 1
2N

with m≥ 1 as

q2m−2 ∼
4
p

mπ
1

2m− 1

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
exp

�

−
υ2

h,k

m

� ∑

`, j≥0

c`, j
υ

2 j
h,k

m`
. (2.32)

In analogy to our investigation of admissible random walks onN0, we also want to determine

the expected height and variance of admissible random walks. These are related to the

random variable eHn, which we defined by

P( eHn = h) =
q(h)n

qn
.

To make things easier, we will investigate moments of the form E( eHn + 2)r . They can be

computed by

E( eHn + 2)r =
∑

h≥0

(h+ 2)rP( eHn = h) =

∑

h≥0(h+ 2)rq(h)n

qn
.

Therefore, we are interested in the asymptotic contribution of

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
υ

2 j
h,k(h+ 2)r exp

�

−
υ2

h,k

m

�

,

which is discussed in the following lemma.

Lemma 2.4.9.

Let K > 0 be fixed. Then we have the asymptotic expansion

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
exp

�

−
υ2

h,k

m

�

=
p

mπ
4
+O(m−K). (2.33)

For j ∈ N we have

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
υ

2 j
h,k exp

�

−
υ2

h,k

m

�

=
� log m

2
+ 2γ+ log2+

1
2
ψ
�

j +
1
2

�

+
1
2 j
+ ¹m 6∈ Nº · (2 log 2− 2)

�

×
j
2
Γ
�

j +
1
2

�

m j+1/2 +O(m−K) (2.34)
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where ψ(s) is the digamma function. Finally, for j ∈ N0, r ∈ N we find

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
υ

2 j
h,k(h+ 2)r exp

�

−
υ2

h,k

m

�

= jΓ
�

j +
1
2

�

κ2m(1− r)m j+1/2

+
1
2

�

j +
r
2

�

Γ
�

j +
r + 1

2

�

(2r+1 − 1)ζ(r + 1)m j+(r+1)/2 +O(m−K), (2.35)

where κ2m(s) = 2−sζ(s) for m ∈ N and κ2m(s) = (1− 2−s)ζ(s)− 1 otherwise.

Proof. Let j, r ∈ N0. We want to analyze the sum

∑

h,k≥0
h≡2m mod 2

2υ2
h,k −m

m
υ

2 j
h,k(h+ 2)r exp

�

−
υ2

h,k

m

�

asymptotically, where m is a half-integer in 1
2N with m≥ 1.

In analogy to the proof of Lemma 2.4.7, we substitute x−2 = m, so that the sum becomes

f (x) :=
∑

h,k≥0
h≡2m mod 2

(2x2υ2
h,k − 1)υ2 j

h,k(h+ 2)r exp(−υ2
h,k x2)

= 2x2
∑

h,k≥0
h≡2m mod 2

υ
2 j+2
h,k (h+ 2)r exp(−υ2

h,k x2)−
∑

h,k≥0
h≡2m mod 2

υ
2 j
h,k(h+ 2)r exp(−υ2

h,k x2)

=: 2x2 f1(x)− f2(x).

Both f1 and f2 are harmonic sums, and we determine their Mellin transforms as we did

earlier in the proof of Lemma 2.4.7. By elementary properties of the Mellin transform, we

know that f ∗(s) = 2 f ∗1 (s+ 2)− f ∗2 (s). Let Λ1 and Λ2 be the Dirichlet series associated with

the harmonic sums f1(x) and f2(x), respectively. We find

Λ1(s) =
∑

h,k≥0
h≡2m mod 2

υ
2 j+2−s
h,k (h+ 2)r = 2s−(2 j+2)

∑

h,k≥0
h≡2m mod 2

(h+ 2)2 j+2+r−s(2k+ 1)2 j+2−s

= (2s−(2 j+2) − 1)ζ(s− (2 j + 2))
∑

h≥0
h≡2m mod 2

(h+ 2)2 j+2+r−s.

We investigate the sum over h separately, and obtain

κ2m(s) :=
∑

h≥0
h≡2m mod 2

(h+ 2)−s =







2−sζ(s) for m ∈ N,

(1− 2−s)ζ(s)− 1 for m 6∈ N.
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Therefore, we find the Mellin transform of the first harmonic sum to be

f ∗1 (s) =
1
2
Γ
� s

2

�

Λ1(s) =
1
2
Γ
� s

2

�

(2s−2 j−2 − 1)ζ(s− 2 j − 2)κ2m(s− (2 j + r)− 2).

The Mellin transform of the second sum can be found in a completely analogous way: we

have

f ∗2 (s) =
1
2
Γ
� s

2

�

(2s−2 j − 1)ζ(s− 2 j)κ2m(s− (2 j + r)).

Altogether, this yields the Mellin transform

f ∗(s) = 2 f ∗1 (s+ 2)− f ∗2 (s)

=
s− 1

2
Γ
� s

2

�

(2s−2 j − 1)ζ(s− 2 j)κ2m(s− (2 j + r)).

As in the proof of Lemma 2.4.7, the growth conditions necessary for application of the

converse mapping theorem (Theorem 1.3.13) hold.

In order to analyze the poles of f ∗(s), we need to distinguish three cases, as ζ(s−2 j) has a

simple pole at s = 2 j+1 and κ2m(s− (2 j+ r)) has a simple pole at s = 2 j+ r +1. The poles

of Γ (s/2) at even s ≤ 0 are canceled by the zeros of ζ(s−2 j), unless s = j = 0. In that case,

the pole is canceled by the factor (2s−2 j − 1).

First, let r = j = 0. Then, f ∗(s) has a simple pole at s = 1, because one of the poles of ζ(s)
or κ2m(s) cancels against the zero of (s − 1). Here, the residue of f ∗(s) is given by

p
π/4,

which translates to a contribution of
p

mπ/4. This proves (2.33).

Second, for r = 0 and j > 0, the function f ∗(s) has a pole of order 2 at s = 2 j + 1. By

expanding all the occurring functions, we find the Laurent expansion

f ∗(s)�







j
2Γ
�

j + 1
2

�

�

1
(s−(2 j+1))2 +

1
2ψ( j+

1
2 )+2γ+log 2+ 1

2 j

s−(2 j+1)

�

+O(1) for m ∈ N,

j
2Γ
�

j + 1
2

�

�

1
(s−(2 j+1))2 +

1
2ψ( j+

1
2 )+2γ+3 log2−2+ 1

2 j

s−(2 j+1)

�

+O(1) for m 6∈ N,

where ψ(s) is the digamma function (cf. [11, 5.2.2], see [11, §5.4(ii)] for special values).

As the pole of order 2 contributes the factor 1
2 m j+1/2 log m, and the pole of order 1 gives

m j+1/2, (2.34) is proved.

Finally, consider r > 0. In this case we have two separate single poles at s = 2 j + 1 and

s = 2 j + r + 1. Computing the residues gives the growth contribution

jΓ
�

j +
1
2

�

κ2m(1 − r)m j+1/2 +
�

j +
r
2

�

Γ
�

j +
r + 1

2

��

2r −
1
2

�

ζ(r + 1)m j+(r+1)/2,

which proves (2.35).

Fortunately, when explicitly computing the expansion all the logarithmic terms cancel out

and we obtain the same behavior for admissible paths of even and odd length. The following

theorem summarizes our findings.

http://dlmf.nist.gov/5.2.E2
http://dlmf.nist.gov/5.4.ii
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Theorem 2.4.10 (Asymptotic analysis of admissible random walks on Z).
The probability that a random walk on Z is admissible has the asymptotic expansion

qn =
1
n
−

4
3n2
+

88
45n3

−
976

315n4
+

3488
675n5

−
276928
31185n6

+O
� 1

n7

�

. (2.36)

The expected height of admissible random walks on Z is given by

E eHn =
p

2π3

4

p
n− 2+

3
p

2π3

16
p

n
−

539
p

2π3

5760
p

n3
+

50713
p

2π3

483840
p

n5
+O

� 1
p

n7

�

, (2.37)

where
p

2π3/4≈ 1.96870, and the variance of eHn can be expressed as

V eHn =
28ζ(3)−π3

8
n+

224ζ(3)− 9π3

48
−

1792ζ(3)− 67π3

2880n

+
107520ζ(3)− 4189π3

120960n2
+O

� 1
n3

�

, (2.38)

where (28ζ(3)−π3)/8≈ 0.33141. Generally, the r-th moment is asymptotically given by

E eH r
n ∼

r
p
π
Γ
� r + 1

2

�

(2r+1 − 1)2−r/2ζ(r + 1)nr/2. (2.39)

Moreover, if η= h/
p

n satisfies 6/
p

log n< η <
p

log n/2, we have the local limit theorem

[46]

P( eHn = h) =
q(h)n

qn
∼

2χ(η)
p

n
=

4
p

2
p
πn

∑

k≥0

((2k+ 1)2η2 − 1)exp
�

−
(2k+ 1)2η2

2

�

(2.40)

=
4π2

η3
p

n

∑

k≥1

(−1)k−1k2 exp
�

−
π2k2

2η2

�

. (2.41)

Proof. Overall, the strategy of the proof is the same as in Theorem 2.4.8. The asymptotic

expansions were again computed with the help of SageMath [45], and corresponding Sage-

Math code can be found in Appendix A.

The equality of (2.40) and (2.41) can again be seen after applying the Poisson summation

formula, Theorem 1.3.2. Note that like before, due to symmetry we can write

∑

k≥0

((2k+ 1)2η2 − 1)exp
�

−
(2k+ 1)2η2

2

�

=
1
2

∑

k∈Z

((2k+ 1)2η2 − 1)exp
�

−
(2k+ 1)2η2

2

�

.

Thus, the function of interest for the Poisson summation formula is f (x) = ((2x + 1)2η2 −
1)exp

�

− (2x+1)2η2

2

�

, which has Fourier transform

f̂ (t) =
p

2π5

2η3
t2 exp(iπ(t − 1))exp

�

−
π2 t2

2η2

�

.
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For integers k ∈ Z, this evaluates to f̂ (k) =
p

2π5

2η3 (−1)k−1k2 exp
�

− π2k2

2η2

�

which (taking into

account the symmetry f̂ (k) = f̂ (−k) and f̂ (0) = 0) proves the equality of (2.40) and (2.41).

The proof of the local limit law is similar to before—however, a few details differ. Note that

because τh,k = (h + 1)(2k + 1)/2 and υh,k = (h + 2)(2k + 1)/2 differ only marginally, we

may follow the corresponding deliberations from the proof of Theorem 2.4.8 up to the point

where we have

q(h)n = q(h)2m−2 =
4
p

2
p

π(n+ 2)

×
∑

k≥0
υh,k≤((n+2)/2)2/3

(h+ 2)2(2k+ 1)2 − (n+ 2)
(n+ 1)(n+ 2)

exp
�

−
h2(2k+ 1)2

2n

��

1+O
�

p

log n
n1/6

��

+O
�

n exp(−(n/2)1/3)
�

.

Again, adding back all terms for which we have υh,k > ((n + 2)/2)2/3 results in a negligi-

ble contribution that decays faster than any power of n. The error within the sum can be

handled by investigating the contribution of the dominating sum

∑

k≥0

(h+ 2)2(2k+ 1)2 + (n+ 2)
(n+ 1)(n+ 2)

exp
�
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h2(2k+ 1)2
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2n
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.

By using the Mellin transform it is easy to see that

∑

k≥0
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−
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= O
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,

∑
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exp
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= O
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p
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.

Overall, this means that we obtain

q(h)n =
4
p

2
p
πn3

∑

k≥0

((2k+ 1)2η2 − 1)exp
�

−
(2k+ 1)2η2
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+O
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,

and therefore

q(h)n

qn
=

4
p

2
p
πn
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k≥0

((2k+ 1)2η2 − 1)exp
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−
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=
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Now all that remains to show is that 2χ(η)p
n in fact is the dominant term and is not absorbed

by the O-term.

First, assume η≥ 3
2 . As all the summands in

∑

k≥0

((2k+ 1)2η2 − 1)exp
�

−
(2k+ 1)2η2

2

�

are obviously positive, the sum can be bound from below by Ω(exp(−η2/2)). Because we

assume η <
p

log n/2, this bound can be simplified to Ω(n−1/8). Overall, we obtain a bound

of Ω( 1
n5/8 ), which shows that the first term actually is the dominant term.

For η < 3
2 , we use the representation from (2.41). It is easy to see, that the series is once

again an alternating series where the Leibnitz criterion can be applied, and thus the estimate

∑

k≥1

(−1)k−1k2 exp
�

−
π2k2

2η2

�

≥ exp
�

−
π2

2η2

�

− 4exp
�

−
4π2

2η2

�

= exp
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−
π2

2η2

��

1− 4 exp
�

−
3π2

2η2

��

= Ω
�

exp
�

−
π2

2η2

��

holds. By taking into account that we assume 6/
p

log n< η, we find that

2χ(η)
p

n
= Ω

�

n−π
2/72

η3
p

n

�

= Ω

�p

(log n)3

n
36+π2

72

�

,

which dominates the error term because of (36+π2)/72< 2/3. This proves the local limit

law.

Remark.

As every simple symmetric random walk of length n on Z occurs with probability 2−n, we

know that the number of admissible random walks on Z is 2nqn. Thus, an asymptotic ex-

pansion for the number of admissible random walks follows directly from (2.36) upon mul-

tiplication by 2n. This is sequence A167510 in [34].

Furthermore, in the introduction we illustrated that admissible random walks are strongly

related to bidirectional ballot sequences. Since every bidirectional ballot sequence of length

n+ 2 corresponds to an admissible random walk of length n on Z (i.e., Bn = 2n−2qn−2), we

are able to prove Zhao’s conjecture that was mentioned in the introduction.

Corollary 2.4.11 (Bidirectional ballot walks).

The number of bidirectional ballot walks Bn of length n can be expressed asymptotically as

Bn = 2n
� 1

4n
+

1
6n2
+

7
45n3

+
10

63n4
+

764
4725n5

+
4952

31185n6

�

+O
�2n

n7

�

.

http://oeis.org/A167510


3 Analysis of Trees

3.1 Introduction
Trees—acyclic connected graphs—are one of the most important discrete structures. Like

lattice paths, their applications span across many areas of research; for example Biology

and Life Sciences (where Galton-Watson trees1 are used to model branching processes, cf.

[31]), and especially computer science: within computer science, trees are a fundamental

concept for data structures as well as for algorithms (see [30] for some examples).

The aim of this chapter is to introduce some basic classes of trees, as well as to analyze

these classes based on the tools discussed in Chapter 1. The results of these discussions are

important for the real-world applications: for instance, precise information on some data

structure allows to study the performance of algorithms that act on such a structure.

We begin by introducing some fundamentals that are used within this chapter.

Definition 3.1.1 (Trees and related concepts).

An undirected graph F = (V, E)with vertices V and edges E is said to be a forest if F contains

no cycles.

The components of a forest are called trees. In particular, this means that trees are acyclic,
connected graphs. Two trees T = (V, E) and T ′ = (V ′, E′) are isomorphic, if there is a bijective

map f : V → V ′ such that if e = {v1, v2} ∈ E, we also have f (e) := { f (v1), f (v2)} ∈ E′

(i.e. the bijection is consistent with respect to the edges). The function f is also called an

isomorphism. When counting trees, we usually count them up to isomorphism, meaning that

isomorphic trees are only counted once.

A labeling of a tree T = (V, E) is a bijective map `: V → {1,2, . . . , |V |}. A graph with a

labeling ` is called labeled graph. Two labeled graphs are isomorphic, if their underlying

unlabeled graphs are isomorphic and their labelings coincide.

And finally, if two vertices in a tree T are joined by an edge, then the vertices are called

adjacent. The degree of a vertex v, deg v, counts the number of adjacent vertices. Vertices

1A lot of (mathematical) research is currently happening around Galton-Watson trees. See [12, Section 4.4.5]
for an introduction.
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with degree 0 or 1 are called external nodes or leaves, all other nodes are called internal
nodes.

This definition is illustrated by Figure 3.1: F is a forest consisting of three trees (T1, T2,

T3). While T1 and T3 represent the same tree, T2 is different. Furthermore, T4, T5, and T6

are labeled trees: T4 and T5 are equal, but the labeling of T6 is different (observe that the

degree for the node with label 4 is 2, instead of 3 as for T4 and T5).

T1 T2 T3
F

1

2

34

56

T4

1 2

3

45 6

T5

6 5

4

2 13

T6

Figure 3.1: Illustration of Definition 3.1.1

Also, observe that not every labeling of a tree induces a distinct labeled tree: swapping the

labels 5 and 6 in T5 yields two different embeddings of the same labeled tree!

Essentially, the structure of directories on any computer can be interpreted as a tree. How-

ever, this tree possesses additional structure because all folders are seen relative to the

uppermost entry, the root. In fact, this structure corresponds to so-called rooted trees.

Definition 3.1.2 (Rooted trees).

A rooted tree is a structure (V, E, r) where T = (V, E) is a tree and r is some vertex in V .

This particular vertex r is said to be the root of the tree.

The introduction of a root node simultaneously induces a direction on the tree: as every

two vertices in a tree are connected by a unique path, every vertex has a fixed distance

to the root. This distance is also called the height, the depth or the level of a node, which

we denote as d(v). Note that obviously, we have d(r) = 0. Then, for some vertex v ∈ V
with d(v) = k, we call an neighbor on level k + 1 successor, and a neighbor on level k − 1
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r

r

Level 1

Level 2

Level 3

Figure 3.2: Structure of rooted trees

predecessor. Obviously, a vertex can have multiple successors, but only one predecessor. The

structure induced by selecting a root node is illustrated in Figure 3.2.

Sometimes it also makes sense to distinguish between the various embeddings of a tree in

the plane. This leads to the concept of (rooted) plane trees, where every vertex in a rooted

tree is equipped with an additional “left-to-right” order for its successors. For example, the

rooted trees depicted in Figure 3.3 are equal (as they only differ in their embedding), but

when interpreting them as rooted plane trees, they are distinct. Note that in Section 3.2 we

will explore a profound connection between simple excursions (i.e. Catalan or Dyck paths)

and rooted plane trees.

Figure 3.3: Two distinct rooted plane trees

Essentially, this is all the terminology we need in order to construct the special classes of

trees that we will investigate within this chapter.

In Section 3.2 we will introduce a technique (“Lagrange inversion”) as well as an extension

to Singularity Analysis from Section 1.3.1; two methods that are especially useful when it

comes to the analysis of trees. Afterwards, with the help of these results, the growth of

several special classes of trees is discussed both from an exact and an asymptotic point of

view. This section is mainly based on [12] and [17, Section I.5].
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And finally, Section 3.3 revisits the results of [28], where the average number of deepest nodes
in rooted plane trees is investigated.

3.2 Basic Tree Enumeration
Virtually all important algorithms that operate on trees (like traversing a tree, searching

something in a tree, deleting a vertex from a tree etc.) are formulated and implemented

recursively. This is because the structure of trees is predestined for a recursive approach: for

instance, when considering rooted trees, then every successor of the root can be considered

as the root of a sub-tree.

This nice property of trees also has consequences when it comes to generating functions:

consider the generating function T (z) modeling the growth of some special class of trees

(with respect to the number of vertices of the trees). Then, either T (z) or a very simple

transformation of T (z) fulfills a functional equation of the form T (z) = zΦ(T (z)), where Φ

is a suitable power series.

We want to demonstrate this fact for the the so-called binary trees, as well as for Motzkin
trees.

Example 3.2.1 (Generating function of binary trees and Motzkin trees).

Binary trees are rooted plane trees where every vertex has either no, or exactly two succes-

sors. In other words, a binary tree is either just a leaf, or an internal node with exactly two

binary trees attached. We are interested in the number of binary trees with respect to the

number of internal nodes.

B = +

B B

Figure 3.4: Binary trees: symbolic equation and example

If B(z) denotes the generating function for binary trees, then by the recursive definition from

above the equation B(z) = 1 + zB(z)2 can be inferred by means of the symbolic method

from Section 1.2: in fact, the combinatorial class of binary trees can be constructed as

B = {�}+ {•} ×B2 (where � and • represent a leaf and an inner node, respectively). This

is also illustrated in Figure 3.4.
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Instead of investigating B(z), we consider B̃(z) := B(z)− 1 and find

B̃(z) = z(1+ B̃(z))2 = zΦ(B̃(z))

with Φ(u) = (1+ u)2.

Of course, we can alternatively also investigate the number of binary trees with respect to

the number of all nodes: In this case, we have the construction B• = {•} + {•} × B2
• such

that we obtain the functional equation B•(z) = z + zB•(z)2 = zΦ(B•(z)) for the generating

function where Φ(u) = 1+ u2.

A very similar situation occurs when investigating Motzkin trees. These are rooted plane

trees where every node has at most two successors. In this case, we are interested in the

number of Motzkin trees with respect to the number of overall nodes. Similarly to the

number of binary trees, the combinatorial class of Motzkin trees where the size is the number

of nodes in the tree can be constructed as M• = {•}+ {•} ×M• + {•} ×M2
• (because, like

above, a Motzkin tree is either a leaf, or an inner vertex with one or two Motzkin trees

attached). Thus, the generating function fulfills

M•(z) = z + zM•(z) + zM•(z)
2 = z(1+M•(z) +M•(z)

2) = zΦ(M•(z)),

where Φ(u) = 1+ u+ u2. 4

The generating functions of all of the classes we want to discuss admit a functional equation

of the form T (z) = zΦ(T (z)). This motivates the following investigations.

3.2.1 Exact results: Lagrange inversion
Basically, the technique of Lagrange inversion corresponds to integration by substitution—

which is also used to prove the result. It provides an explicit representation of the coeffi-

cients of an implicitly defined generating function. However, before we explain Lagrange

inversion in detail, we first prove an auxiliary result.

Lemma 3.2.2 (Analytic inversion, [17, Lemma IV.2]).
Let F : C→ C be a function that is analytic in a neighborhood of y0 ∈ C, and define z0 :=
F(y0). Then the following holds:

(a) If F ′(y0) 6= 0, then there is a function g(z) that is analytic in some neighborhood V of

z0 such that F ◦ g ≡ idV holds on V .

(b) Otherwise, if F ′(y0) = · · · = F (m−1)(y0) = 0 and F (m)(y0) 6= 0, then for all ϑ ∈ [0, 2π)
there are distinct functions g1(z), . . . , gm(z) that are analytic in

V = {z ∈ C | |z − z0|< r and Arg(z − z0) 6= ϑ}

for some r > 0, such that F ◦ g j ≡ idV holds on V for all j ∈ {1,2, . . . , m}.
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Proof. We follow the sketch given in [17, Proof of Lemma IV.2]. Because of F(y0) = z0 and as

zeros of analytic functions are isolated, there is a neighborhood U of y0 such that F(y) 6= z0

for all y ∈ U \{y0}. In particular, we can choose a r > 0 such that F(y) 6= z0 for y satisfying

|y − y0| = r. Additionally, as z0 is not an element of the closed set {F(y) | |y − y0| = r},
there is a neighborhood V of z0 such that F(y) 6= z for z ∈ V and |y − y0|= r.

This allows us to define the functions σk(z) := 1
2πi

∮

|y−y0|=r
F ′(y)

F(y)−z yk d y for k ∈ {0,1}. Fur-

thermore, because the functions σk are defined as integrals of continuous functions over a

compact set, they are continuous as well—and by fundamental theorems from (complex)

analysis, it can be shown that the σk are even analytic: with Morera’s theorem in mind,

we investigate the integral of σk(z) over some triangle in the complex plane. By Fubini’s

theorem, we are allowed to interchange the integrals—and by Cauchy’s theorem, the inner

integral is 0. Thus, by Morera’s theorem, the functions σk are analytic.

Now, using the argument principle, we find

σ0(z) =
1

2πi

∮

|y−y0|=r

F ′(y)
F(y)− z

d y = m(y, z) ∈ Z,

where m(y, z) denotes the order of y as a zero of F(y)− z. Because we already proved that

σ0 is continuous, it has to be constant on V as it additionally only assumes values in Z.

The value of σ1 can be found with the help of the residue theorem: we find

σ1(z) =
∑

y∈C
|y−y0|<r
F(y)=z

m(y, z)y.

In (a), we assumed that y0 is a simple zero of F(y) = z0, which yields σ0(z0) = 1, and thus

also σ0 ≡ 1 on V . By setting g(z) := σ1(z), we find g(z) = y for F(y) = z in V—which

proves (a).

For (b), we use a similar trick: assume that the neighborhood of y0 is chosen sufficiently

small such that F ′(y) 6= 0 for all y ∈ U \ {y0}. Now, as y0 is a zero of order m, we find

σ0 ≡ m, meaning there have to be m distinct zeros in the disk with radius r. By using the

statement from (a) for each of those zeros, we obtain m (locally defined) functions g1, . . . ,

gm. Locally, these functions act as inverse functions of F—and by analytic continuation onto

the simply connected domain V = {z ∈ C | |z − z0| < r and Arg(z − z0) 6= ϑ}, we obtain the

statement from (b).

This is everything we need to prove the following theorem.

Theorem 3.2.3 (Lagrange Inversion Theorem, [17, Theorem A.2]).
Let Φ, H ∈ C¹uº be formal power series with ϕ(0) 6= 0 and H not a constant. Then there is a
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unique formal power series y ∈ C¹zº that fulfills the functional equation y(z) = zΦ(y(z)).
For n> 0, we find

[zn]H(y(z)) =
1
n
[un−1]H ′(u)Φ(u)n,

and in particular

[zn]y(z) =
1
n
[un−1]Φ(u)n. (3.1)

Proof. We follow the idea in [17, Proof of Theorem A.2], meaning that at first we interpret

the occurring power series as formal power series in order to show existence and uniqueness

of a power series y(z). Afterwards, they are considered as analytic objects again.

In order to show that y(z) exists and is uniquely determined, let Φ(u) =
∑

j≥0ϕ ju
j with

ϕ j ∈ C for j ≥ 0 and ϕ0 6= 0. By making the ansatz y(z) =
∑

j≥1 y jz
j, we find y(z) =

z(ϕ0 +O(z)) = ϕ0z +O(z2), which yields y1 = ϕ0. Iterating this approach yields

y(z) = z(ϕ0 +ϕ1(ϕ0z +O(z2)) +O(z2)) = ϕ0z +ϕ0ϕ1z2 +O(z3),

that is y2 = ϕ0ϕ1. Iteratively, the coefficients of y(z) can be determined uniquely—which

means that y(z) itself exists and is uniquely determined.

From now on, the power series are interpreted as analytical objects again. Without loss of

generality, for determining [zn]y(z) we may assume that the functions Φ(u) and H(u) are

polynomials of degree n (higher powers are not used anyhow); in particular we may assume

that Φ(u) and H(u) are entire functions.

In order to show analyticity of y(z), consider the inverse function ψ(u) := u
Φ(u) . Because

of ψ′(u) = Φ(u)−uΦ′(u)
Φ(u)2 , we find ψ′(0) = 1

Φ(0) =
1
ϕ0
6= 0. By the analytic inversion lemma

(Lemma 3.2.2), this implies that y(z) is analytic in some neighborhood of z0 = 0. With

Cr := {z ∈ C | |z|= r} and Cauchy’s integral formula, we find

[zn]H(y(z)) =
1
n
[zn−1](H(y(z)))′ =

1
n

1
2πi

∮

Cr

(H(y(z))′

zn
dz =

1
n

1
2πi

∮

Cr

H ′(y(z))
�

y(z)
Φ(y(z))

�n y ′(z) dz,

which, by substituting y(z) = u and y ′(z) dz = du, yields

1
n

1
2πi

∮

y(Cr )

H ′(u)Φ(u)n

un
du=

1
n
[un−1]H ′(u)Φ(u)n

by Cauchy’s integral formula and the fact that the contour y(Cr) still winds around the

origin once (which is an implication of the inequality |y(z)−ϕ0z|< |ϕ0z| for |z|= r and r
sufficiently small). Finally, (3.1) can be obtained by choosing H(u) = u.

Examples for applications of Theorem 3.2.3 are given after discussing a method for obtaining

the asymptotic behavior.



3.2 Basic Tree Enumeration 83

3.2.2 Asymptotic results: Singularity Analysis
Recall that Singularity Analysis essentially extracts information on the growth of a counting

sequence by investigating the nature of the dominant singularities of its generating function,

i.e. the singularities that are closest to the origin.

Ideally, we would like to apply these methods from Section 1.3.1 to a function that is de-

termined by a functional equation of the form y(z) = zΦ(y(z)). As it turns out, this can be

done by explicitly constructing a Puiseux expansion of y(z) and then applying Singularity

Analysis to this expansion.

However, first of all we need to learn more about the location of the dominant singularity,

i.e. we need to investigate the radius of convergence of y(z).

Lemma 3.2.4 ([17, Proposition IV.5]).
Let Φ ∈ C¹uº be analytic around 0 with radius of convergence R > 0 such that Φ is not of

the form Φ(u) = a0 + a1u. Furthermore, assume that all coefficients of Φ are non-negative

with Φ(0) 6= 0. Then, if there is a τ ∈ (0, R) such that τΦ
′(τ)
Φ(τ) = 1 holds, the function defined

implicitly by y(z) := zΦ(y(z)) is determined uniquely and has radius of convergence r =
τ
Φ(τ) .

Proof. Analogously to the proof of Theorem 3.2.3 we can show that y(z) is analytic in a

neighborhood of z = 0. Assume that r > 0 is the corresponding radius of convergence. Fur-

thermore, by the same procedure as in the proof of Theorem 3.2.3, we can show inductively

that all coefficients in the power series expansion of y are non-negative, which causes y to

be increasing on the interval (0, r). Now we want to show that y(r) = τ.

First, assume y(r) < τ, and let x ∈ (0, r). Note that by using the non-negativity of the

variance of the random variable S defined via

P(S = k) =
ϕk x k

Φ(x)
,

we can show that the function x 7→ xΦ′(x)
Φ(x) is strictly increasing on (0, r). Together with the

assumption, this yields
y(r)Φ′(y(r))
Φ(y(r))

<
τΦ′(τ)
Φ(τ)

= 1.

This shows that ψ′(y(r)) 6= 0, which (due to Lemma 3.2.2) results in y being analytic in a

neighborhood of r. This contradicts Pringsheim’s theorem, which states that a power series

with non-negative coefficients and radius of convergence r has a singularity at r.

Alternatively, assume y(r) > τ. In this case, as we know that because y is increasing and

continuous on (0, r) with y(0) = 0, there has to be a z0 ∈ (0, r) such that y(z0) = τ.

However, this implies ψ′(y(z0)) = ψ′(τ) = 0. Hence, y is not analytic near z0—which is a

contradiction because z0 < r is within the disc of absolute convergence.
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Therefore, y(r) = τ has to hold, which means r =ψ(τ) = τ
Φ(τ) . This proves the lemma.

The first step is already achieved: we know that the singularities we are interested in have

modulus r = τ
Φ(τ) . All that remains now is finding a suitable expansion and applying Singu-

larity Analysis. This is done in the following theorem.

Theorem 3.2.5 (Singular Inversion, [17, Theorem VI.6]).
With the assumptions of Lemma 3.2.4, the singular expansion of y(z) near r has the form

y(z) = τ−

√

√2Φ(τ)
Φ′′(τ)

Æ

1− z/r +
∑

j≥2

(−1) jd j(1− z/r) j/2 (3.2)

where the d j are computable constants. Under the assumption that Φ is p-periodic (i.e. p is

the largest integer such that Φ can be written as Φ(z) = zb g(zp) for some b ∈ Z, g ∈ C¹zº),

the coefficients of y(z) are asymptotically given by

[zn]y(z)∼ p

√

√ Φ(τ)
2Φ′′(τ)

r−n

p
πn3

. (3.3)

Sketch of the proof. We sketch the central ideas of this proof for the aperiodic case, i.e. for

p = 1. The periodic case can then be handled by substitution. Details can be found in

Theorem VI.6 as well as Remark VI.17 in [17].

First of all, it can be shown that the aperiodicity of Φ carries over to y . Based on this

aperiodicity, we can show that r is the only dominant singularity of y .

Basically, as ψ(u) = u
Φ(u) is the inverse of y(z), we consider an expansion of ψ around τ.

We already know that ψ′(τ) = 0, thus we need ψ′′(τ). The second derivative is given by

ψ′′(u) = −
uΦ′′(u)
Φ(u)2

− 2
Φ′(u)
Φ(u)2

+ 2
uΦ′(u)2

Φ(u)3
= 2

Φ′(u)
Φ(u)2

�

uΦ′(u)
Φ(u)

− 1
�

−
uΦ′′(u)
Φ(u)2

,

which yields ψ′′(τ) = −τΦ
′′(τ)

Φ(τ)2 = −r Φ
′′(τ)
Φ(τ) < 0. By Lemma 3.2.2, this means that there

are 2 analytic solutions to y(z) = zΦ(y(z)) in a slitted neighborhood of r, one of which

corresponds to the y(z) we have constructed for |z|< r.

Then, the singular expansion of ψ around z = r gives

r − z =ψ(τ)−ψ(y(z)) =ψ(τ)−
�

ψ(τ) +
ψ′′(τ)

2
(y(z)−τ)2 +O((y(z)−τ)3)

�

= r
Φ′′(τ)
2Φ(τ)

(y(z)−τ)2
�

1+ d̃2(y(z)−τ) +O((y(z)−τ)2)
�

.

Hence we find

(y(z)−τ)2 =
2Φ(τ)
Φ′′(τ)

�

1−
z
r

�

�

1− d̃2(y(z)−τ) +O((y(z)−τ)2)
�

.
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After applying the square root, we still have to decide for a branch of the square root—and

by recalling y(z)−τ < 0 for z ∈ (0, r) we choose the negative branch. Overall, this yields

y(z) = τ−

√

√2Φ(τ)
Φ′′(τ)

Æ

1− z/r

�

1−
d̃2

2
(y(z)−τ) +O((y(z)−τ)2)

�

. (3.4)

Iteratively substituting the left-hand side of (3.4) into the right-hand side proves (3.2).

Finally, (3.3) follows from applying Singularity Analysis to (3.2).

With Lagrange inversion and this extension of Singularity Analysis at hand, the (exact and

asymptotic) analysis of several basic classes of trees becomes quite mechanical. This is

illustrated in the following section.

3.2.3 Applications
We begin with those trees that we already introduced in Example 3.2.1: binary trees and

Motzkin trees.

Example 3.2.6 (Analysis of binary trees and Motzkin trees).

In Example 3.2.1 we already constructed the combinatorial classes related to binary trees

and Motzkin trees. For binary trees we found the functional equations

B̃(z) = z(1+ B̃(z))2 and B•(z) = z(1+ B•(z)
2)

where B(z) = B̃(z) + 1 and B•(z) enumerate the number of binary trees with respect to the

number of inner nodes and overall nodes, respectively.

With Lagrange inversion, we find

[zn]B̃(z) =
1
n
[un−1](1+ u)2n =

1
n

�

2n
n− 1

�

=
1

n+ 1

�

2n
n

�

= Cn,

that is the number of binary trees with n > 0 inner nodes is precisely the n-th Catalan

number. We already discussed their asymptotic behavior in Example 2.3.3, namely Cn ∼
4n
p
πn3 , and it is no surprise that applying Theorem 3.2.5 gives the same result.

For the sake of completeness, we also analyze B•(z): observe that binary trees always have

an odd number of nodes, meaning that we will only consider the coefficients of odd powers

of B•(z). For those, Lagrange inversion gives

[z2n+1]B•(z) =
1

2n+ 1
[u2n](1+ u2)2n+1 =

1
2n+ 1

�

2n+ 1
n

�

=
1

n+ 1

�

2n
n

�

= Cn.

Again, this is not very surprising considering that by induction it is easy to see that a tree

with n inner nodes has n+ 1 leaves, and thus 2n+ 1 nodes overall.

Motzkin trees can be analyzed analogously: the functional equation

M•(z) = z(1+M•(z) +M•(z)
2)
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for the generating function enumerating the number of Motzkin trees with respect to the

size of the tree (i.e. the number of all nodes) leads to

[zn]M•(z) =
1
n
[un−1](1+ u+ u2)n =: Mn−1

for n > 0. The numbers Mn are called Motzkin numbers, and they are enumerated by

sequence A001006 in [34].

Their asymptotic behavior can be found by means of Theorem 3.2.5: the function Φ(u) =
1 + u + u2 is aperiodic (i.e. p = 1), and the equation τΦ′(τ)

Φ(τ) = 1 has the positive solution

τ = 1. Therefore, the radius of convergence of M•(z) is given by r = τ
ϕ(τ) =

1
3 . Therefore,

(3.3) gives the asymptotic behavior

[zn]M•(z)∼

√

√3
4

3n

p
πn3

,

which translates into Mn ∼
q

27
4

3n
p
πn3 for the Motzkin numbers. 4

The next class of trees we want to investigate more closely is the class of rooted plane trees

itself.

Example 3.2.7 (Analysis of rooted plane trees).

Recall that we already encountered rooted plane trees in Example 1.2.9: there, we already

derived the combinatorial construction T = {•} × T ∗ which translates into the functional

equation T (z) = z · 1
1−T (z) . Thus, with Φ(u) = 1

1−u = 1+ u+ u2 + · · · , we find (by means of

Lagrange inversion)

[zn]T (z) =
1
n
[un−1](1− u)−n =

(−1)n−1

n

�

−n
n− 1

�

=
(−1)n−1

n
(−n)(−n− 1) · · · (−2n+ 2)

(n− 1)!

=
1
n

(2n− 2)!
(n− 1)! (n− 1)!

=
1
n

�

2n− 2
n− 1

�

= Cn−1.

Hence, rooted plane trees can be enumerated by Catalan numbers: there are precisely Cn−1

distinct rooted plane trees with size n. Asymptotically, Theorem 3.2.5 as well as the results

on Catalan numbers from before yield the asymptotic behavior

[zn]T (z)∼
4n

p
16πn3

.

Alternatively, following the approach from Example 1.2.9, we solve the quadratic equation

for T (z) that can be derived from the functional equation, namely T (z)2 − T (z) + z = 0.

This equation has the solutions

1+
p

1− 4z
2

and
1−
p

1− 4z
2

.

https://oeis.org/A001006
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However, only T (z) = 1−
p

1−4z
2 is a valid choice: the other solution gives 1 tree of size 0

(when in fact there are no trees without nodes)—and additionally, the coefficients of zn in

the expansion of 1+
p

1−4z
2 are negative for n≥ 1.

Applying Theorem 1.3.3 to this explicit formula also gives [zn]T (z)∼ 4n
p

16πn3 . 4

Before turning to the next elementary class of trees, we want to shed some more light on

the relation between Catalan paths (i.e. simple excursions, cf. Example 2.3.3) and rooted

plane trees.

Consider some rooted plane tree T . A very common problem in computer science is search-

ing for a record that is stored in some node of T . If T is not sorted in any way, this essentially

reduces to the problem of traversing the tree, i.e. finding a “walk” through all nodes of the

tree.

One approach for traversing such a tree is the so-called depth-first traversal, which can be

described as follows:

(1) Start in the root node r of a rooted plane tree T = (V, E, r).

(2) Visit the first unvisited successor of the current node. If the current node has no

successor, or all successors are marked as visited, then mark the node itself as visited

and go back to the predecessor of your current node (or stop if the current node is the

root itself).

Consider this algorithm on a tree of size n: it is easy to see that every edge of the tree is

visited exactly twice. As a tree of size n has n−1 edges, the algorithm thus terminates after

visiting 2n− 2 nodes. Moreover, tracking the depth of the nodes we visit by traversing the

tree with this strategy generates a Catalan path of length 2n− 2.

Figure 3.5: Bijection between rooted plane trees and Catalan paths

On the other hand, every Catalan path of length 2n− 2 can be interpreted as the result of

the depth-first traversal of a rooted plane tree. This establishes a bijection between Catalan

paths of length 2n−2 and rooted plane trees with n nodes, which is illustrated in Figure 3.5.

This bijection explains why Cn−1, the number of rooted plane trees with n nodes, is equal to
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the number of Catalan paths of length 2n−2. Note that this also justifies that rooted plane

trees are also often called Catalan trees.

Finally, to conclude this basic analysis, we turn to the analysis of labeled trees without differ-

entiating between different embeddings in the plane. Note that these trees are also called

Cayley trees.

Example 3.2.8 (Cayley trees).

For the sake of simplicity, we consider rooted Cayley trees: if L̃n and Ln denote the number of

Cayley trees and rooted Cayley trees, respectively, then the simple relation Ln = nL̃n holds,

because for every Cayley tree of size n there are n possible choices of the root.

Note that we will have to follow a slightly different path for the construction of this la-

beled structure than for the unlabeled structures we investigated so far. First of all, when

enumerating labeled structures, we investigate the exponential generating function of the

form

L(z) =
∑

n≥0

Ln

n!
zn.

Analogue to the framework introduced in Section 1.2, similar construction rules hold for

labeled combinatorial classes and exponential generating functions.

In particular, a Cayley tree is a root node with a set of Cayley trees attached. Because the

trees are labeled, we do not have to consider a multiset; structurally equal trees already

differ because they are labeled differently.

Note that when combining two different labeled structures, duplicate labels have to be

avoided, and thus the combined object has to be relabeled in a way that does not destroy the

underlying structure. We call this consistent relabeling (see [17, Chapter II] for a thorough

introduction to labeled combinatorial classes). Fortunately, the corresponding generating

function is simply the product of the exponential generating functions of the factors.

We want to translate the set construction of a combinatorial class A into an operation on

the corresponding generating function. To do so, we note that the class Set(A) contains

all consistent relabelings of an arbitrary number of objects from A, where the order of the

objects is not taken into account.

It is easy to see that the exponential generating function of all consistent relabelings of k
objects is given by A(z)k. Hence, dividing by k! yields the exponential generating function
A(z)k

k! , which enumerates all sets consisting of k objects from A.

By summing over k in order to obtain arbitrary set size we find

1+ A(z) +
1
2!

A(z)2 +
1
3!

A(z)3 + · · ·=
∑

k≥0

1
k!

A(z)k = exp(A(z)).
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Finally, this allows us to construct the exponential generating function of the class of rooted

Catalan trees L: symbolically, we have L= {•}∗Set(L), where “∗” represents the combina-

torial operation where two labeled classes are combined and relabeled consistently. For the

generating function, this translates to the functional equation

L(z) = z exp(L(z)).

By applying Lagrange inversion, we find

[zn]L(z) =
1
n
[un−1]exp(u)n =

1
n
[un−1]exp(un) =

1
n!

nn−1.

Note that because of [zn]L(z) = 1
n! Ln, the number of rooted Catalan trees is Ln = nn−1.

Thus—as observed above—the number of Catalan trees is L̃n = nn−2, which is Cayley’s

famous formula.

In order to apply Theorem 3.2.5 we observe that for Φ(u) = exp(u) we find τ= 1, p = 1, as

well as r = τ
Φ(τ) = e−1. This yields

[zn]L(z)∼
s

e
2e

en

p
πn3

=
en

p
2πn3

.

By comparing this with the exact result from Lagrange inversion, we find

nn−1

n!
∼

en

p
2πn3

⇐⇒ n!∼
�n

e

�np
2πn,

which is a proof for the main term of Stirling’s approximation for the factorial. 4

3.3 Average Number of Deepest Nodes
In this section we investigate the number of deepest nodes in rooted plane trees. Consider

some data structure where the objects are stored in the leaves of a rooted plane tree. When

some recursive algorithm processes this tree, these deepest nodes are usually handled in

the deepest recursion step—so a precise description of the number of deepest nodes (on

average) is desirable. Essentially, this section is based on [28].

Like in Example 3.2.7, let T denote the combinatorial class of rooted plane trees. The num-

ber of deepest nodes of a tree T ∈ T is the number of nodes that share the same (maximal)

distance from the root, i.e. the nodes on the maximal level of T .

Before thinking about asymptotic expressions, we derive an interesting relation between the

number of rooted plane trees of size n, height at most k, and root degree r (which we will

denote by Bn,k,r)—and the number of rooted plane trees of size n, height k, and r deepest

nodes (denoted by Qn,k,r). This requires us to observe some basic properties of these trees.
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The size-generating function Bk,r(z) :=
∑

n≥0 Bn,k,rz
n of the number of trees with height at

most k and root degree r satisfies a recurrence relation of the form

Bk+1,r(z) = zAk(z)
r ,

where Ak(z) =
∑

n≥0 An,kzn is the generating function of all rooted plane trees with height at

most k. This follows directly from the symbolic method: a tree enumerated by Bn,k+1,r is a

root node with r trees of height at most k attached. Furthermore, the generating functions

Ak(z) can themselves be described via the recurrence relations

A−1(z) = 0, Ak+1(z) =
z

1− Ak(z)
. (3.5)

Here we have A0(z) = z, as there is exactly one tree of size 1 with height 0 (the tree consisting

only of the root), and the recurrence comes from the fact that a rooted plane tree of height

at most k+1 can be seen as a sequence of trees of height at most k attached to a new root.

Following the discussions in [10], the solution of this recurrence is given by

Ak(z) = 2z
(1+

p
1− 4z)k+1 − (1−

p
1− 4z)k+1

(1+
p

1− 4z)k+2 − (1−
p

1− 4z)k+2
.

Next, we want to find a similar recurrence for the bivariate generating function Qk(z, u) :=
∑

n,r≥0 Qn,k,rz
nur , where z and u mark the size of the tree and the number of deepest nodes,

respectively.

Lemma 3.3.1.

The bivariate generating function Qk(z, u) associated to Qn,k,r , the number of rooted plane

trees with n nodes, r deepest nodes, and (fixed) height k fulfills the recurrence relation

Q0(z, u) = zu, Qk+1(z, u) =
Ak(z)Qk(z, u)

1− Ak−1(z)−Qk(z, u)

for k ≥ 0.

Proof. It is easy to see that Q0(z, u) = zu has to hold: the tree with the root as its only vertex

is the only tree of height 0, and this tree has exactly one deepest node.

The recurrence relation itself again follows by the symbolic method: consider a non-empty

sequence of trees enumerated by Qk(z, u) (i.e. trees with height k) and rooted plane trees

whose height is at most k−1. However, at least one tree of height k has to occur. Attaching

such a sequence of trees to a new node yields a tree associated to Qk+1(z, u). Thus, we

obtain

Qk+1(z, u) = z
�

Qk(z, u) + Ak−1(z)
1− (Qk(z, u) + Ak−1(z))

−
Ak−1(z)

1− Ak−1(z)

�

=
zQk(z, u)

(1−Qk(z, u)− Ak−1(z))(1− Ak−1(z))
,

which, together with (3.5), proves the lemma.
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Fortunately, we are able to solve this recurrence—the solution is given in the following

lemma.

Lemma 3.3.2.

For k ≥ 0, the bivariate generating functions Qk(z, u) are given by

Qk(z, u) =
u(Ak−1(z)2 − Ak−1(z) + z)

1− uAk−1(z)
(3.6)

Proof. By means of induction, it is easy to verify that Qk(z, u) actually solves the recurrence

relation from Lemma 3.3.1.

At this point we are able to prove the relation between the numbers Bn,k,r and Qn,k,r men-

tioned above.

Theorem 3.3.3.

For the number of rooted plane trees of size n, root degree r, and height at most k (enu-

merated by Bn,k,r), and the number of rooted plane trees of size n, height k, and r deepest

nodes (enumerated by Qn,k,r), the recurrence relation

Qn,k,r = Bn+1,k,r+1 − Bn+1,k,r + Bn,k,r−1 (3.7)

holds for all n, k, r ≥ 0.

Proof. The proof is a consequence of Lemma 3.3.2: by developing the denominator of (3.6)

into a geometric series, we find

Qk(z, u) = u(Ak−1(z)
2 − Ak−1(z) + z)

∑

j≥0

u jAk−1(z)
j.

Comparing the coefficients of ur on the left- and right-hand side, we find
∑

n≥0

Qn,k,rz
n = Ak−1(z)

r+1 − Ak−1(z)
r + zAk−1(z)

r−1.

Recall that for the generating functions Bk,r(z) of the numbers Bn,k,r we had the relation

Bk+1,r(z) = zAk(z)r . Using this to compare the coefficients on the left- and right-hand side

again, we find

Qn,k,r = Bn+1,k,r+1 − Bn+1,k,r + Bn,k,r−1.

Note that with the help of (3.7), we are able to obtain the asymptotic behavior of Qn,k,r by

analyzing Bn,k,r . This is done in the following lemma.

Lemma 3.3.4.

For fixed k, r ∈ N we have

Bn,k,r ∼ (k+ 1)−r tan2r
� π

k+ 1

�
�

4cos2
� π

k+ 1

�
�n−1 nr−1

(r − 1)!
.
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Proof. We want to apply Singularity Analysis in order to determine the growth of the count-

ing sequence. Recall that

Ak−1(z) = 2z
(1+

p
1− 4z)k − (1−

p
1− 4z)k

(1+
p

1− 4z)k+1 − (1−
p

1− 4z)k+1
.

Following the idea of [10], we can identify (4cos2( jπ
k+1))

−1 for 1 ≤ j ≤ k/2 as the poles of

Ak−1(z). This enables us to determine a partial fraction decomposition of the form

Ak−1(z) =
∑

1≤ j≤k/2

tan2 jπ
k+1

(k+ 1)
�

1−
�

4 cos2 jπ
k+1

�

z
� + ak + bkz,

where ak and bk are some factors that depend on the parity of k—however, we are only

interested in the summand belonging to the dominant singularity. It is easy to see that this

is exactly (4 cos2( πk+1))
−1. The statement of the lemma now follows by applying Singularity

Analysis (Theorem 1.3.3) to Bk,r(z) = zAk−1(z)r .

As a simple consequence, we now also know the asymptotic behavior of Qn,k,r .

Corollary 3.3.5.

For fixed k, r ∈ N we obtain

Qn,k,r ∼ (k+ 1)−r−1 tan2r+2
� π

k+ 1

�
�

4cos2
� π

k+ 1

�
�n nr

r!
.

Essentially, this result characterizes the behavior of the number of trees with a fixed height

and a fixed number of deepest nodes. However, we are also interested in the stochastic

behavior of the number of deepest nodes (under the assumption that all trees of size n are

equally likely).

Let Tn denote the combinatorial class of rooted plane trees of size n, and let Xn : Tn→ N be

the random variable associated to the number of deepest nodes over the probability space

where every T ∈ Tn is equally likely. The following theorem characterizes this random

variable.

Theorem 3.3.6 ([28, Theorem 2]).
The probability that a rooted plane tree of size n has r ∈ N deepest nodes is given by

P(Xn = r) = 2−r +O
� log n

n1/2−ε

�

with some fixed ε > 0.

Additionally, the `-th central moment of this random variable is

EX `n = E`(2) +O
� log n

n1/2−ε

�

,

where E`(2) denotes the `-th Euler polynomial (cf. [11, 24.2.10]) evaluated at 2 and ε > 0.

http://dlmf.nist.gov/24.2.E10
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Proof. By definition of the random variable Xn, we have

P(Xn = r) =

∑

k≥0 Qn,k,r

Tn
,

where Tn = Cn−1 is the number of rooted plane trees of size n. Note that in particular,

Qn,k,r = 0 for k > n− r.

Applying Theorem 3.3.3 thus gives

P(Xn = r) =
1
Tn

∑

k≥0

�

Bn+1,k,r+1 − Bn+1,k,r + Bn,k,r−1

�

.

For the next step, we require a result from [26]: the average height h̄r(n) of a rooted plane

tree of size n and with root degree r is given by2

h̄r(n) = n− r −
1

Tn,r

∑

0≤k<n−r

Bn,k,r =
p

nπ− r/2+O
� log n

n1/2−ε

�

, (3.8)

where Tn,r is the number of rooted plane trees of size n and root degree r, and ε > 0 is

fixed. Furthermore, it is shown that the numbers Tn,r are precisely given by

Tn,r =
r

n− 1

�

2n− r − 3
n− 2

�

.

By using the relation given in (3.8), the expression for P(Xn = r) can be rewritten into

P(Xn = r) = (n+ 1)
1
Tn
(Tn+1,r+1 − Tn+1,r + Tn,r−1)

+
1
Tn
(Tn+1,r h̄r(n+ 1)− Tn+1,r+1h̄r+1(n+ 1)− Tn,r−1h̄r−1(n)).

By substituting the exact values of Tn,r into the expression on the first line, we find that this

gives 0 and only the expression on the second line remains. Finally, by applying Stirling’s

approximation to the quotients Tn+a,r/Tn, we find

Tn+a,r

Tn
=

r
2r+1−2a

+O
�1

n

�

,

which results in

P(Xn = r) = 2−r +O
� log n

n1/2−ε

�

.

This proves the first part of the theorem. For the second part of the proof we refer to [28,

Theorem 2].
2We slightly adapted this result in order to fit our definition of height. In [10], [26], as well as [28] the

height of a tree is defined such that the root has height 1 etc.
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This result on the stochastic behavior of the random variable Xn is particularly interesting:

for large n, the probability that a random rooted plane tree has exactly one deepest node is

approximately 1/2. Moreover, the probability that such a random tree has at most 7 deepest

nodes is more than 0.99.

Assume now, that we do not fix the number of deepest nodes—but the height instead. Then

we are able to carry out a similar analysis for the average number of deepest nodes. Let

Yn,k : Tn,k → N be the associated random variable, where Tn,k is the combinatorial class of

rooted plane trees of size n and height k. Then the following theorem holds.

Theorem 3.3.7 ([26, Theorem 3]).
Under the assumption that all trees in Tn,k are equally likely, the expected number of deepest

nodes is given by

EYn,k = 4
n+ 1
k+ 2

sin2
� π

k+ 2

�

−
6

k+ 2
+O

�1
n

�

.

Sketch of the proof. The proof relies on a relation derived in the second part of the proof

of Theorem 2 in [28]. This relation lets us write EYn,k =
Qn+1,k+1,1

An,k−An,k−1
. The result then follows

from a “lengthy, but elementary” computation where Theorem 3.3.3 and the asymptotic

expansion of Bn,k,r from Lemma 3.3.4 are used.

This concludes our chapter on the asymptotic analysis of special classes of trees.



A SageMath Implementations

Admissible Lattice Paths
The following listings contain SageMath code associated to Section 2.4. In addition to this

code, there are also two IPython notebooks available. A notebook containing all calcula-

tions related to admissible lattice paths on N0 and Z can be found at http://arxiv.org/
src/1503.08790/anc/random-walk_NN.ipynb and http://arxiv.org/src/1503.
08790/anc/random-walk_ZZ.ipynb, respectively.

Admissible Lattice Paths on N0
1 sage: def tau(h, k):
2 ....: return (h + 1)*(2*k + 1)/2
3 sage: def p(m, h=None):
4 ....: if h is None:
5 ....: return sum(p(m, h) for h in range (2*m+1))
6 ....: else:
7 ....: return 4^(1-m) * sum((-1)^k * tau(h,k)/m * binomial (2*m, m-tau(h,k))
8 ....: if mod(h+1-2*m, 2) == 0 else 0
9 ....: for k in range (2*m + 1))

10

11 sage: [p(m/2) for m in range(2, 10)]
12 [1, 1/2, 3/4, 1/2, 9/16, 15/32 , 29/64 , 55/128]

Listing A.1: Explicit Formula for pm (Theorem 2.4.5)

1 sage: R.<M> = LaurentSeriesRing(QQ, default_prec =20)
2 sage: R2.<a> = LaurentSeriesRing(R, default_prec =20)
3 sage: def stirling_coef(k): # due to G. Nemes , http :// arxiv.org/abs /1003.2907
4 ....: return factorial (2*k)/(2^k * factorial(k)) \
5 ....: * sum(binomial(k + i - 1/2, i) * binomial (3*k + 1/2, 2*k - i) *
6 ....: 2^i * sum(binomial(i,j) * (-1)^j * factorial(j) *
7 ....: stirling_number2 (2*k + i + j,j)/factorial (2*k + i + j)
8 ....: for j in range(i + 1)) for i in range (2*k + 1))
9 ....:

10

11 sage: def truncate_inner(expr , r):
12 ....: coefs = expr.coefficients ()
13 ....: expos = expr.exponents ()
14 ....: for j in range(len(coefs)):
15 ....: coefs[j] = coefs[j]. truncate_neg(-expos[j] - r)
16 ....: return sum(a^expos[j] * coefs[j] for j in range(len(coefs)))
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http://arxiv.org/src/1503.08790/anc/random-walk_NN.ipynb
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http://arxiv.org/src/1503.08790/anc/random-walk_ZZ.ipynb
http://arxiv.org/src/1503.08790/anc/random-walk_ZZ.ipynb
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17

18 sage: def S(a, M, prec =20):
19 ....: return (sum(stirling_coef(r) * (2*M)^-r for r in range(prec)) *
20 ....: sum((-1)^r * stirling_coef(r) * (M + a)^-r
21 ....: for r in range(prec)).truncate(prec) *
22 ....: sum((-1)^r * stirling_coef(r) * (M - a)^-r
23 ....: for r in range(prec)).truncate(prec) *
24 ....: sum((-1)^r * binomial (-1/2, r) * (a/M)^(2*r)
25 ....: for r in range(prec)).truncate(prec) *
26 ....: sum (1/ factorial(r) * a^(4*r) / M^(3*r) *
27 ....: (sum( -1/((t + 2) * (2*t + 3)) * (a/M)^(2*t)
28 ....: for t in range(prec))^r).truncate(prec)
29 ....: for r in range(prec))).truncate(prec)

Listing A.2: Shifted central binomial coefficient (series S(α, n), Lemma 2.4.6)

1 sage: var(’m’)
2 m
3 sage: dirichlet_beta = {1:pi/4, 2:catalan , 3:pi ^3/32} # particular values of the

Dirichlet beta function
4 sage: def mellin_translation(expr , r): # compute the factors for the r-th moment
5 ....: coefs = expr.coefficients ()
6 ....: expos = expr.exponents ()
7 ....: erg = 0
8 ....: for k in range(len(coefs)):
9 ....: j = (expos[k] - 1)/2

10 ....: erg = erg + (2^(r-1) * gamma(j+1+r/2) * dirichlet_beta[r+1] * m^(j+1)
11 ....: * sqrt(m)^r) * coefs[k].subs(M=m)
12 ....: return expand(erg)

Listing A.3: Mellin translation (Lemma 2.4.7)

1 sage: var(’m n’)
2 (m, n)
3 sage: asy_prob = (4/( sqrt(pi)*sqrt(m)) \
4 ....: * mellin_translation(truncate_inner(S(a,M,15), 15) * a/M,
5 ....: 0)).subs(m = (n+1) /2)
6

7 sage: asy_prob = expand(asy_prob).taylor(n, oo, 10); asy_prob
8 1/2* sqrt (2)*sqrt(pi)/sqrt(n) - 5/24* sqrt (2)*sqrt(pi)/n^(3/2) + 127/960* sqrt (2)*sqrt

(pi)/n^(5/2) - 1571/16128* sqrt (2)*sqrt(pi)/n^(7/2) - 1896913/184320* sqrt (2)*
sqrt(pi)/n^(9/2) + 3716111711/4866048* sqrt (2)*sqrt(pi)/n^(11/2) -
456593290865603/29520691200* sqrt (2)*sqrt(pi)/n^(13/2) +
184340777593171739/1062744883200* sqrt (2)*sqrt(pi)/n^(15/2) -
43935089397922667677/34007836262400* sqrt (2)*sqrt(pi)/n^(17/2) +
1279993678995557741521/190443883069440* sqrt (2)*sqrt(pi)/n^(19/2)

9

10 sage: asy_exp = (4/( sqrt(pi)*sqrt(m)) \
11 ....: * mellin_translation(truncate_inner(S(a,M,15), 15) * a/M,
12 ....: 1)).subs(m=(n + 1)/2)/asy_prob - 1
13

14 sage: (asy_exp - 1).taylor(n, oo, 10)
15 2*sqrt (2)*catalan*sqrt(n)/sqrt(pi) + 5/6* sqrt (2)*catalan /(sqrt(pi)*sqrt(n)) -

131/720* sqrt (2)*catalan /(sqrt(pi)*n^(3/2)) + 1129/12096* sqrt (2)*catalan /(sqrt(
pi)*n^(5/2)) - 88061611/907200* sqrt (2)*catalan /(sqrt(pi)*n^(7/2)) +
65631622327/9580032* sqrt (2)*catalan /(sqrt(pi)*n^(9/2)) -
172247261860077449/1307674368000* sqrt (2)*catalan /(sqrt(pi)*n^(11/2)) +
4399396764901604611/3138418483200* sqrt (2)*catalan /(sqrt(pi)*n^(13/2)) -
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94737237358744207421/9607403520000* sqrt (2)*catalan /(sqrt(pi)*n^(15/2)) +
1823358518956368024133/38023147008000* sqrt (2)*catalan /(sqrt(pi)*n^(17/2)) -
3503171213907812001746827472407/13362733110421094400000* sqrt (2)*catalan /(sqrt(
pi)*n^(19/2)) - 2

16

17 sage: asy_var = (4/( sqrt(pi)*sqrt(m)) \
18 ....: * mellin_translation(truncate_inner(S(a,M,15), 15) * a/M,
19 ....: 2)).subs(m=(n + 1)/2)/asy_prob - asy_exp ^2
20

21 sage: asy_var.taylor(n, oo , 10)
22 4*sqrt (2)*catalan*sqrt(n)/sqrt(pi) + 1/4*( pi^3 - 32* catalan ^2)*n/pi + 5/3* sqrt (2)*

catalan /(sqrt(pi)*sqrt(n)) - 1/6*(6* pi - pi^3 + 40* catalan ^2)/pi - 131/360* sqrt
(2)*catalan /(sqrt(pi)*n^(3/2)) - 1/180*( pi^3 - 12* catalan ^2)/(pi*n) +
1129/6048* sqrt (2)*catalan /(sqrt(pi)*n^(5/2)) + 1/1890*(11* pi^3 - 265* catalan ^2)
/(pi*n^2) - 88061611/453600* sqrt (2)*catalan /(sqrt(pi)*n^(7/2)) -
1/1814400*(75273088* pi^3 - 1408301149* catalan ^2)/(pi*n^3) +
65631622327/4790016* sqrt (2)*catalan /(sqrt(pi)*n^(9/2)) +
1/119750400*(342572847616* pi^3 - 6524406989415* catalan ^2)/(pi*n^4) -
172247261860077449/653837184000* sqrt (2)*catalan /(sqrt(pi)*n^(11/2)) -
1/1307674368000*(69897969118560256* pi^3 - 1348023303080730389* catalan ^2)/(pi*n
^5) + 4399396764901604611/1569209241600* sqrt (2)*catalan /(sqrt(pi)*n^(13/2)) +
1/3923023104000*(2168416431070068736* pi^3 - 42251792993342156275* catalan ^2)/(pi
*n^6) - 94737237358744207421/4803701760000* sqrt (2)*catalan /(sqrt(pi)*n^(15/2))
- 1/58845346560000*(221638055423379894272* pi^3 - 4360261780008844857615* catalan
^2)/(pi*n^7) + 1823358518956368024133/19011573504000* sqrt (2)*catalan /(sqrt(pi)*
n^(17/2)) + 1/2471504555520000*(43429674325617638514688* pi^3 -
857691977553229138136435* catalan ^2)/(pi*n^8) -
3503171213907812001746827472407/6681366555210547200000* sqrt (2)*catalan /(sqrt(pi
)*n^(19/2)) - 1/106901864883368755200000*(7465161935549902995865344233239* pi^3
- 190789769408206997057349187716544* catalan ^2)/(pi*n^9) +
23/641411189300212531200000*(7874503516501983226685399503801* pi^3 -
53356857218367379990569828134400* catalan ^2)/(pi*n^10)

Listing A.4: Computing the asymptotic expansions (Theorem 2.4.8)

Admissible Lattice Paths on Z
1 sage: def upsilon(h, k):
2 ....: return (h + 2)*(2*k + 1)/2
3 sage: def q(m, h=None):
4 ....: if h is None:
5 ....: return sum(q(m, h) for h in range (2*m + 1))
6 ....: else:
7 ....: return 4^(1 - m) * sum ((2* upsilon(h,k)^2 - m)/(m * (2*m - 1)) *
8 ....: binomial (2*m, m - upsilon(h,k))
9 ....: if mod(h - 2*m, 2) == 0 else 0

10 ....: for k in range (2*m + 1))
11

12 sage: [q(m/2) for m in range(2, 10)]
13 [1, 1/2, 1/4, 1/4, 3/16, 5/32, 9/64, 15/128]

Listing A.5: Explicit formula for qm (Theorem 2.4.5)

1 sage: var(’m’)
2 m
3 sage: def mellin_translation(expr , r, parity="even"): # specify the factor (h+2)^r
4 ....: coefs = expr.coefficients ()
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5 ....: expos = expr.exponents ()
6 ....: erg = 0
7 ....: if r == 0:
8 ....: for k in range(len(coefs)):
9 ....: j = expos[k]/2

10 ....: if j == 0:
11 ....: erg = erg + sqrt(m * pi)/4 * coefs[k].subs(M=m)
12 ....: else:
13 ....: if parity == "even":
14 ....: erg = erg + j/2 * gamma(j + 1/2) \
15 ....: * (log(m)/2 + (2* euler_gamma + 1/(2*j)
16 ....: + psi(j + 1/2)/2 + log(2))) \
17 ....: * m^j * sqrt(m) * coefs[k].subs(M=m)
18 ....: elif parity == "odd":
19 ....: erg = erg + j/2 * gamma(j + 1/2) \
20 ....: * (log(m)/2 + 2* euler_gamma + 3*log(2)
21 ....: + psi(j + 1/2)/2 - 2 + 1/(2*j)) \
22 ....: * m^j * sqrt(m) * coefs[k].subs(M=m)
23 ....: else:
24 ....: raise ValueError("parity has to be even or odd")
25 ....: else:
26 ....: for k in range(len(coefs)):
27 ....: j = expos[k]/2
28 ....: if parity == "even":
29 ....: erg = erg + (j * gamma(j+1/2) * 2^(r-1) * zeta(1-r) * m^j
30 ....: * sqrt(m) + (j + r/2)/2 * gamma(j + (r+1)/2)
31 ....: * (2^(r+1) -1) * zeta(r+1) * m^j
32 ....: * sqrt(m)^(r+1)) * coefs[k].subs(M=m)
33 ....: elif parity == "odd":
34 ....: erg = erg + (j * gamma(j+1/2) * ((1 -2^(r-1)) * zeta(1-r) - 1)
35 ....: * m^j * sqrt(m) + (j + r/2)/2 * gamma(j+(r+1)/2)
36 ....: * (2^(r+1) -1) * zeta(r+1) * m^j
37 ....: * sqrt(m)^(r+1)) * coefs[k].subs(M=m)
38 ....: else:
39 ....: raise ValueError("parity has to be even or odd")
40 ....: return expand(erg)

Listing A.6: Mellin translation (Lemma 2.4.9)

1 sage: var(’m n’)
2 (m, n)
3 sage: asy_prob_even = (4/( sqrt(pi)*sqrt(m)*(2*m - 1))
4 ....: * mellin_translation(truncate_inner(S(a,M,30), 30),
5 ....: 0, parity="even")).subs(m = (n + 2)/2)
6 sage: asy_prob_odd = (4/( sqrt(pi)*sqrt(m)*(2*m - 1))
7 ....: * mellin_translation(truncate_inner(S(a,M,30), 30),
8 ....: 0, parity="odd")).subs(m = (n + 2)/2)
9

10 sage: asy_prob_even.taylor(n,oo ,8)
11 1/n - 4/3/n^2 + 88/45/n^3 - 976/315/n^4 + 3488/675/n^5 - 276928/31185/n^6 +

220605568/14189175/n^7 - 6724864/243243/n^8
12 sage: asy_prob_odd.taylor(n,oo ,8)
13 1/n - 4/3/n^2 + 88/45/n^3 - 976/315/n^4 + 3488/675/n^5 - 276928/31185/n^6 +

220605568/14189175/n^7 - 6724864/243243/n^8
14 sage: bool(asy_prob_even.taylor(n, oo , 8) == asy_prob_odd.taylor(n, oo, 8))
15 True
16 sage: asy_prob = asy_prob_even.taylor(n, oo, 8); asy_prob
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17 1/n - 4/3/n^2 + 88/45/n^3 - 976/315/n^4 + 3488/675/n^5 - 276928/31185/n^6 +
220605568/14189175/n^7 - 6724864/243243/n^8

18

19 sage: asy_exp_even = (4/( sqrt(pi)*sqrt(m) * (2*m - 1))
20 ....: * mellin_translation(truncate_inner(S(a,M,15), 15), 1,
21 parity="even")).subs(m = (n + 2)/2)
22 sage: asy_exp_even /= asy_prob_even
23 sage: asy_exp_odd = (4/( sqrt(pi)*sqrt(m) * (2*m - 1))
24 ....: * mellin_translation(truncate_inner(S(a,M,15), 15), 1,
25 ....: parity="odd")).subs(m = (n + 2)/2)
26 sage: asy_exp_odd /= asy_prob_odd
27

28 sage: asy_exp_even.taylor(n, oo, 7) - 2
29 1/4* sqrt (2)*pi ^(3/2)*sqrt(n) + 3/16* sqrt (2)*pi ^(3/2)/sqrt(n) - 539/5760* sqrt (2)*pi

^(3/2)/n^(3/2) + 50713/483840* sqrt (2)*pi ^(3/2)/n^(5/2) - 16671323/116121600*
sqrt (2)*pi ^(3/2)/n^(7/2) + 13114961/63078400* sqrt (2)*pi ^(3/2)/n^(9/2) -
52266077173201/167382319104000* sqrt (2)*pi ^(3/2)/n^(11/2) +
1001945317462289/2008587829248000* sqrt (2)*pi ^(3/2)/n^(13/2) - 2

30 sage: asy_exp_odd.taylor(n, oo , 7) - 2
31 1/4* sqrt (2)*pi ^(3/2)*sqrt(n) + 3/16* sqrt (2)*pi ^(3/2)/sqrt(n) - 539/5760* sqrt (2)*pi

^(3/2)/n^(3/2) + 50713/483840* sqrt (2)*pi ^(3/2)/n^(5/2) - 16671323/116121600*
sqrt (2)*pi ^(3/2)/n^(7/2) + 13114961/63078400* sqrt (2)*pi ^(3/2)/n^(9/2) -
52266077173201/167382319104000* sqrt (2)*pi ^(3/2)/n^(11/2) +
1001945317462289/2008587829248000* sqrt (2)*pi ^(3/2)/n^(13/2) - 2

32 sage: bool(asy_exp_even.taylor(n, oo, 7) - 2 == asy_exp_odd.taylor(n, oo , 7) - 2)
33 True
34 sage: asy_exp = asy_exp_even.taylor(n, oo , 7) - 2; asy_exp
35 1/4* sqrt (2)*pi ^(3/2)*sqrt(n) + 3/16* sqrt (2)*pi ^(3/2)/sqrt(n) - 539/5760* sqrt (2)*pi

^(3/2)/n^(3/2) + 50713/483840* sqrt (2)*pi ^(3/2)/n^(5/2) - 16671323/116121600*
sqrt (2)*pi ^(3/2)/n^(7/2) + 13114961/63078400* sqrt (2)*pi ^(3/2)/n^(9/2) -
52266077173201/167382319104000* sqrt (2)*pi ^(3/2)/n^(11/2) +
1001945317462289/2008587829248000* sqrt (2)*pi ^(3/2)/n^(13/2) - 2

36

37 sage: asy_var_even = (4/( sqrt(pi)*sqrt(m) * (2*m - 1))
38 ....: * mellin_translation(truncate_inner(S(a,M,15), 15), 2,
39 ....: parity="even")).subs(m = (n + 2)/2)
40 sage: asy_var_even = asy_var_even / asy_prob_even - asy_exp_even ^2
41 sage: asy_var_odd = (4/( sqrt(pi)*sqrt(m) * (2*m - 1))
42 ....: * mellin_translation(truncate_inner(S(a,M,15), 15), 2,
43 ....: parity="odd")).subs(m = (n + 2)/2)
44 sage: asy_var_odd = asy_var_odd / asy_prob_odd - asy_exp_odd ^2
45

46 sage: asy_var_even.taylor(n, oo, 4)
47 -3/16*pi^3 - 1/8*(pi^3 - 28* zeta (3))*n + 1/2880*(67* pi^3 - 1792* zeta (3))/n -

1/120960*(4189* pi^3 - 107520* zeta (3))/n^2 + 1/2073600*(98381* pi^3 - 2539520*
zeta (3))/n^3 - 59/958003200*(990593* pi^3 - 27066368* zeta (3))/n^4 +
1/5230697472000*(421642510377* pi^3 - 12492906954752* zeta (3))/n^5 -
1/31384184832000*(3973982368189* pi^3 - 120862713839616* zeta (3))/n^6 + 14/3* zeta
(3)

48 sage: asy_var_odd.taylor(n, oo , 4)
49 -3/16*pi^3 - 1/8*(pi^3 - 28* zeta (3))*n + 1/2880*(67* pi^3 - 1792* zeta (3))/n -

1/120960*(4189* pi^3 - 107520* zeta (3))/n^2 + 1/2073600*(98381* pi^3 - 2539520*
zeta (3))/n^3 - 59/958003200*(990593* pi^3 - 27066368* zeta (3))/n^4 +
1/5230697472000*(421642510377* pi^3 - 12492906954752* zeta (3))/n^5 -
1/31384184832000*(3973982368189* pi^3 - 120862713839616* zeta (3))/n^6 + 14/3* zeta
(3)

50 sage: bool(asy_var_odd.taylor(n, oo, 2) == asy_var_even.taylor(n, oo , 2))
51 True
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52 sage: asy_var = asy_var_even.taylor(n, oo , 2); asy_var
53 -3/16*pi^3 - 1/8*(pi^3 - 28* zeta (3))*n + 1/2880*(67* pi^3 - 1792* zeta (3))/n -

1/120960*(4189* pi^3 - 107520* zeta (3))/n^2 + 1/2073600*(98381* pi^3 - 2539520*
zeta (3))/n^3 - 59/958003200*(990593* pi^3 - 27066368* zeta (3))/n^4 +
1/5230697472000*(421642510377* pi^3 - 12492906954752* zeta (3))/n^5 -
1/31384184832000*(3973982368189* pi^3 - 120862713839616* zeta (3))/n^6 + 14/3* zeta
(3)

Listing A.7: Computing the asymptotic expansions (Theorem 2.4.10)
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