
Benjamin Hackl

Concatenated
Error Correcting Codes:

Galois and Binary Concatenation

Bachelorarbeit

zur Erlangung des akademischen Grades
BSc.

Studium
Technische Mathematik

Alpen-Adria-Universität Klagenfurt
Fakultät für Technische Wissenschaften

Betreuer
Univ.-Prof. Dr. Clemens Heuberger

Institut für Mathematik

Klagenfurt, 11. Juni 2014

iii

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende wissenschaftliche Arbeit selbstständig angefertigt
und die mit ihr unmittelbar verbundenen Tätigkeiten selbst erbracht habe. Ich erkläre weiters, dass
ich keine anderen als die angegebenen Hilfsmittel benutzt habe. Alle aus gedruckten, ungedruckten
oder dem Internet im Wortlaut oder im wesentlichen Inhalt übernommenen Formulierungen und
Konzepte sind gemäß den Regeln für wissenschaftliche Arbeiten zitiert und durch Fußnoten bzw.
durch andere genaue Quellenangaben gekennzeichnet.

Die während des Arbeitsvorganges gewährte Unterstützung einschließlich signifikanter Betreuungs-
hinweise ist vollständig angegeben.

Die wissenschaftliche Arbeit ist noch keiner anderen Prüfungsbehörde vorgelegt worden. Diese
Arbeit wurde in gedruckter und elektronischer Form abgegeben. Ich bestätige, dass der Inhalt der
digitalen Version vollständig mit dem der gedruckten Version übereinstimmt.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Benjamin Hackl Klagenfurt, 11. Juni 2014

iv

Acknowledgements

It would not have been possible to write this thesis without the help and support from many of
the people around me. In these few lines I want to thank everyone involved in this process.

Firstly, I want to thank my advisor Dr. Clemens Heuberger, not only for the broad spectrum of
support he provided throughout the whole process, but also for bringing many exciting challenges
to my attention and keeping me busy. I am very much looking forward to future collaborations.

Secondly, I want to thank my colleagues at the department of mathematics for making my work-
and study-environment a very interesting and enjoyable place.

My work at the department of mathematics – and therefore also this thesis – is funded by the
Austrian Research Promotion Agency (FFG) as a part of the project “CODES – Algorithmic ex-
traction and error correction codes for lightweight security anchors with reconfigurable PUFs”, so
I also want to thank my colleagues within the project; especially Michela Mazzoli and Dr. Win-
fried Müller at the Alpen-Adria Universität Klagenfurt, Verena Brunner and Martin Deutschmann
at Technikon Forschungs- und Planungsgesellschaft mbH, and Dr. Ingrid Schaumüller-Bichl and
Andrea Kolberger from the University of Applied Sciences in Upper Austria.

Furthermore, I want to express my gratitude to my friends and colleagues from university for many
memorable discussions and moments, as well as for the many (late) night shifts in their company.

And last but not least I want to thank my family for encouraging me to choose my own path in
life as well as for their never ending support regarding my choice.

Thank you!

Abstract

The class of concatenated linear codes as investigated by David Forney in 1965 consists of some
very powerful codes regarding error detection and correction. Additionally, another big advantage
of this class of codes is the possibility to use very simple and efficient decoding algorithms,
compared to other codes of similar length.

In this thesis we want to give an introduction to the topic of algebraic coding theory, investigate
some properties of an alternative transmission channel model influenced by studying the behavior
of uninitialized SRAM-cells, and analyze the relation between the aforementioned class of con-
catenated codes (which we will call Galois concatenated codes) and another class of codes (binary
concatenated codes).

We will deduce that the binary concatenation is a generalization of the Galois concatenation and
conduct some simulations in order to compare the performance of these two code constructions
for specific examples. Furthermore, we investigate under which conditions square matrices over a
finite field behave like elements from a larger finite field.

Contents

1 Algebraic preliminaries 1

1.1 Basic structures . 1

1.2 Fields and field extensions . 4

1.3 Finite fields . 6

1.4 Frobenius normal form . 8

2 Coding theory 11

2.1 Elements of coding theory . 11

2.2 Selected linear codes and their properties . 20

2.3 Soft decoding over a different channel model . 25

3 Code concatenations 29

3.1 Definition and properties . 29

3.1.1 Equivalency of binary concatenation and Galois concatenation 32

3.2 Examples . 37

3.2.1 Ham[8,4, 4] ◦̃ Ham[8, 4,4] . 38

3.2.2 MatrixCode[12,4, 5] ◦̃ Ham[8, 4,4] . 40

3.2.3 MatrixCode[12,4, 4] ◦̃ Ham[8, 4,4] . 43

3.2.4 MatrixCode[12,4, 5] ◦̃ Golay[24,12, 8] . 45

3.3 Associated matrices . 49

A Implementations 54

A.1 Elementary calculations . 54

A.2 Decoding and error generation . 56

A.3 Simulations and examples . 60

Bibliography 65

1 Algebraic preliminaries

In the following sections we give a short introduction on the algebraic constructions occurring
repeatedly in the following chapters.

We will be following [3] and [7] for the theoretical overview on the algebraic structures used in
the chapters afterwards (i.e. primarily fields and especially finite fields). Most results here will be
presented without proof, they can be found in the literature. At first, we introduce some basic
structures.

1.1 Basic structures
Definition 1.1 (Group, Abelian group).
A set G together with a binary operation ∗: G × G → G, (a, b) 7→ a ∗ b is called a group if the
following requirements are met:

(G1) The binary operation ∗ is associative, meaning that for all a, b, c ∈ G the relation

(a ∗ b) ∗ c = a ∗ (b ∗ c)

holds.

(G2) There is an element e ∈ G which has the following properties:

1. The element e is a left identity, i.e. for all a ∈ G we have e ∗ a = a.

2. For each a ∈ G there is an element b ∈ G, such that b ∗ a = e holds. The element b is
called left inverse of a.

If additionally the property a ∗ b = b ∗ a holds for all a, b ∈ G, then G is called an abelian group.
If H is a subset of G and (H,∗) also is a group, then H is called a subgroup of G, we write H ≤ G.

Definition 1.2 (Group homomorphisms).
Given two groups (G, ∗) and (G′, ?), a map ϕ : G→ G′ is called (group) homomorphism if

ϕ(a ∗ b) = ϕ(a) ? ϕ(b)

holds for all a, b ∈ G. A homomorphism ϕ is called monomorphism if ϕ is injective, epimorphism
if ϕ is surjective, and isomorphism if ϕ is bijective.

Two groups are called isomorphic, in symbols G ∼= G′, if there is an isomorphism ϕ : G → G′. In
the special case of G = G′, a homomorphism is also called endomorphism and an isomorphism is
also called automorphism.

2 1 Algebraic preliminaries

Definition 1.3 (Cosets and normal subgroups).
Let H be a subgroup of a group G and let a ∈ G. The sets aH := {ax | x ∈ H} and Ha := {xa |
x ∈ H} are called left coset of H in G with respect to a and right coset of H in G with respect to
a, respectively.

Furthermore, H is called normal subgroup of G, if aH = Ha holds for all a ∈ G, i.e. the left cosets
and right cosets coincide for all a ∈ G. If H is a normal subgroup of G, we also write H Å G.

Theorem 1.1 (Factor groups).
Given a group G and a normal subgroup N Å G. Then there is exactly one binary operation ∗ on
the set of cosets G/N with the following properties:

(a) (G/N , ∗) is a group.

(b) The canonical surjective map

ρ : G→ G/N , a 7→ aN = Na

is a homomorphism.

The identity in (G/N , ∗) is N ∈ G/N and the inverse of aN is a−1N . The group (G/N , ∗) is called
factor group of G modulo N .

Definition 1.4 (Ring).
A ring is a set R together with two binary operations + and · for which the following properties
hold:

(R1) (R, +) is an abelian group.

(R2) The multiplication · is associative.

(R3) The distributive laws hold, we have

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a

for all a, b, c ∈ R.

The additive identity 0 ∈ R is called zero element of R. If R has an multiplicative identity 1 ∈ R,
the element 1 is called unit element and R is called unitary ring. If R is commutative with respect
to the multiplication, i.e. a · b = b · a for all a, b ∈ R, then the ring is called commutative ring.

Definition 1.5 (Ring homomorphisms).
Let (R, + , ·) and (R′, +′ , ·′) be two rings. A map ϕ : R→ R′ is called ring homomorphism if

ϕ(a+ b) = ϕ(a) +′ ϕ(b) and ϕ(a · b) = ϕ(a) ·′ ϕ(b)

hold for all a,b ∈ R. The terms monomorphism, epimorphism, isomorphism, endomorphism and
automorphism are defined in analogy to group homomorphisms.

Furthermore, if ϕ : R→ R′ is a ring homomorphism, the set kerϕ = {a ∈ R | ϕ(a) = 0} ⊆ R is called
kernel of ϕ and Imϕ = ϕ(R) ⊆ R′ is called image of ϕ.

Definition 1.6 (Polynomial ring).
Given a commutative ring with unit element 1. Then the polynomial ring R[X] is defined as the
set of all sequences (a0, a1, . . . , ak, . . .) with a j ∈ R and a j = 0 for almost all j ∈ N0.

1.1 Basic structures 3

The addition in R[X] is defined componentwise, whereas the multiplication is defined through a
convolution, i.e.

(a0, a1, . . . , ak, . . .) · (b0, b1, . . . , bk, . . .) = (c0, c1, . . . , ck, . . .), where

ck :=
k
∑

j=0

a j bk− j .

The unit element in R[X] is (1,0, 0, . . .), and R is a subring of R[X]. We set X := (0,1, 0, . . .), and
because of the definition of multiplication in R[X] we have

X k = (0, . . . , 0, 1, 0, . . .), k ∈ N0,

where the 1 is in the (k+ 1)-st component. Overall, we obtain

f = (a0, a1, . . . , an, 0, 0, . . .) = a0 + a1X + · · ·+ anX n,

which justifies the name polynomial ring.

The degree of a polynomial f ∈ R[X] is defined through

f = a0 + a1X + · · ·+ anX n, an 6= 0⇒ deg f = n.

Furthermore, if an = 1, then f is called a monic polynomial.

Definition 1.7 (Ideal).
A subset A⊆ R of a ring (R,+, ·) is called ideal, if the following properties hold:

(I1) A⊆ R is an additive subgroup.

(I2) For all a ∈ A and all x ∈ R we have a · x ∈ A as well as x · a ∈ A.

If the ring R is a commutative unitary ring, then for a ∈ R the set

(a) := R · a = {x · a | x ∈ R}

is called principal ideal generated by a.

Definition 1.8 (Integral domain and Euclidean domain).
A commutative unitary ring without zero divisors (i.e. for all elements a, b 6= 0 we have a · b 6= 0)
is called integral domain.

An integral domain R is said to be a Euclidean domain if there is a map δ : R \ {0} → N such that
for all a, b ∈ R with b 6= 0 there are elements q, r ∈ R so that

a = q · b+ r and δ(r)< δ(b) if r 6= 0

holds. δ is called degree function or norm.

Lemma 1.2.
A polynomial ring K[x] over a field K is a Euclidean domain.

Theorem 1.3.
A Euclidean domain is a principal ideal domain, that is every ideal in a Euclidean domain is a
principal ideal.

4 1 Algebraic preliminaries

Theorem 1.4 (Factor ring, quotient ring, residue class ring).
Given a ring R, an ideal A and ρ : R→ R/A the canonical group homomorphism (cf. Theorem 1.1).
Then there is exactly one multiplication · in R/A so that R/A becomes a ring and ρ becomes a
ring epimorphism with kerρ = A.

(R/A,+, ·) is called factor ring of R modulo A. The operations in R/A can be expressed through
congruences, we define

x ≡ x ′ mod A :⇐⇒ x + A= x ′ + A ⇐⇒ x − x ′ ∈ A.

These definitions and theorems are fundamental for the following results regarding fields and field
extensions. Especially the knowledge about factor rings and polynomial rings will help with the
construction of finite fields at a later point.

1.2 Fields and field extensions
Definition 1.9 (Fields).
Let (F,+, ·) be a commutative unitary ring. If every a ∈ F \ {0} has an inverse element a−1 ∈ F
such that a · a−1 = a−1 · a = 1 holds, then F is called field.

If L and K are both fields with L ⊆ K, then L is called a subfield if L inherits the operations from
K. The field K is then also called extension field of L and L ⊆ K is called a field extension. If L is
a subfield of K and L 6= K, then L is called proper subfield. A field containing no proper subfields
is called prime field.

Finally, a field F is called finite field or Galois field if F has cardinality q ∈ N. A field with q
elements is denoted as Fq or GF(q). This notation is based on the property that two finite fields
with q elements are isomorphic (cf. Theorem 1.16).

Definition 1.10 (Characteristic).
Given a ring with unit element 1, there is always the homomorphism

ϕ : Z→ R, n 7→ n · 1= 1+ 1+ · · ·+ 1
︸ ︷︷ ︸

n times

.

The kernel of ϕ is a subgroup of Z, and all subgroups of Z are given by the groups mZ where
m ∈ N0. Thus, there has to be an m ∈ N0 such that kerϕ = mZ. In that case, the characteristic
of the ring R is defined to be m, in signs χ(R) = m.

A direct consequence of the definition above is that the characteristic of a field F either has to
be 0 or a prime number – otherwise, F would contain zero divisors, which contradicts the field
property.

Theorem 1.5.
Let F be a field. If χ(F) is a prime number p, then the prime subfield of F is isomorphic to
GF(p) = Z/pZ. Otherwise, χ(F) has to equal 0 – then, the prime subfield is isomorphic to Q.

Definition 1.11 (Degree of a field extension).
Let K ⊆ F be a field extension. Then F can be considered a vector space over K, where the scalar

1.2 Fields and field extensions 5

multiplication · : K× F → F exactly is the multiplication in the field restricted in the first operand.
Then the degree of the field extension K ⊆ F is defined as

[F : K] := dimK(F).

Theorem 1.6 (Degree formula).
If F ⊆ K is a field extension and K ⊆ L also is a field extension, the field K is called intermediate
field and the formula

[L : F] = [L : K] · [K : F]

applies.

Definition 1.12 (Field extension by adjoining elements).
Let K be a subfield of a field F and let M be a fixed subset of F . Then the field K(M) is defined
as the intersection of all subfields of F containing both K and M ,

K(M) :=
⋂

K∪M⊆L⊆F
L field

L.

The field K(M) is called the extension field of K obtained by adjoining the elements in M . If M
consists of a single element α ∈ F , then L = K(α) is said to be a simple extension of K and α is
called a defining element, generating element or primitive element of L over K.

Definition 1.13 (Algebraic elements and algebraic extensions).
Let K be a subfield of F and let α ∈ F . If there is a nonzero polynomial f ∈ K[X] such that α is
a root of f , then α is said to be algebraic over F . Otherwise it is called transcendental.

An extension L of K is said to be an algebraic extension of K if every element of L is algebraic
over K. If [L : K]<∞, the extension is called finite extension.

Lemma 1.7 (Finite extensions are algebraic).
Every finite extension of a field K is algebraic over K.

Definition 1.14 (Minimal polynomial).
Let F be an extension field of K. If α ∈ F is algebraic over K, then the uniquely determined monic
polynomial g ∈ K[x] generating the ideal { f ∈ K[x] | f (α) = 0} is called the minimal polynomial
of α over K.

Theorem 1.8 (Properties of the minimal polynomial).
Let F be an extension field of K. If α ∈ F is algebraic over K, then its minimal polynomial g ∈ K[x]
has the following properties:

1. The polynomial g is irreducible in K[x], meaning that it cannot be factored into the product
of two non-constant polynomials in K[x].

2. For f ∈ K[x] we have f (α) = 0 if and only if g divides f .

3. The polynomial g is the monic polynomial in K[x] of least degree having α as a root.

The following theorems yield the theoretical basis on how to construct field extensions.

6 1 Algebraic preliminaries

Theorem 1.9.
Let F be an extension field of K, let α ∈ F be algebraic over K, and let g be the minimal polynomial
of α with deg g = n. Then the following holds:

1. K(α) is isomorphic to K[x]/(g), where (g) denotes the principle ideal generated by g.

2. [K(α) : K] = n and {1,α, . . . ,αn−1} is a basis of K(α) over K.

3. Every ω ∈ K(α) is algebraic over K and the degree of its minimal polynomial is a divisor of
n.

Definition 1.15 (Splitting field).
Let f ∈ K[x] be of positive degree and F an extension field of K. Then f is said to split in F if
f can be written as a product of linear factors in F[x], i.e. if there exist elements α1, . . . ,αn ∈ F
such that

f (x) = a · (x −α1)(x −α2) . . . (x −αn),

where a is the leading coefficient of f . The field F is a splitting field of f over K if f splits in F
and if, moreover, F = K(α1,α2, . . . ,αn), that is, F is the smallest field containing all zeros of f .

Theorem 1.10 (Existence and Uniqueness of Splitting Fields).
If K is a field and f is any polynomial of positive degree in K[x], then there exists a splitting
field of f over K. Any two splitting fields of f over K are isomorphic under an isomorphism which
keeps the elements of K fixed and maps roots of f into each other.

Before we start considering finite fields only, there is one more result that will be very useful at a
later point.

Theorem 1.11.
If a field K has characteristic 0 or K is a finite field, any non-trivial irreducible polynomial f ∈ K[x]
does not have multiple zeros in the splitting field F of f over K, that is, there are deg f distinct
zeros of f in F .

Example 1.1.
The polynomial g(x) = x2 + 2 ∈ R[x] is certainly irreducible. The splitting field of g is C, as
the zeros are x1,2 = ±i

p
2. Simultaneously, g is the minimal polynomial of i

p
2, as g is a monic

polynomial and there is no polynomial with real coefficients and degree 1 which has i
p

2 as a
root.

Also, the zeros are complex conjugates. This situation with conjugate elements can be further
generalized, as we will see in the following section.

1.3 Finite fields
The following results aim for a characterization of finite fields.

Lemma 1.12.
Let F be a finite field containing a subfield K with q elements. Then F has qm elements where
m= [F : K].

1.3 Finite fields 7

Theorem 1.13 (Number of elements in a finite field).
Let F be a finite field. Then F has pn elements where the prime p is the characteristic of F and
n is the degree of F over its prime subfield.

In essence, the construction of finite fields always follows the same procedure: Starting from
GF(p) = Z/pZ, where p is some prime number, we can adjoin roots of irreducible polynomials to
GF(p) and thus obtain another finite field. Before further characterizing this construction process,
we want to give some more properties of finite fields itself.

Lemma 1.14.
If F is a finite field with q elements, then every a ∈ F satisfies aq = a.

Due to this lemma we can give another possibility to (formally) obtain the finite field with q
elements:

Corollary 1.15.
If F is a finite field with q elements and K is a subfield of F , then the polynomial xq − x in K[x]
factors in F[x] as

xq − x =
∏

a∈F

(x − a)

and F is a splitting field of xq − x over K.

Theorem 1.16 (Existence and Uniqueness of Finite Fields).
For every prime p and every positive integer n there exists a finite field with pn elements. Any
finite field with q = pn elements is isomorphic to the splitting field of xq − x over GF(p).

Therefore, we may speak of the finite field or the Galois field with q elements.

Theorem 1.17 (Subfield Criterion).
Let GF(q) be the finite field with q = pn elements. Then every subfield of GF(q) has order pm,
where m is a positive divisor of n. Conversely, if m is a positive divisor of n, then there is exactly
one subfield of GF(q) with pm elements.

The following results will specifically deal with the construction process of finite fields and therefore
will give some properties of irreducible polynomials over GF(q).

Theorem 1.18.
If f is an irreducible polynomial in GF(q)[x] of degree m, then f has a root α in GF(qm).
Furthermore, all the roots of f are simple and are given by the m distinct elements α, αq, αq2

,
. . ., αqm−1

of GF(qm).

Corollary 1.19.
Let f be an irreducible polynomial in GF(q)[x] of degree m. Then the splitting field of f over
GF(q) is given by GF(qm).

Corollary 1.20.
Any two irreducible polynomials in GF(q)[x] of the same degree have isomorphic splitting fields.

8 1 Algebraic preliminaries

The zeros of irreducible polynomials have quite some interesting properties – which is why we will
give them a distinct name in the following definition:

Definition 1.16 (Conjugate elements).
Let GF(qm) be an extension field of GF(q) and let α ∈ GF(qm). Then the elements α, αq, αq2

, . . .,
αqm−1

are called the conjugates of α with respect to GF(q).

Theorem 1.21 (Properties of conjugate elements).
Let GF(qm) be an extension field of GF(q) and let α ∈ GF(qm). Denote the conjugates of α by
α(j) := αp j−1

. Then the following statements hold:

(a) The conjugates of α with respect to GF(q) are distinct if and only if the minimal polynomial
of α over GF(q) has degree m. Otherwise, the degree d of this minimal polynomial is a
proper divisor of m, and then the conjugates are the distinct elements α, αq, . . ., αqd−1

, each
repeated m/d times.

(b) The distinct automorphisms of GF(qm) over GF(q) are exactly the mappings σ1, . . ., σm

defined by σ j(α) = α(j).

Due to the results above, the construction of GF(pn) is clear. Firstly, we find an irreducible
polynomial of degree n (which is not that easy, as it requires us to know whether a given polynomial
can be factored). Then, we formally adjoin a zero α of this polynomial to GF(p) and we obtain
GF(p)(α) = GF(pn).

1.4 Frobenius normal form
In this section we will introduce the Frobenius normal form of a matrix – which is essentially a
generalized Jordan normal form, but with the improvement that we stay in the original field. That
is, if we have a matrix P ∈ GF(q)k×k, the Frobenius normal form also is in GF(q)k×k – which is not
the case for the Jordan normal form, as the characteristic polynomial of P is from GF(q)[x] and
might be irreducible over GF(q), i.e. the eigenvalues of the matrix P could be from an extension
field.

Before we give the definition of the Frobenius normal form, we will introduce companion matrices.

Lemma 1.22 (Companion matrices).
Let F be a field. Given a monic polynomial g(x) = xn + c1 xn−1 + · · ·+ cn−1 x + cn ∈ F[x]. Then
the matrix C(g) ∈ F n×n given by

C(g) :=



















0 1

0 1
...

. . .

0 1

−cn −cn−1 −cn−2 · · · −c1



















is called (left sided) companion matrix of g. The right sided companion matrix of g is given by
the transposed matrix C(g)t .

The characteristic polynomial det(x · In − C(g)) of C(g) is g.

1.4 Frobenius normal form 9

Remark.
Assuming the investigated polynomial g is irreducible, companion matrices are matrix represen-
tations of the linear maps corresponding to the multiplication with a generating element of an
extension field regarding the respective polynomial basis, i.e. (1,α,α2, . . . ,αn−1), where α is a root
of g.

Proof of Lemma 1.22. We use induction on the degree of the monic polynomial g. If deg g = 1,
we have g(x) = x − a for some a ∈ F . The companion matrix of g is the (1×1)-matrix (a) whose
characteristic polynomial obviously is x − a = g(x).

Assume that the statement above holds for some arbitrary but fixed n ∈ N where deg g = n.

Now consider a monic polynomial g with deg g = n+ 1 with companion matrix C(g). Then we
have

χC(g)(x) = det(x · In+1 − C(g)) = det



















x −1

0 x −1
...

.

0 x −1

cn+1 cn · · · c2 x + c1



















Using Laplace’s formula for the first column, we find

χC(g)(x) = x · det













x −1

0
.

x −1

cn · · · c2 x + c1













+ (−1)n · cn+1 · (−1)n,

where the remaining determinant is the characteristic polynomial of the companion matrix of
the polynomial g̃(x) = xn + c1 xn−1 + · · ·+ cn, and due to the assumption above equals to g̃(x).
Therefore, we have

χC(g)(x) = x · g̃(x) + cn+1 = xn+1 + xnc1 + · · ·+ cn x + cn+1 = g(x),

which completes the proof.

For the following statements we follow [2, p. 472 ff.].

Definition 1.17 (Frobenius normal form, rational canonical form).
Let F be a field. A quadratic matrix T ∈ F n×n is said to be in Frobenius normal form or rational
canonical form, if T is a block diagonal matrix with companion matrices for monic polynomials
a1(x), a2(x), . . ., am(x) ∈ F[x] with degree at least 1 and a1 | a2 | · · · | am. The polynomials ai(x)
are called the invariant factors of the matrix.

Theorem 1.23 (Frobenius normal form – existence and properties).
Let V be a finite dimensional vector space over the field F and let T and S be linear maps T ,
S : V → V . Then the following holds:

1. There is a basis for V with respect to which the matrix representation of T is in Frobenius
normal form.

10 1 Algebraic preliminaries

2. The Frobenius normal form for T is unique.

3. Two linear maps S and T are similar if and only if their Frobenius normal forms coincide.

It is quite unsatisfactory that we do not know much about the invariant factors. The following
lemma will give us some more properties. For more information on invariant factors and algorithms
on how to calculate the Frobenius normal form see [2].

Lemma 1.24 (Properties of invariant factors).
For the invariant factors of some quadratic matrix T over the field F , the following statements
hold:

1. The product of the invariant factors is the characteristic polynomial.

2. The “largest” invariant factor (i.e. am if we have a1 | a2 | · · · | am) is the minimal polynomial
of the matrix T , i.e. the monic polynomial mT of least degree dividing the characteristic
polynomial and satisfying mT (T) = 0.

Remark.
In a more general setting, the invariant factors generate so-called cyclic F[x]-modules, i.e.
F[x]/(a j(x)). The direct sum of these modules is isomorphic to the underlying vector space
V over F . The a j with a1 | a2 | · · · | am and satisfying the property above are uniquely determined.

Furthermore, a direct consequence of Lemma 1.24 is that for diagonalizable matrices whose
characteristic polynomial is the power of an irreducible polynomial g, the Frobenius normal form
is the block diagonal matrix where the companion matrix of g is stacked on the main diagonal.
This fact will be useful at a later point.

2 Coding theory

Before we discuss the construction strategies for concatenated codes, we will give a short intro-
duction on some coding theoretic basics. We will follow [6], [7] and [8]. Again, proofs will be
omitted and can be found in the literature.

2.1 Elements of coding theory
The subject of coding theory is the accurate and efficient transfer of data from a sender to a
receiver. The importance of accuracy and efficiency can be emphasized by thinking about a
satellite traveling in deep space sending data (e.g. environmental measurements, images, . . .) by
radio transmission to a basis station on earth. During the transmission there are all kinds of
interferences with the signal, possibly changing transmitted zeros to ones and vice versa. If there
are neither error correction nor error detection mechanisms implemented, the operators in the
basis station on earth will not be able to extract very much data from the received data stream.

Data
Source

Encoder Decoder
Data
Sink

Noise

Transmission

Figure 2.1: Data transmission

Error correcting codes are such mechanisms that improve accuracy and efficiency of data trans-
mitted. They do so by adding redundancy to the code, enabling us to reconstruct missing parts
of the data transmitted as well as the detection and possibly also the correction of errors. This
section intends to give the most important definitions and results regarding coding theory, while
specific examples of error correcting codes will be presented in Section 2.2.

The following definitions will introduce codes in a rather general setting.

Definition 2.1 (Alphabet, words and Kleene closure).
An alphabet A is a finite, non-empty set of symbols, e.g. digits. A word w over the alphabet A is
a finite sequence of symbols of A, meaning that if w is a word over A, then there is a n ∈ N0 such
that w= a1a2 . . . an, where a j are symbols from A for all j.

The length of a word is the number of symbols in A. If ε denotes the empty word, i.e. the word
of length 0, and if we define A0 := {ε}, A1 := A and Aj := {ab | a ∈ A, b ∈ Aj−1}, then the set of
all words over the alphabet A is defined by

A∗ :=
⋃

j∈N0

Aj .

12 2 Coding theory

A∗ is called the Kleene closure of A and the unary operator ∗ is called Kleene star.

Definition 2.2 (Block codes and related terms).
Given an alphabet A and a injective map c : Ak → An, k ≤ n. Then the image Im(c) ⊆ An is
called code of length n and dimension k, the elements in Im(c) are called code words, Ak is called
message space and its elements are the messages.
The map c is called encoding scheme and the procedure of applying c to a message is called
encoding. If a map d : An → Ak satisfies d(c(m)) = m for all messages m ∈ Ak, then d is called a
decoding scheme.

If the map c satisfies

c(a1a2 . . . ak) = a1a2 . . . akak+1 . . . an or c(a1a2 . . . ak) = ak+1 . . . ana1a2 . . . ak

then the encoding scheme is said to be in standard form1.

Remark.
For various reasons it is very comfortable to assume that the alphabet A equals some finite field.
Codes over GF(q) are called q-ary codes.

Binary codes, i.e. codes over the alphabet {0, 1} = GF(2), have a very special role in computer
science. The investigation of q-ary codes is theoretically interesting, but we may not forget that
in general zeros and ones will be transmitted between sender and receiver. In order to ascertain
the quality of the codes we will investigate in Section 2.2, we need a probabilistic model of the
transmission channel. The following definition introduces the simplest channel model. We will
introduce another channel model in Section 2.3.

Definition 2.3 (Binary symmetric channel).
A transmission channel – the medium over which data gets transmitted between sender and
receiver – is called binary symmetric channel if it satisfies the following conditions:

BSC1 The transmitted data is in binary form, i.e. only zeros and ones get transmitted.

BSC2 The probability that a zero changes to a one equals the probability that a one changes to
a zero. This probability is called bit error probability.

BSC3 Transmission errors are independent from each other.

A visualization of a binary symmetric channel with bit error probability p is given in Figure 2.2.

The transmission quality of binary symmetric channels can be measured by the bit error probability.
In the worst case, we have P(bit error) = 0.5, because this implies complete chaos: the bits arriving
at the receiver are completely random. In general, we may assume that the bit error probability
is at most 0.5, otherwise we can just “relabel” the incoming bits at the receiver and then obtain
a channel with error rate less then 0.5.

Due to the symmetry and the independence in these binary channels, the bits behave like Bernoulli
random variables in terms of incorrect transmission. This means that if a bit b gets transmitted
correctly, the respective random variable of interest X b is zero. Otherwise, if b changes its value
1Essentially, an encoding scheme in standard form adds a whole “redundancy block” to the processed messages.

2.1 Elements of coding theory 13

1 1

0 0

1− p

p

1− p

p

Figure 2.2: Binary symmetric channel

during the transmission, X b equals to one. Constructing these “error indicating” random variables
can be further exploited.

Let us assume that we have not only one, but n bits being transmitted in a block. The random
variable X modeling the number of errors in these n bits is the sum of all error indicating random
variables, which are stochastically independent due to BSC3. This means that X follows a binomial
distribution with parameters n and p. We summarize these considerations in the following lemma.

Lemma 2.1 (Error probability in binary symmetric channels).
If a binary word of length n gets transmitted over a BSC with bit error probability p, then the
number of bit errors within these n symbols follows a binomial distribution and we have

P(r of n bits incorrect) =
�

n
r

�

· pr · (1− p)n−r .

In the following definition we will introduce a very broad class of codes which are the main focus
of our further investigations.

Definition 2.4 (Linear code).
Given a q-ary code C of length n and dimension k, that is a code with encoding scheme c :
GF(q)k→ C ⊆ GF(q)n. C is called linear code or group code, if the encoding scheme satisfies

c(m1 +m2) = c(m1) + c(m2) and c(λ ·m1) = λ ·m1

for all m1, m2 ∈ GF(q)k and for all scalars λ ∈ GF(q).

Remark.
The additions of the vectors above are always componentwise in GF(q). The name linear code
comes from the fact that the encoding scheme is a linear function – and the name group code
comes from the fact that (C ,+) – the set of code words together with the code word addition –
forms a group.

Finally, using a linear code, the zero message always gets encoded to the zero code word.

Before we go on and specify generation algorithms for linear codes we want to further characterize
linear codes and begin analyzing error detection and error correction capabilities of given codes.
An important tool for that task is the Hamming distance.

14 2 Coding theory

Definition 2.5 (Hamming distance, Hamming weight, minimum Hamming distance).
Let C be a q-ary code of length n and dimension k. Let a, b ∈ C ⊆ GF(q)n be two code words.
Then the Hamming distance d(a, b) is defined as the sum of positions of a and b with different
symbols from GF(q), i.e.

d(a, b) :=
n
∑

j=1

d(a j , b j), where d(a j , b j) :=











0 if ai = bi ,

1 otherwise.

As can be checked easily, d : GF(q)n ×GF(q)n→ N0 is a metric on GF(q)n.

The Hamming weight of a code word is defined as the number of non-zero symbols in the code
word. The Hamming weight is equivalent to the Hamming distance of the code word to the zero
word, h(a) := d(a, 0).

The minimum Hamming distance dmin of a code C is the smallest distance two different code
words have in C .

dmin := min
a,b∈C
a 6=b

d(a, b).

The Hamming distance plays an important part when trying to decode words and reconstruct the
messages sent. The following theorem introduces a very central idea in coding theory.

Theorem 2.2 (Maximum likelihood decoding).
Given a q-ary code C of length n and dimension k over a BSC with bit error probability p. Let
c → c′ denote the event that the code word c gets transmitted to some word c′ of length n.
Assume that a received word has Hamming distance d1 from the code word c1 and d2 from the
code word c2 with d1 ≤ d2. Then

P(c→ c1) = pd1 · (1− p)n−d1 ≥ pd2 · (1− p)n−d2 = P(c→ c2).

This means that it is more likely that less errors occurred during transmission. If we always try
to decode an arbitrary word received to the nearest code word, then we follow the principle of
maximum likelihood decoding (MLD).

Remark.
As the code word with the least distance to the received word does not have to be uniquely
determined, a strategy to resolve such a conflict is needed. Some approaches are simply guessing
and randomly decoding to one of the candidates, or deleting the received word and requesting a
new transmission. One might also delete the word if the distance to the next code word is higher
than a predefined threshold.

These deletion methods lead (amongst others) to soft decoding. Simply trying to decode without
any further precautions can be described as hard decoding. In the examples presented we generally
use hard decoding algorithms, with the exception of Section 2.3, where we discuss an alternative
decoding strategy.

Theorem 2.3 (Properties of the minimum Hamming distance).
Assume that a given linear q-ary code of length n and dimension k has minimum distance d. In

2.1 Elements of coding theory 15

that case, C can detect every constellation of up to d−1 errors and correct every constellation of
t :=

� d−1
2

�

errors2.

In Figure 2.3 the decoding situation is visualized. There are code words (blue dots) and non-
code words (gray dots) in GF(q)k. Around every code word, a covering radius is drawn. Words
inside this radius get decoded to the code word in the center by MLD. In general, words being
in between two covering circles cannot be decoded uniquely by MLD. Additionally, a threshold θ
can be defined, such that a received word gets deleted if it is too far away from any code word.

b d−1
2 c

d

?

?

θ

?

Figure 2.3: Error detection and correction – covering radius

Notation.
The abbreviations “q-ary [n, k, d]-code” or “[n, k, d]q-code” stand for a linear q-ary code of length
n, dimension k and minimum Hamming distance d.

If we are working with a linear code there are very efficient methods for characterizing and gen-
erating a linear code, as well as algorithms which check whether a given word is a code word. As
might have been expected, it is rather inefficient for large codes to compare the received word to
each word in the list and then decide whether we have received a code word or not.

One class of linear codes with efficient generation and check algorithm is the class of polynomial
codes. It will be necessary to represent words over GF(q) as polynomials in GF(q)[x], i.e. the
equivalency

m= ar−1ar−2 . . . a1a0 ¬ m(x) = ar−1 x r−1 + ar−2 x r−2 + · · ·+ a1 x + a0

2This means that there are constellations of d errors which C does not detect and constellations of t + 1 errors
which C does not decode correctly.

16 2 Coding theory

as noted in the definition of polynomial rings, Definition 1.6, will be used frequently. If w is a
word over GF(q), w(x) denotes the related polynomial in GF(q)[x].

Definition 2.6 (Polynomial code).
A polynomial code or polynomially generated code is a q-ary block code of length n and dimension
k encoding words from GF(q)k with the generator polynomial g ∈ GF(q)[x] of degree n− k when
the encoding process is realized as in Algorithm 1.

Algorithm 1 Polynomial codes – encoding
1: procedure encode(m ∈ GF(q)k, g ∈ GF(q)[x])
2: Transform m to polynomial form m(x).
3: Shift m(x) by multiplying xn−k.
4: Find the remainder r(x) of the shifted message divided by the generator polynomial,

m(x) · xn−k/g(x).
5: c(x)← m(x) · xn−k − r(x) and transform c(x) to its vector form c ∈ GF(q)n.
6: return c.
7: end procedure

Remark.
Polynomial codes are in standard form, the encoding scheme adds redundancy bits on the right
side of the message words.

Theorem 2.4 (Properties of polynomial codes).
Let C be a q-ary polynomial code of length n, dimension k and with generator polynomial g ∈
GF(q)[x]. Then the following statements hold:

• C is a linear code.

• c(x) is the polynomial of a code word in C if and only if c(x) is a multiple of the generator
polynomial g(x).

Another class of practically relevant linear codes very much related to the class of polynomial
codes are cyclic codes. They have very good parameters in terms of error detection and error
correction and furthermore, they are relatively easy to realize on hardware.

Definition 2.7 (Cyclic linear codes).
A q-ary linear [n, k, d]-code is called cyclic code if for all code words w = an−1an−2 . . . a1a0, the
cyclically permuted word w′ = an−2 . . . a1a0an−1 is again a code word.

For the following results on cyclic linear codes we have to assume an additional restriction regarding
the code length. Let gcd(n, q) = 1.

Let (xn − 1) be the principal ideal generated by the polynomial xn − 1. All elements of the factor
ring GF(q)[x]/(xn−1) can be represented by polynomials of degree less than n. Every vector with
n components from GF(q) corresponds to one of these polynomials. Therefore, we can identify
the set of code words C with a set of code polynomials in GF(q)[x]/(xn − 1). The structure of
this set yields a criterion in order to decide whether C is a cyclic code or not.

2.1 Elements of coding theory 17

Theorem 2.5 (Characterisation of cyclic codes).
Given a linear q-ary [n, k, d]-code with gcd(n, q) = 1. Then C is a cyclic code if and only if the
respective set of polynomials in GF(q)[x]/(xn − 1) is an ideal.

Proof. If the set of polynomials is an ideal and an−1an−2 . . . a0 ∈ C , then also

x · (an−1 · xn−1 + · · ·+ a1 · x + a0) = an−1 · xn + · · ·+ a1 · x2 + a0 · x

= an−2 · xn−1 + · · ·+ a0 · x + an−1 ¬ an−2an−2 . . . a1a0an−1 ∈ C .

On the other hand, if the cyclic permutations of a code word are in C , then this implies that for
every code polynomial a(x) the words x · a(x), x2 · a(x), . . . are also code polynomials. Finally,
due to linearity we know that b(x) ·a(x) is a code polynomial for any polynomial b – which makes
the set of code polynomials an ideal.

Lemma 2.6.
Every ideal of GF(q)[x]/(xn − 1) is a principal ideal generated by the unique monic polynomial
g(x) of lowest degree in the ideal and g(x) also divides xn − 1.

This means that a q-ary polynomial code of length n and dimension k is cyclic if and only if its
generator polynomial g is a divisor of xn − 1.

We will come back to special polynomial codes like the BCH-code or the RS-code in Section 2.2.
Before we discuss a practical, generally applicable decoding algorithm for linear codes, we will
investigate another possibility to characterize linear codes: generator matrices. The idea behind
the representation of linear codes by generator matrices is to write down the matrix representation
of the linear encoding scheme with respect to the standard bases in GF(q)k and GF(q)n.

Definition 2.8 (Generator matrix).
Given a linear q-ary [n, k, d]-code C with encoding scheme c. Let ei ∈ GF(q)k denote the message
where all components are zero except for the i-th entry3, which is 1. Then, the generator matrix
G ∈ GF(q)k×n is the matrix

G =









c(e1)
...

c(ek)









.

If the code C is given in standard form, the the generator matrix has the form G = [Ik | P], where
P ∈ GF(q)k×n−k.

Multiplying a message m ∈ GF(q)k from the left side with the generator matrix yields the cor-
responding code word c = c(m) ∈ GF(q)n. Thus, the code is the row space of the generator
matrix.

By exploiting the structure of the generator matrix, we can construct a simple criterion for checking
whether a given word is a code word or not. To do so, we temporarily restrict ourselves to codes
in standard form.
3In this context, the ei are called unit messages.

18 2 Coding theory

Definition 2.9 (Check matrix).
Given a linear q-ary [n, k, d]-code C in standard form with generator matrix G = [Ik | P] ∈ GF(q)k×n.
Then the check matrix H of the code C is the (n× (n− k))-matrix defined by

H :=





−P

In−k



 .

Lemma 2.7.
If H is a check matrix for some q-ary linear code of length n and dimension k, then the code C
consists of all words v ∈ GF(q)n for which v · H = 0 holds. Also, the product of the generator
matrix and the check matrix is the zero matrix.

A check matrix can also be constructed if the respective code is not in standard form, as we know
that the code C has to be the kernel of the matrix H by Lemma 2.7.

Definition 2.10 (Equivalent codes).
Two q-ary linear codes C and C ′ of length n and dimension k are called equivalent if the generator
matrix G′ of C ′ can be formed out of the generator matrix G of C by using the following elementary
operations:

(a) swapping two columns,

(b) multiplying a column with a scalar λ 6= 0,

(c) swapping two rows,

(d) multiplying a row with a scalar λ 6= 0,

(e) adding a scaled row (i.e. a row multiplied with a scalar) to another row.

Due to the fact that the encoding scheme is an injective function, we know that the respective
generator matrix G has full row rank. Then, using another result from linear algebra we can prove
the following theorem.

Theorem 2.8.
Each linear [n, k, d]q-code C is equivalent to a linear [n, k, d]q-code C ′ in standard form.

An alternative to the construction of the check matrix via the known kernel is by using the above
stated results on equivalent codes. By modifying the check matrix of the respective equivalent
code in standard form, the check matrix of the given code can be obtained.

Sometimes a linear code generated by certain parameters (cf. Section 2.2, e.g. BCH and RS codes)
has inconvenient length. Removing some symbols from the code words leads to the concept of
shortened codes.

Definition 2.11 (Shortened linear codes).
Let C be a linear [n, k, d]q-code with generator matrix G ∈ GF(q)k×n. If the matrix G′ ∈ GF(q)k×n′

– obtained from G by deleting some columns – has full row rank, then the linear [n′, k, d ′]q-code
C ′ generated by G′ is called shortened code.

The minimum Hamming distance of a shortened code with n′ = n− 1, i.e. the generator matrix

2.1 Elements of coding theory 19

of the shortened code can be obtained by deleting one column in the original generator matrix,
is usually d − 1. The minimum Hamming distance does not change if, for example, the column
deleted was a zero column.

Shortened codes are used in many applications like for example on compact discs, where shortened
Reed Solomon codes are applied.

For the remainder of this section, we will concentrate on general decoding algorithms for linear
codes.

Let C be a linear q-ary code of length n and dimension k. Assume that a message m ∈ GF(q)k

gets encoded by C to a code word c. Let the (erroneous) word we get by transmitting c over
some transmission channel be denoted by c′. Then the error pattern is defined as e := c′− c. This
means that we model transmission by adding an error pattern to the code word, c′ = c + e.

By brute force decoding we decode c′ to argminu∈C d(c′, u). Brute force decoding is very inefficient
for large k, as we have to compute the Hamming distance to all qk code words.

In order to efficiently decode a received word, we want to evaluate e from c′. Note that the code
words form – by the definition of linear codes – a group regarding code word addition. Due to
properties of the group C , we know that C = −C , and therefore we can investigate the cosets
c′ + C , because e = c′ − c ∈ c′ − C = c′ + C , meaning that the error vector e always is within the
coset c′+C . By maximum likelihood decoding we are looking for the word in c′+C with minimum
weight – which is called the coset leader. Algorithm 2 describes the procedure from this paragraph
– the so-called coset search – in detail. Coset search still is rather inefficient for large codes.

Algorithm 2 Coset search decoding
1: procedure decode(linear [n, k, d]q-code C , w ∈ GF(q)n)
2: M ← w+ C
3: min← n, e← (0, 0, . . . , 0)
4: while M 6= ; do
5: w ∈ M
6: if h(w)≤min then
7: min← h(w), e← w
8: end if
9: M ← M \ {w}
10: end while
11: return w− e
12: end procedure

However, coset search can easily be modified to be more efficient. At this point we will make use
of the check matrix again.

Definition 2.12 (Syndrome).
Let C be a linear q-ary code of length n, dimension k and check matrix H. Then the syndrome
or C-syndrome of a word w ∈ GF(q)n is given by w ·H.

Due to Lemma 2.7, a word is a code word if and only if its syndrome is 0.

20 2 Coding theory

If w ∈ c′ + C , we have w= c′ + u for some code word u. Therefore,

w ·H = (c′ + u) ·H = c′ ·H = (e+ c) ·H = e ·H

holds, that is words within the same coset have the same syndrome. Furthermore, if two code
words have the same syndrome, they have to be from the same coset. This leads us to the
syndrome decoding algorithm, as described in Algorithm 3. Coset search and syndrome decoding
are very much related, thus syndrome decoding also belongs to the family of maximum likelihood
decoding algorithms.

Algorithm 3 Syndrome decoding
1: procedure initialization(linear [n, k, d]q-code C , check matrix H, w ∈ GF(q)n)
2: cosetLeader← ; . cosetLeader is a function, whose images will be set below.
3: j← 0, M j ← {w ∈ GF(q)n | h(w) = j}
4: while |im(cosetLeader)|< qn−k do . Coset leader generation.
5: if M j = ; then
6: j← j + 1, M j ← {w ∈ GF(q)n | h(w) = j}
7: end if
8: Choose e ∈ M j

9: if cosetLeader(e ·H) is undefined then
10: cosetLeader(e ·H) := e . If e ·H has no value assigned yet, assign e.
11: end if
12: M j ← M j \ {e}
13: end while
14: return cosetLeader
15: end procedure
16: procedure decode(cosetLeader, check matrix H, w ∈ GF(q)n)
17: return w− cosetLeader(w ·H)
18: end procedure

Remark.
Note that even though syndrome decoding is more efficient than simple hard decoding using brute
force or coset search, qn−k syndromes have to be computed and stored. This number obviously
grows exponentially with the number of redundancy symbols added. For special types of codes
there are special decoding algorithms, like the Berlekamp-Massey algorithm for Reed-Solomon
and BCH codes. We refer to [6] for detailed information on some specialized decoding algorithms.

2.2 Selected linear codes and their properties
The first two classes of linear codes we want to introduce are very simple codes: the class of
repetition codes and the class of parity check codes.

Definition 2.13 (Repetition codes).
Repetition codes of order t are linear q-ary [t · k, k, t]-codes whose generator matrix G consists of
the identity matrix Ik repeated t times, i.e. G = [Ik | Ik | · · · | Ik].

In terms of error correction capability, repetition codes are not very good. Their information rate,

2.2 Selected linear codes and their properties 21

i.e. the code dimension divided by the code length, is 1/t, which is quite low for a code with
minimum Hamming distance t.

Definition 2.14 (Parity check codes).
Parity check codes are linear q-ary [k+ 1, k, 2]-codes where the encoding scheme is given by

c(m1, m2, . . . , mk) =

m1, m2, . . . , mk,
k
∑

j=1

m j

!

Parity check codes cannot correct errors. However, they are very easy to implement and they do
have some nice properties. For example, binary parity check codes are able to detect whether an
odd number of errors occurred.

Definition 2.15.
A linear binary code C is called Hamming code of order m, if its length is n= 2m−1, its dimension
is 2m−m− 1 and the rows of the (2m− 1)×m check matrix are the binary representations of the
integers 1, 2, . . . , 2m − 1. Adding a parity check column to the generator matrix of a Hamming
code results in the generator matrix for an extended Hamming code.

Example 2.1.
The generator matrices for the binary Hamming code of order 3 and the extended binary Hamming
code of order 3 are given below:

G =













1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1













, G′ =













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













.

Lemma 2.9 (Minimum distance of Hamming codes).
The minimum distance for any linear binary Hamming code is 3. The minimum distance for any
extended linear binary Hamming code is 4.

Therefore, Hamming codes and extended Hamming codes can correct one error and detect 2 and
3 errors, respectively.

Remark.
Linear binary Hamming codes are perfect codes, i.e. codes which satisfy the Hamming bound for
linear q-ary [n, k, d]-codes C capable of correcting t errors,

|C | ·
t
∑

j=0

�

n
j

�

(q− 1) j ≤ qn

with equality.

Perfect codes have the very nice property that for each word w there is exactly one code word
with Hamming distance at most d from w. Therefore, every word can be uniquely decoded by
maximum likelihood decoding.

22 2 Coding theory

The next code we want to introduce – the so-called (extended) binary Golay code – was used in
the Voyager spacecraft program in the early 1980’s.

Definition 2.16 (Extended linear binary Golay code).
Let P ∈ GF(2)12×12 be the matrix

P =























































1 0 1 0 1 1 1 0 0 0 1 1

1 1 1 1 1 0 0 1 0 0 1 0

1 1 0 1 0 0 1 0 1 0 1 1

1 1 0 0 0 1 1 1 0 1 1 0

1 1 0 0 1 1 0 1 1 0 0 1

0 1 1 0 0 1 1 0 1 1 0 1

0 0 1 1 0 0 1 1 0 1 1 1

1 0 1 1 0 1 1 1 1 0 0 0

0 1 0 1 1 0 1 1 1 1 0 0

0 0 1 0 1 1 0 1 1 1 1 0

1 0 1 1 1 0 0 0 1 1 0 1

0 1 0 1 1 1 0 0 0 1 1 1























































.

Then the binary linear [24, 12,8]-code with generator matrix G = [I12 | P] is called extended linear
binary Golay code.

The extended linear binary Golay code has a minimum Hamming distance of 8, and thus is able
to detect and correct up to 7 and up to 3 errors, respectively.

The linear binary Golay code can be defined as a shortened version of the extended linear binary
Golay code.

Definition 2.17 (Linear binary Golay code).
The linear binary Golay code is a [23, 12,7]-code where the generator matrix can be obtained by
deleting the last column of the extended linear binary Golay code.

Remark.
Both versions of the Golay code have some interesting properties. The linear binary Golay code
is a perfect code, being able to correct 3 errors and detecting up to 6 errors.

The extended linear binary Golay code has some deeper algebraic background which we will not
get into detail here. However, let it be said that a very efficient decoding algorithm of this code
can be constructed, see [6] for details.

The next class of codes we want to introduce is the class of Reed-Muller codes. Actually, Reed-
Muller codes are a generalization of extended Hamming-Codes, as these are included in the class
of Reed-Muller codes.

Definition 2.18 (Reed-Muller codes).
The Reed-Muller code with length parameter m and order r is a binary [2m, k, 2m−r]-code with
k :=

∑r
j=0

�m
j

�

. Let us define the wedge product of two vectors a, b ∈ GF(2)n as

a ∧ b := (a1 · b1, a2 · b2, . . . , an · bn).

This way, a generator matrix for the Reed-Muller code can be obtained from Algorithm 4.

2.2 Selected linear codes and their properties 23

Algorithm 4 Reed-Muller code generator matrix
1: procedure getGeneratorMatrix(r, m ∈ N)
2: n← 2m

3: v0← (1, 1, . . . , 1) ∈ GF(2)n . First row of generator matrix G.
4: Let M1 be a m× 2m matrix with the binary representations of 0,1, . . . , 2m− 1 as columns.
5: Let v1, v2, . . . , vm be the rows of M1. . Rows 1 to m from generator matrix G.
6: S← {1, 2, . . . , m}
7: j← 2
8: while j ≤ r do
9: Add the vector

∧

k∈S j
vk for all S j ⊆ S, |S j|= j to G.

10: end while
11: return G
12: end procedure

Example 2.2.
The Reed-Muller code with length parameter m = 4 and order r = 2 is a binary [16, 11,4]-code
with generator matrix

G =

















































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

















































.

Remark.
Note that for Reed-Muller codes of order r = 1, there is a fast and efficient decoding algorithm
based on the Fast Hadamard Transform (cf. [6, p. 88 ff.]).

There are two more codes we want to introduce: Bose-Chaudhuri-Hocquenghem codes, i.e. BCH
codes, and Reed-Solomon codes. Reed-Solomon codes were investigated before the BCH codes,
and later it was found that Reed-Solomon codes actually are included in the class of BCH codes.
Note that for these codes there are very specialized decoding algorithms which we will not go into
detail here (cf. [7, p. 328 ff.], [6, p. 135 ff.]).

Definition 2.19 (BCH codes, RS codes).
Let b and n be nonnegative integers and let n and q be coprime. Furthermore, let α ∈ GF(qm) be
a primitive n-th root of unity, where m is the multiplicative order of q modulo n. A BCH code

24 2 Coding theory

over GF(q) of length n and designed distance d where 2 ≤ d ≤ n is a cyclic code defined by the
roots

αb,αb+1, . . . ,αb+d−2

of the generator polynomial.

If m(i)α (x) ∈ GF(q)[x] denotes the minimal polynomial of αi over GF(q), then the generator poly-
nomial g(x) of a BCH code is of the form

g(x) := lcm(m(b)α (x), m(b+1)
α (x), . . . , m(b+d−2)

α (x)).

Also, there are some special cases:

• When choosing b = 1, then the constructed BCH codes are called narrow-sense BCH codes.

• If n= qm − 1, the corresponding BCH codes are called primitive.

• For n= q− 1, BCH codes of length n over GF(q) are called Reed-Solomon codes.

After all parameters are set and the generator polynomial is found, encoding takes place as
described in Algorithm 1 and the paragraphs about cyclic codes. The following theorem justifies
the term designed distance.

Theorem 2.10.
The minimum distance of a BCH code of designed distance d is at least d.

We will give two examples, an ordinary BCH code and a RS code to visualize the construction
process.

Example 2.3.
We want to construct a primitive, narrow-sense BCH code with q = 2, n = 15 and designed
distance d = 7. Obviously, we also have m= 4, thus we are looking for a generating element α in
GF(24). As x4 + x + 1 is irreducible over GF(2) and has degree 4, the element α in GF(24) with
α4 +α+ 1= 0 is such an element.

Due to characteristic 2 we know that p(x)2 = p(x2), and thus we only need to compute the least
common multiple of the minimal polynomials for the odd powers of α, i.e. α,α3,α5.

As the polynomial x4 + x + 1 is irreducible, we already know m(1)α (x) = x4 + x + 1.

The minimal polynomial of α3 also needs to have the roots

(α3)2 = α6, (α6)2 = α12, (α12)2 = α24 = α15 ·α9 = α9, (α9)2 = α18 = α3.

Therefore,

m(3)α (x) = (x −α
3)(x −α6)(x −α12)(x −α9) = x4 + x3 + x2 + x + 1.

Finally, m(5)α needs to have the roots

(α5)2 = α10, (α10)2 = α20 = α5

we have m(5)α (x) = (x −α
5)(x −α10) = x2 + x + 1.

Then, the generator polynomial of the BCH code is given by

g(x) = lcm(m(1)α (x), m(3)α (x), m(5)α (x)) = x10 + x8 + x5 + x4 + x2 + x + 1.

2.3 Soft decoding over a different channel model 25

Example 2.4.
Again, we want to stay within GF(24) and construct a Reed-Solomon code, meaning that q = 16.
This forces the length of the code to be 15. Furthermore, we want our code to be able to correct
3 errors, thus we choose the designed distance to be 7. Also, we choose b = 1 in Definition 2.19.

Furthermore, we assume β to be a generating element of GF(24), meaning that the field is given by
GF(24) := {0,1,β ,β2, . . . ,β14}. Also, let us assume that β is a root of the irreducible polynomial
x4 + x + 1.

Note that this code actually is a code over GF(24). This means that if we want to use it in
standard applications, we have to think about how to represent these elements in binary form – as
the standard transmission channels are generally symmetric binary channels. We will use the fact
that every element in GF(24) can be represented as a polynomial with degree up to 3 in GF(2)[x].
Thus, we obtain the following “translation table”4:

0 ¬ 0000 β3 ¬ 1000 β7 = β3 + β + 1 ¬ 1011 β11 = β3 + β2 + β ¬ 1110

1 ¬ 0001 β4 = β + 1 ¬ 0011 β8 = β2 + 1 ¬ 0101 β12 = β3 + β2 + β + 1 ¬ 1111

β ¬ 0010 β5 = β2 + β ¬ 0110 β9 = β3 + β ¬ 1010 β13 = β3 + β2 + 1 ¬ 1101

β2 ¬ 0100 β6 = β3 + β2 ¬ 1100 β10 = β3 + β + 1 ¬ 1011 β14 = β3 + 1 ¬ 1001

Minimal polynomials of elements β j in GF(24) are linear factors, they have the form (x − β j).
Therefore, computing the generating polynomial of the desired Reed-Solomon code is very easy,
we have

g(x) = (x − β) · (x − β2) · (x − β3) · (x − β4) · (x − β5) · (x − β6)

= x6 + β10 · x5 + β14 · x4 + β4 · x3 + β6 · x2 + β9 · x + β6.

The encoding process then is the same as with BCH codes described above.

2.3 Soft decoding over a different channel model
In this section we want to discuss an alternative channel model. The binary symmetric parallel
channel is a generalization of the symmetric parallel channel from Definition 2.3.

Definition 2.20 (Binary symmetric parallel channel).
Assume there are n labelled and ordered binary symmetric channels with respective error proba-
bilities p j, j ∈ {1,2, . . . , n} between a sender A and a receiver B, such that if A sends a bit over
channel j, B knows that the information received belongs to position j.

Then we call the transmission channel obtained by the (ordered) union of these n binary symmetric
channels a binary symmetric parallel channel of capacity n.

Remark.
In Figure 2.4, the Binary symmetric parallel channel is visualized. Note that it is a characteristic
property of this channel type to have several different error probabilities. Assuming that p1 =
p2 = · · · = pn leads back to the binary symmetric channel model, because there is no difference
4Reed-Solomon codes are frequently used when so-called burst errors are likely to appear over a communication
channel, as they treat a group of bits as one symbol. Correcting one symbol therefore corrects a whole bit group.

26 2 Coding theory

Data
Source

Encoder

Decoder
Data
Sink

Noise Noise

Figure 2.4: Binary symmetric parallel channel

whether a word gets transmitted bitwise over different channels with the same error probability or
whether the whole word just gets transmitted over one binary symmetric channel.

Remark (Motivation).
The reason for us investigating this rather strange transmission channel model is that it appears
when analyzing the behavior of uninitialized SRAM-cells with respect to their stability (meaning
whether they tend to assume state 0 or 1 on initialization). This is one of the problems we were
confronted with in the CODES-project.

Before we begin our investigations and derive some elementary properties of this channel model,
we want to specify how we will model the error probabilities p j.

Imagine that before using the channel, sender A and receiver B agree to perform some sort of
enrollment phase. First, they specify an error correcting code to be used during the transmission
procedure. Then, A sends the zero word to B repeatedly5. Thus, B is able to estimate the
probability p j = P(j-th position is a 1). Then B shortens the error correcting code by ignoring
or deleting the r bits transmitted over the binary channels with the r highest estimated error
probabilities and thus (ideally) decreases the decoding error probability.

A suitable distribution model for the error probabilities p j is a modified Beta distribution. In
general, the density of a Beta distribution with parameters α and β is

f (x) =
1[0,1](x)

B(α,β)
· xα−1 · (1− x)β−1,

where B(α,β) is the Beta function. There are two modifications we will apply to this model: firstly,
we want the density to be concentrated on [0,0.5] which we can achieve by the transformation
x 7→ 2x . And secondly, we want to eliminate the influence the term (1− x)β−1 has on the density,
which we will do by setting β = 1. If β < 1, the density increases again around 0.5, which increases
the probability of having a channel with very high error probability. We want to exclude this case
in our investigations. By setting β > 1, the behavior of the density near 0.5 can be adjusted
further – which we will refrain from in our deliberations.

Also, we want to choose α between 0 and 1. Otherwise, the density near 0 is small – which we
do not want.
5In this context, the number of zero words sent in the enrollment phase will be called degree of enrollment.

2.3 Soft decoding over a different channel model 27

These modifications lead to the following distribution6: X ∼ Be(α, 1; 0, 0.5) with density

fX (x) = 2α ·
1[0,0.5](x)

B(α, 1)
· xα−1.

This can be simplified further. Note that B(α,β) = Γ (α)Γ (β)
Γ (α+β) and Γ (α+1) = Γ (α) ·α. Thus, we can

rewrite the density to
fX (x) = 1[0,0.5](x) · 2α ·α · xα−1. (2.1)

Integration yields the cumulative density function,

P(X ≤ x) = FX (x) =











0 for x < 0

(2x)α for 0≤ x ≤ 0.5

1 for x > 0.5

(2.2)

Now, assume we have a binary symmetric parallel channel of capacity n with p1, p2, . . ., pn being
realizations of a random variable P ∼ Be(α, 1; 0, 0.5). We want to investigate how the mean error
rate p := 1

n ·
∑n

j=1 p j is related to the parameter α of the modified Beta distribution.

By the method of moments, p is an estimator for the mean of P. We can use this knowledge for
two purposes: on the one hand, we can estimate the expected bit error rate for known α, and on
the other hand, we can construct an estimator α̂ for known bit error rate p. The expected value
of P is given by

EP =

∫ ∞

−∞
x · f (x) d x =

α

2 · (α+ 1)
.

By setting EP = p, we can construct the following estimator:

α̂=
2p

1− 2p
. (2.3)

The enrollment phase of the soft decoding algorithm we propose is described in Algorithm 5. After
completing the enrollment of the transmission channel, sender and receiver shall use standard
maximum likelihood decoding over the unmarked channels. With our modified Beta distribution,
we are able to do some simulations to compare the performance of this soft decoding strategy
against standard maximum likelihood decoding over binary symmetric parallel channels.

Algorithm 5 Soft decoding over binary symmetric parallel channels – enrollment.
1: procedure enrollment([n, k, d]-code C , l ∈ N, 1≤ r < d)
2: Sender A transmits the zero word 0 ∈ GF(2)n l times to receiver B.
3: B counts the number of ones (which is the number of errors) c j received over channel j.
4: B marks the r transmission channels j1, . . . , jr where the most errors occurred.
5: return List of marked transmission channels (j1, . . . , jr) to be ignored during decoding.
6: end procedure

Remark.
The degree of enrollment l from Algorithm 5 controls the precision with which the transmission
6Be(α, 1; 0, 0.5) denotes a truncated Beta distribution with unspecified parameter α and fixed parameter β = 1
which is concentrated on the interval [0,0.5].

28 2 Coding theory

channels with high error probability are identified. Due to the law of large numbers, c j/l converges
to p j almost surely for l →∞.
Furthermore, as shortening a linear code by one bit also possibly reduces the minimum Hamming
distance of the code by one, we will refrain from choosing r too large, which would strongly reduce
the error correction capabilities of the original code.

The following example shall demonstrate the performance of the described soft decoding algo-
rithm. The simulations are done with Sage using the code snippets included in the appendix in
Section A.3.

Example 2.5.
Consider the Reed-Muller code of length 24 and order 1, which is a [16,5, 8] linear binary code. The
code words are transmitted between sender and receiver via a binary symmetric parallel channel.
We will analyze two cases where the average bit error rate over all channels is given by 0.08
and 0.12, respectively. The degree of enrollment is fixed at 300 evaluations, and r ∈ {0,1, 2,3}
(number of ignored channels).

By simulation (10000 evaluations per simulated parallel channel, 1000 simulated parallel channels
– overall: 107 evaluations for each of the 8 cases, r = 0 marks simple hard decoding) on basis of
the Beta distribution as described above we find the following results:

pb r % inc. dec. % inc. dec. e3 % inc. dec. e4 % inc. dec. e5 % inc. dec. e6 % inc. dec. e7

0.08 0 6.47 0 52.32 89.99 99.68 100

1 3.90 0 18.83 75.65 99.33 100

2 3.33 2.24 14.76 49.23 93.12 100

3 2.43 1.66 10.36 34.50 72.46 99.31

0.12 0 19.88 0 51.40 89.34 99.64 100

1 14.74 0 25.53 78.16 99.29 100

2 13.16 3.85 21.23 57.78 93.64 100

3 11.31 3.85 18.13 46.47 79.93 99.25

In this table, “% inc. dec.” denotes the percentage of incorrectly decoded words, and with the
suffix e j the percentage of words is denoted which were decoded incorrectly after j errors were
applied to a code word. After applying more than 7 errors to a code word, all words are incorrectly
decoded by every decoder investigated. From our simulation it is clear that the algorithm definitely
does improve the data correction capabilities of the underlying Reed-Muller code. Nevertheless,
the numbers show that not too many binary channels should be ignored, as for r = 2 and r = 3
decoding errors may occur, even though “only” three errors were applied to the code word. In the
case of pb = 0.08, we are able to reduce the overall decoding error rate from 6.47 %, which may
be observed when using hard decoding, to 2.43% when ignoring r = 3 binary symmetric channels.
For pb = 0.12, we can reduce the error rate from 19.88 % (hard decoding) to 11.31% (r = 3).

3 Code concatenations

3.1 Definition and properties
When David Forney was looking for a class of (linear) codes with polynomial decoding time
complexity and exponentially decreasing error probability (for increasing code length) in 1965, his
search lead him to the concatenation of linear codes as described in [4]. The general idea is to
have one binary1 code (inner code) of dimension k and length n, and a linear code over GF(2k),
the “outer code”, with dimension K and length N .

If we want to encode some bitstring, we accumulate k ·K bits and transform them into K symbols
in GF(2k). Then, applying the outer code yields N symbols, transferable into k · N bits. And
finally, we apply the inner code to each group of k bits, yielding n bits each and n ·N bits overall.
Formally this leads to the following definition:

Definition 3.1 (Galois concatenation).
Given a linear binary [n, k, d]-code Cin and a linear [N , K , D]-code Cout over GF(2k). Then, the
code C := Cout ◦ Cin is called (Galois) concatenated code with length n · N and dimension k · K, if
C maps messages to code words as described in Algorithm 6.

Algorithm 6 Galois code concatenation – encoding
1: procedure encode(m ∈ GF(2)k·K , encin, encout)
2: Form K symbols a j ∈ GF(2k) from the k · K input bits
3: GF(2k)N 3 b = (b1, . . . , bN)← encout(a1, a2, . . . , aK) . Encode with Cout.
4: Form (b̃1, . . . , b̃N) = b̃ ∈ GF(2)k·N from b . b̃ j is b j in binary representation
5: c← (encin(b̃1), . . . ,encin(b̃N)) ∈ GF(2)n·N . Encode with Cin and concatenate
6: return c
7: end procedure

However, in this section we want to consider another possibility of concatenation, which does not
force us to work over an extension field like GF(2k). Results for the “classical” Galois concatenation
can be found in [4] and [9].

Definition 3.2 (Binary Concatenation).
Given a linear binary [n, k, d]-code Cin (inner code) and a linear binary [N , K , D]-code Cout (outer
code). Let r denote the least common multiple of N and k and let r = t · k. Then, we will call
1However, the inner code does not have to be binary; the idea can be generalized to a code over an arbitrary
alphabet A.

30 3 Code concatenations

the code C := Cout◦̃Cin with length t · n and dimension r
N · K (binary) concatenation of Cout and

Cin, if C maps messages to code words as described in Algorithm 7.

Algorithm 7 Binary code concatenation – encoding
1: procedure encode(m ∈ GF(2)

r
N ·K , encin, encout)

2: GF(2)r 3 c̃← (encout(m(1)), . . . ,encout(m(
r
N))) . Encode each group of K bits with Cout

3: GF(2)t·n 3 c← (encin(c̃(1)), . . . ,encin(c̃(t))) . Encode each group of k bits with Cin

4: return c
5: end procedure

As can be seen from the definitions, the main difference between the Galois concatenation and the
binary concatenation is that the first option forces us to work over an extension field. Otherwise
the algorithms are quite similar.

On the following pages, we want to give some theoretical results regarding the binary concatenation
of linear codes.

Lemma 3.1 (Linearity and generator matrix – binary concatenation).
Given a binary concatenated code C = Cout◦̃Cin with the same notation as in Definition 3.2.
Assume lcm(N , k) = N = t · k, let Gin ∈ GF(2)k×n be the generator matrix of the inner code and
let

GF(2)K×N = GF(2)K×t·k 3 Gout = (G
(1)
out | G

(2)
out | · · · | G

(t)
out), G(j)out ∈ GF(2)K×k,

with j ∈ {1, 2, . . . , t}, be the generator matrix of the outer code. Then C is a linear binary code
and its generator matrix G is given by

G = (G(1)out · Gin | G
(2)
out · Gin | · · · | G

(t)
out · Gin).

Remark.
The assumption lcm(N , k) = N is not restrictive:

Recall the encoding algorithm for such a concatenation as described in Algorithm 7. Without loss
of generality we can assume that lcm(N , k) = N , otherwise we can design a new outer code C ′out
with generator matrix

G′out = diag(Gout)
r/N
j=1,

which is the “old” generator matrix stacked r/N times on the main diagonal. Then we have
G′out ∈ GF(2)r/N·K×r and the “new” outer code is a linear binary code of length r and dimension
r/N · K. This procedure formally corresponds to the process of accumulating “sufficiently” many
bits before decoding.

Proof of Lemma 3.1. We will show that there is a generator matrix for the concatenated code.
Then the linearity is obvious.

Now, under the assumption above we encode K bits into N = t · k bits and then each block of k
bits into a block of n bits, resulting in t · n bits overall. Obviously, we receive the j-th block of k
bits we need for the second encoding procedure by selecting columns (j − 1) · k + 1 to j · k from
the generator matrix of the outer code. These submatrices are exactly the G(j)out. As we encode

m 7→ m · G(j)out = c̃ j 7→ c̃ j · Gin = c j

3.1 Definition and properties 31

we have
c j = m · G(j)out · Gin. (3.1)

To obtain the code word of m with respect to the concatenated code C we concatenate the words
c j. Finally, we have

m 7→ (c1, c2, . . . , ct) =
�

m · G(1)out · Gin, m · G(2)out · Gin, . . . , m · G(t)out · Gin

�

= m ·
�

G(1)out · Gin | G
(2)
out · Gin | · · · | G

(t)
out · Gin

�

= m · G.

G is now a generator matrix of C by construction – which also makes C a linear code.

Lemma 3.2 (Minimum Hamming distance – binary concatenation).
Given a linear binary concatenated code C = Cout◦̃Cin with the same notation as in Definition 3.2
and lcm(N , k) = N = t · k. Let Gin ∈ GF(2)k×n be the generator matrix of the inner code and

GF(2)K×N = GF(2)K×t·k 3 Gout = (G
(1)
out | G

(2)
out | · · · | G

(t)
out), G(j)out ∈ GF(2)K×k, j ∈ {1, 2, . . . , t}

be the generator matrix of the outer code.

Let s denote the number of matrices G(j)out with full row rank (rank(G(j)out) = K). Then the minimum
Hamming distance of C is at least equal to s ·d, where d denotes the minimum Hamming distance
of the inner code Cin.

Proof. Due to Lemma 3.1, the concatenation C is a linear code – and thus the minimum Hamming
distance equals the minimum Hamming weight. From (3.1) we know how the j-th of the code
blocks of length n looks like. Note that because of

c j = m · G(j)out · Gin = m(j) · Gin,

c j is an inner code word. Therefore, if m(j) 6= 0 we have h(c j)≥ d. Furthermore, due to

h(c) = h(c1, c2, · · · , ct) =
t
∑

j=1

h(c j)

we just need to check whether the case c j = 0 is possible for m 6= 0. The kernel of the linear map
where we multiply a message from the left side to G(j)out only consists of the zero message if and
only if the matrix has full row rank, rank(G(j)out) = K. Therefore, if m 6= 0 we also have m(j) 6= 0 for
these matrices – and therefore also c j 6= 0, as Cin is a linear code.

Overall, if c is the code word of m 6= 0 regarding the concatenation C , the inequality

h(c) =
t
∑

j=1

h(c j)≥
s
∑

j=1

d = s · d

holds. Thus, the minimum Hamming distance of C is at least s · d.

Remark.
Note that the minimum Hamming distance of binary concatenated codes does not depend directly
on the Hamming distance of the outer code. Using the notation of Lemma 3.2, the inequality
D ≥ s holds. However, when using two-step decoding as described in Algorithm 8, the minimum
distance of the outer code definitely has an influence on the decoding capabilities, as can be seen
in Section 3.2.

32 3 Code concatenations

Algorithm 8 Binary code concatenation – decoding
1: procedure decode(c ∈ GF(2)t·n, decin, decout)
2: Split c into t code words of length n: (c1, . . . , ct)← c
3: Decode these inner code words: v j ← decin(c j) . v j ∈ GF(2)k

4: Concatenate: v← (v1, . . . , vt) . v ∈ GF(2)t·k = GF(2)N

5: Decode this outer code word: m← decout(v) . m ∈ GF(2)K

6: return m
7: end procedure

Example 3.1.
Consider the following binary concatenation: Let Cout = Ham[8, 4,4] be the extended binary
Hamming code and let Cin be constructed by a generator matrix Gin, where

Gin :=













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













, Gout =













1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 1

0 0 0 1 1 1 1 0













.

A simple calculation with Sage shows that the minimum distance of Cin is 2. Using Lemma 3.1
we can compute the generator matrix of the binary concatenated code C , which is

G =













1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1

0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1

0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0

0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1













.

In the process of evaluating G we had to split Gout into two blocks, thus we have t = 2. Finally,
with the help of Sage, we can calculate the minimum distance of C , which is 7. The inequality

s · d ≤ dmin, that is 2 · 2≤ 7

holds.

This is an example for the fact that the minimum distance often can be greatly improved, compared
to the lower bound proved in Lemma 3.2.

3.1.1 Equivalency of binary concatenation and Galois concatenation
We are interested in investigating the relation between binary concatenated codes and Galois
concatenated codes. On the one hand, we want to know whether there are any codes for which
binary concatenation and Galois concatenation yield the same code, meaning that the encoding
algorithms coincide. On the other hand, we want to investigate whether we can construct a binary
code to a code over an extension field (or vice versa), such that the encoding algorithms yield the
same bit strings.

3.1 Definition and properties 33

Full equivalency
The point with binary concatenated codes is that we do not need to leave GF(2), whereas Galois
concatenated codes – or at least the respective outer code – work over GF(2k), where k is the
dimension of the inner code.

However, there is a case where Galois concatenated codes also stay in GF(2): if k = 1, i.e. the
inner code only encodes single bits. There is only one type of linear codes taking only one bit as
input and having maximum Hamming weight: repetition codes.

Example 3.2.
Consider the following two codes:

Cout = Gol[24,12, 8], Cin = Rep[7, 1,7].

No matter which concatenation we perform on these two codes, the result stays the same: First,
we accumulate 12 bits and apply the outer code, receiving 24 bits. Then we apply the inner code
on each bit, gaining 24 · 7 = 168 bits. The resulting code is a code of dimension 12 and length
168. Note that this code is nothing else than the Golay code repeated seven times – and thus
has a minimum distance of 7 · 8= 56. Therefore, the code is able to correct up to 27 errors.

Also note that Gout is a 12×24-matrix and the G(j)out are the columns of Gout, so G(j)out ∈ GF(2)12×1.
As none of the G(j)out has full row rank the inequality from Lemma 3.2 does not yield an interesting
lower bound.

Structural equivalency
At first we need a concept which allows us to decide whether two given codes are equivalent. The
following definition will take care of that.

Definition 3.3 (Structural equivalency).
Given two linear binary codes, Cout and Cin in the sense of the definition of binary concatenation.
Let C ′out be a linear code over GF(2k). If the binary concatenation of Cout and Cin and the Galois
concatenation of C ′out and Cin yield the same linear code, then Cout and C ′out are called structurally
equivalent.

That is, two binary codes Cout and C ′out are called structurally equivalent if they generate the same
bit strings although being defined over different fields.

Now we want to investigate whether every binary concatenation is structurally equivalent to a
Galois concatenation – and vice versa.

Example 3.3.
We consider the binary concatenation of Ham[8,4, 4] with Ham[8,4, 4]. We have

Gout = Gin =













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













.

34 3 Code concatenations

The result of this binary concatenation is a linear binary code of length 16 and dimension 4 which
is generated by the following matrix:

G =













1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0

0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0

0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1













.

If there is an outer code which generates, when Galois-concatenated with the [8,4, 4] extended
Hamming code as the inner code, the same linear code as the binary concatenation above, we
would call these outer codes structurally equivalent.

Such a code would have to be over the extension field GF(24), as the inner code has dimension
4. Also, as we are looking for a concatenated code of length 16 and dimension 4, the outer code
would have to be of length 2, as one symbol in GF(24) translates into 4 bits. So, we know that
we are looking for a code of length 2 and dimension 1 over GF(24) – therefore, and because the
given outer code is in standard form, the generator matrix has to be

G′out =
�

1 ω
�

,

where ω ∈ GF(24). At first, let us try to solve this by constructing GF(24) through a factor ring.
Let

GF(24) := GF(2)[x]/(x4 + x + 1),

where x4 + x + 1 is an irreducible polynomial. Assuming we use the standard basis, i.e.

1¬ 0001, x ¬ 0010, x2 ¬ 0100, x3 ¬ 1000,

we can try to solve the equations above for ω and hope that the solution is consistent. As 0001 is
mapped to 0001|1110, 1 has to be mapped to 1 | x3+ x2+ x . Therefore we have ω= x3+ x2+ x .
Trying to compute the code word of x ¬ 0010 we find

x · G′out = x ·
�

1 x3 + x2 + x
�

= (x , x3 + x2 + x + 1),

due to x4 = x +1 which would mean that 0010 would get mapped to 0010|1111 – contradiction.

In the second attempt, we still want to use the standard basis, but we want to investigate whether
another irreducible polynomial generates the field in a way such that Gout can be modeled. Using
the standard basis directly implies that ω has to be x3 + x2 + x , as 1 is mapped to (1, ω).
Furthermore, we want x to be mapped to (x , x3 + x2 + 1), that is

x ·
�

1 x3 + x2 + x
�

!
= (x , x3 + x2 + 1),

which leads to the equation

x4 + x3 + x2 !
= x3 + x2 + 1 ⇐⇒ x4 = 1.

This equation would hold if we were to use the polynomial x4 + 1 for generation of GF(24) – but
this polynomial is not irreducible, x4+1= (x +1)4. Therefore, the polynomial does not generate

3.1 Definition and properties 35

GF(24), thus there is no configuration using the standard base.

The last attempt in trying to repair the ability of modeling Gout with a matrix G′out over GF(24) is
to consider arbitrary bases. That is, we have the following translations from GF(2)4 to GF(24):

1000¬ α, 0100¬ β , 0010¬ γ, 0001¬ δ, α,β ,γ,δ ∈ GF(24).

The problem in modeling Gout is not the identity matrix, but rather the matrix on the right side
of Gout. And if we could model this matrix with the basis above, the following equation has to
hold (cf. Lemma 3.3):

ω ·













α

β

γ

δ













=













0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0













·













α

β

γ

δ













,

which means that (α,β ,γ,δ)t is an eigenvector to the eigenvalue ω of the matrix P above. Note
that P ∈ GF(24)4×4. The characteristic polynomial is χP(x) = x4+1= (x +1)4. Therefore, ω= 1
is an eigenvalue with algebraic multiplicity 4.
But now the first equation in the system of equations above is α = β + γ+ δ, thus α,β ,γ and δ
are linearly dependent over GF(2) and therefore cannot form a basis.

This example shows that in general an arbitrary binary concatenation does not have to be struc-
turally equivalent to a Galois concatenation. However, there are cases where binary concatenation
can be expressed through an adequate Galois concatenation, as the following example will show.

Example 3.4.
We consider the binary concatenation of the extended Hamming [8, 4,4]-code as the inner code
with a [8,4, 3]-code given by

Gout =













1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 0

0 0 0 1 0 1 1 0













.

Again we search for a linear code over GF(24) which models the behavior of Cout – which would
have to be a code of length 2 and dimension 1. Therefore,

G′out =
�

1 ω
�

if such a code exists. We will follow the same approach as in the example above: let GF(24) :=
GF(2)[x]/(x4 + x + 1) and we use the standard basis. The element ω can also be calculated just
by interpretation of the last row of the matrix above: As 0001 is mapped to 0001|0110,

1 7→
�

1 x2 + x
�

,

which means that ω = x2 + x . Fortunately, the other equations do not contradict the choice of
ω as

ω · x = x3 + x2, ω · x2 = x3 + x + 1, ω · x3 = x2 + 1.

36 3 Code concatenations

Therefore the outer code can be modeled through C ′out, which is a linear code over GF(24) of
length 2 and dimension 1 with generator matrix

G′out =
�

1 x2 + x
�

.

Another issue we have to keep in mind in order to be able to construct a structurally equivalent
code over GF(2k) is that the parameters of the binary outer code are not to be chosen arbitrarily.
The code dimension k has to be a divisor of the code length n, otherwise the generator matrix
cannot be split into k×k blocks which then may or may not be associated to an element in GF(2k).
Before going on to answer the second question asked above (whether each Galois concatenation
is structurally equivalent to a binary concatenation), we want to examine this correspondence
between matrices over GF(2)k×k and elements in GF(2k).

Lemma 3.3.
Let α ∈ GF(2k), where GF(2k) is generated by ζ. Let ϕ : GF(2k)→ GF(2)k denote the map which
maps elements from GF(2k) to their binary representation in GF(2)k, i.e. ϕ is the natural isomor-
phism mapping vectors from GF(2k) to their representation regarding the basis {ζk−1, . . . ,ζ, 1} in
GF(2)k, i.e.

ϕ(ak−1ζ
k−1 + · · ·+ a1ζ+ a0) = (ak−1, . . . , a1, a0).

Then we can find a matrix Pα ∈ GF(2)k×k such that

ϕ (ω ·α) = ϕ(ω) · Pα

holds for all ω ∈ GF(2k). In that case we say that Pα is associated to α with respect to the basis
{ζk−1, . . . ,ζ, 1}.

Proof. We examine the linear map g : GF(2k)→ GF(2k), ω 7→ω ·α. As described in Section 1.2,
GF(2k) can be considered as a vector space over GF(2). Because of linear algebra we know that
each linear map – in this case, even a linear operator, as g stays in the same vector space – has
a matrix representation with respect to a chosen basis of the vector space. Furthermore, because
we multiply the vectors from the left side, the rows of the matrix representation are the images
of the basis vectors.

Choosing the basis {ζk−1, . . . ,ζ, 1} and constructing the corresponding matrix representation yields
a matrix Pα with the properties stated above.

It is quite easy to construct an associated matrix to an element of an extension field. Algorithm 9
describes the construction of the corresponding matrix. The other problem – checking whether a
given binary square matrix is the matrix representation of such a linear map with respect to some
fixed basis – is harder and will be investigated in Section 3.3.

Now we want to answer the previous question regarding the existence of structurally equivalent
linear binary codes.

Lemma 3.4.
Given a linear code C of length N and dimension K over the field GF(2k). Then there always is a
structurally equivalent linear binary code C ′ of length N · k and dimension K · k.

3.2 Examples 37

Algorithm 9 Construction of an associated matrix
1: procedure construct(α ∈ GF(2k), generating element ζ ∈ GF(2k))
2: j← 0
3: for j < k do
4: v j ← ϕ(α · ζ j) . Find binary representations
5: j← j + 1
6: end for

7: Pα←









vk−1
...

v0









. Pα is the matrix with v j as rows

8: return Pα
9: end procedure

Proof. Let G be the generator matrix of C , so G ∈ GF(2k)K×N . Due to Lemma 3.3, each element in
GF(2k) is associated to a matrix in GF(2)k×k. By replacing each component of G by the respective
associated matrix, we obtain a matrix G′ ∈ GF(2)K ·k×N ·k. Due to the properties of these associated
matrices, the linear binary code C ′ generated by G′ is structurally equivalent to C – which means
that for each linear code over an extension field there is a structurally equivalent linear binary
code.

Remark.
Note that although structurally equivalent codes are essentially the same, the error correction
efficiency is better for Galois-concatenated codes due to specialized decoding algorithms over
extension fields which cause an improved decoding performance. We have very efficient decoding
algorithms for these special codes over extension fields which we simply do not have for binary
codes.

Before we start analyzing some concrete binary concatenation examples with respect to error
decoding capabilities etc., we summarize the theoretical results in this section in the following
theorem.

Theorem 3.5 (Relation between Galois and binary concatenation).
The binary concatenation as described in Definition 3.2 is a generalization of the Galois concate-
nation as described in Definition 3.1 in terms of structural equivalency.

Remark.
Note that by Example 3.3 we know that there are binary codes which do not have a structural
equivalent code over the according extension field. Therefore, the two concatenation types are
not equivalent.

3.2 Examples
Before we jump right into some examples for the binary concatenation there is a question regarding
the error correction capabilities of these codes we should answer first. If too many errors in the
“inner code words” happen, they lead to an incorrect code word – and thus also the decoded

38 3 Code concatenations

message is wrong as different code words must have different messages. But how wrong can
these messages be?

This means we want to calculate d(m, m′) if we know d(mG, m′G). Instead of brute force com-
puting all these distances, we can make some improvements:

d(mG, m′G) = d(mG −m′G, 0) = d(m̃G, 0) = h(m̃G), d(m, m′) = h(m̃).

Considering these equations we can compute the number of code words with specific Hamming
weight (i.e. the number of errors in the case of considering 0 as the “true” message) and how
many how erroneous messages we can extract from them. We will include this analysis for the
inner code in each of the following examples.

3.2.1 Ham[8,4, 4] ◦̃ Ham[8,4, 4]
In this example we use the same code for the inner and the outer code: the extended Hamming
[8, 4,4]-code. Note that the generator matrix Gin = Gout is given by

Gin = Gout =













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













.

Practically, the binary concatenation of these two codes can be implemented as in Algorithm 10.

Algorithm 10 Hamming-Hamming binary concatenation – encoding
1: procedure encode(m ∈ GF(2)4, G)
2: (c̃1, c̃2, . . . c̃8) = c̃← mGout . Standard encoding
3: m1← (c̃1, c̃2, c̃3, c̃4) . First new message from first code block
4: m2← (c̃5, c̃6, c̃7, c̃8) . Second new message from second code block
5: c1← m1Gin, c2← m2Gin . Encode these new messages again
6: return c← (c1, c2) . Concatenate the new code words and return the result
7: end procedure

As described in Lemma 3.1, we can find the generator matrix for the resulting concatenated code,
which is

G =













1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0

0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0

0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1













.

We now analyze the resulting code in two ways: first, we decode with the decoding algorithm gen-
erally described in Algorithm 8 – which degenerates to Algorithm 11 in this case. And second, we
want to apply syndrome decoding on the linear binary code generated by the large matrix G above.

3.2 Examples 39

Algorithm 11 Hamming-Hamming binary concatenation – decoding
1: procedure decode(c ∈ GF(2)16)
2: Split the code word c in half and retrieve two smaller code words c1, c2

3: Decode: m1← dec(c1), m2← dec(c2)
4: Combine these messages to another code word, c̃ = (m1, m2)
5: Decode: m← dec(c̃)
6: return m
7: end procedure

The minimum distance for the code generated by G is 8, which can be computed easily with the
help of Sage. Therefore, 3 errors can be corrected using syndrome decoding.

Running some calculations on the extended Hamming code we find that

• there is 1 code word with Hamming weight 0 where we can extract one message of weight
0.

• there are 14 code words of weight 4 where we can extract 4, 6 and 4 messages of weights
1, 2 and 3, respectively.

• there is 1 code word of weight 8 which comes from a message of weight 4.

Taking into account that we are only able to correct one error per word with the extended Ham-
ming code, we find that the messages gained from the two simultaneous decoding procedures
must not contain more than one error overall in order to decode correctly.

Now, let us assume we encode the zero message with the method above and want to decode the
(erroneous) transmitted word. Brute-force computation shows that from 216 = 65536 possible
transmitted words, 61440 are decoded incorrectly (using two step syndrome decoding, see Algo-
rithm 11). The weight distribution for the words decoded incorrectly (i.e. in our case the number
of errors in each word) is as follows:

Errors 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

incorr. dec. words 0 0 27 284 1250 3516 7114 10768 12489 11244 7899 4332 1820 560 120 16 1

Number of words 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

dec. failure ratio 0 0 0.225 0.507 0.687 0.805 0.888 0.941 0.970 0.983 0.986 0.992 1 1 1 1 1

If pb denotes the single bit error probability and wi denotes the number of words with weight i
being decoded incorrectly (taken from the table above), then the probability that decoding does
not lead back to the zero message is given by

P(transmitted word not decoded back to 0) =
16
∑

j=0

w j · p
j
b · (1− pb)

16− j .

Due to symmetry this is already the probability that an arbitrary word is not decoded correctly.
Overall:

P(decoding error) =
16
∑

j=0

w j · p
j
b · (1− pb)

16− j = 27p2 − 94p3 + 15p4 + 840p5 − 3259p6 +O(p7)

40 3 Code concatenations

Assuming pb = 0.1, we find P(decoding error) = 0.183250860198400 – the error probability is
substantially worse than the respective bit error probability.

If we would decode this code by ordinary syndrome decoding we have the following weight distri-
bution for incorrectly decoded words (55467 from 65536 were decoded incorrectly):

Errors 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

incorr. dec. words 0 0 0 0 0 784 5320 10416 12614 11440 8008 4368 1820 560 120 16 1

Number of words 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

dec. failure ratio 0 0 0 0 0 0.179 0.664 0.910 0.980 1 1 1 1 1 1 1 1

This yields the following expansion:

P(decoding error) = 784p5 − 3304p6 + 336p7 + 28910p8 − 94176p9 +O(p10),

and therefore, assuming pb = 0.1 we find P(decoding error) = 0.00477900501289390, which is a
way better result.

In Figure 3.1 we plotted the error probability curves for varying pb. The normal blue line is for
the decoding algorithm as described in Algorithm 11, the stroked line is for syndrome decoding.

Figure 3.1: Error probability curves

3.2.2 MatrixCode[12,4, 5] ◦̃ Ham[8, 4,4]
In this example we use a linear binary [12, 4,5]-code defined by some generator matrix Gout as the
outer code and the extended Hamming [8,4, 4]-code as the inner code. The respective generator
matrices are given by

Gout =













1 0 0 0 1 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1 1 0 0 0

0 0 1 0 1 1 1 1 0 1 1 1

0 0 0 1 1 1 1 0 1 1 1 0













, Gin =













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













.

3.2 Examples 41

Algorithm 12 Matrix Code-Hamming binary concatenation – encoding
1: procedure encode(m ∈ GF(2)4, Gin, Gout)
2: c̃← mGout . Standard encoding
3: m1← (c̃1, c̃2, c̃3, c̃4) . First new message from first code block
4: m2← (c̃5, c̃6, c̃7, c̃8) . Second new message from second code block
5: m3← (c̃9, c̃10, c̃11, c̃12) . Third new message from third code block
6: c1← m1Gin, c2← m2Gin, c3← m3Gin . Encode these messages again
7: return c← (c1, c2, c3) . Concatenate the new code words and return the result
8: end procedure

Practically, the concatenation of these two codes can be implemented as in Algorithm 12.

As described in Lemma 3.1, we can find the generator matrix for the resulting concatenated code,
which is

G =













1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1

0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1













The minimum distance for the code generated by G is 12, which can be computed easily with the
help of Sage. Therefore, 5 errors can be corrected using syndrome decoding.

Algorithm 13 Matrix Code-Hamming binary concatenation – decoding
1: procedure decode(c ∈ GF(2)24,decin, decout)
2: Split the code word c in three equal pieces and obtain the smaller code words c1, c2, c3

3: Decode these code words: m1← decin(c1), m2← decin(c2), m3← decin(c3)
4: Combine the messages to another code word, c̃ = (m1, m2, m3)
5: Try to decode c̃ and receive a message m
6: return m← decout(c)
7: end procedure

Running some calculations for the extended Hamming code we find that

• there is 1 code word with Hamming weight 0 where we can extract one message of weight
0.

• there are 14 code words of weight 4 where we can extract 4, 6 and 4 messages of weight 1,
2 and 3, respectively.

• there is 1 code word of weight 8 which comes from a message of weight 4.

In order to guarantee that decoding works correctly, the three messages obtained in the first step
of decoding must not contain more than two errors, as the outer code can only correct two errors.

Now, let us assume we encode the zero message with the method above and want to decode the
(erroneous) transmitted word. Brute-force computation shows that from 224 = 16777216 possible
transmitted words, 15728640 are decoded incorrectly (using two step syndrome decoding). The

42 3 Code concatenations

weight distribution for the words decoded incorrectly (i.e. in our case the number of errors in each
word) is as follows:

Weight 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 6 108 1764 16152 78220 248940 595815 1139196 1790346 2351532 2601654

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0.022 0.053 0.166 0.380 0.581 0.719 0.810 0.871 0.913 0.942 0.962

Weight 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2432520 1924872 1288060 726684 343260 134056 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 0.974 0.981 0.985 0.988 0.992 0.996 1 1 1 1 1 1

If pb denotes the single bit error probability and wi denotes the number of words with weight i
being decoded incorrectly (taken from the table above), then the probability that decoding does
not lead back to the zero message is given by

P(transmitted word not decoded back to 0) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j .

Note that w0 = 0, obviously. Due to symmetry this is already the probability that an arbitrary
word is not decoded correctly. Overall:

P(decoding error) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j = 6p2 − 24p3 + 882p4 − 5688p5 + 6742p6 +O(p7)

Assuming pb = 0.1, we find P(decoding error) = 0.0782693356314399. If we would decode this
concatenated code by ordinary syndrome decoding we have the following weight distribution for
incorrectly decoded words (14693704 out of 16777216 words were decoded incorrectly):

Errors 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 0 0 0 0 0 9504 118152 642564 1711134 2471664 2704156

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0 0 0 0 0 0.028 0.161 0.491 0.872 0.990 1

Errors 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2496144 1961256 1307504 735471 346104 134506 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 1 1 1 1 1 1 1 1 1 1 1 1

Following this approach, we obtain the following expansion:

P(decoding error) = 9504p7 − 43416p8 + 44676p9 − 211806p10 + 2439408p11 +O(p12)

Again, assuming pb = 0.1 we find P(decoding error) = 0.000556013544860564, which is a better
result.

In Figure 3.2 we plotted the error probability curves for varying pb. The normal blue curve is for
the decoding algorithm as described in Algorithm 13, the stroked line is the curve for “standard”
syndrome decoding.

3.2 Examples 43

Figure 3.2: Error probability curves

3.2.3 MatrixCode[12,4, 4] ◦̃ Ham[8, 4,4]
In this example we want to use a linear binary [12, 4,4]-code defined by the following generator
matrix Gout as the outer code and the extended Hamming [8,4, 4]-code as the inner code. The
respective generator matrices are given by

Gout =













1 0 0 0 0 0 1 1 0 1 1 0

0 1 0 0 1 0 0 0 1 0 0 1

0 0 1 0 1 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1 0 0 1 1













, Gin =













1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0













.

This example differs from the one before only through the fact, that the outer code now has
minimum distance 4 instead of 5 and thus only is able to correct 1 error. We will see, in how far
this change effects the decoding failure probability. Practically, the concatenation of these two
codes can be implemented as in Algorithm 14.

Algorithm 14 Matrix Code 2-Hamming binary concatenation – encoding
1: procedure encode(m ∈ GF(2)4, Gin, Gout)
2: c̃← mGout . Standard encoding
3: m1← (c̃1, c̃2, c̃3, c̃4) . First new message from first code block
4: m2← (c̃5, c̃6, c̃7, c̃8) . Second new message from second code block
5: m3← (c̃9, c̃10, c̃11, c̃12) . Third new message from third code block
6: c1← m1Gin, c2← m2Gin, c3← m3Gin . Encode these messages again
7: return c← (c1, c2, c3) . Concatenate the new code words and return the result
8: end procedure

As described in Lemma 3.1, we can find the generator matrix for the resulting concatenated code,

44 3 Code concatenations

which is

G =













1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0

0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1

0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1

0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1













The minimum distance for the code generated by G is 8, which can be computed easily with the
help of Sage. Therefore, 3 errors can be corrected using syndrome decoding.

Algorithm 15 Matrix Code 2-Hamming binary concatenation – decoding
1: procedure decode(c ∈ GF(2)24,decin, decout)
2: Split the code word c in three equal pieces and obtain the smaller code words c1, c2, c3

3: Decode these code words: m1← decin(c1), m2← decin(c2), m3← decin(c3)
4: Combine the messages to another code word, c̃ = (m1, m2, m3)
5: Try to decode c̃ and receive a message m
6: return m← decout(c)
7: end procedure

Running some calculations for the extended Hamming code we find that

• there is 1 code word with Hamming weight 0 where we can extract one message of weight
0.

• there are 14 code words of weight 4 where we can extract 4, 6 and 4 messages of weight 1,
2 and 3, respectively.

• there is 1 code word of weight 8 which comes from a message of weight 4.

In order to guarantee that decoding works correctly, the three messages obtained in the first step
of decoding must not contain more than one error overall, as the outer code can only correct one
error.

Now, let us assume we encode the zero message with the method above and want to decode the
(erroneous) transmitted word. Brute-force computation shows that from 224 = 16777216 possible
transmitted words, 15728640 are decoded incorrectly (using two step syndrome decoding). It is
quite interesting that the total number of incorrectly decoded words actually is the same as in
the last example! The weight distribution for the words decoded incorrectly (i.e. in our case the
number of errors in each word) is as follows:

Errors 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 18 324 3060 19200 81843 252180 598200 1140380 1791180 2350752 2598016

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0.0652 0.160 0.288 0.452 0.608 0.729 0.813 0.872 0.913 0.942 0.961

Errors 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2427468 1920459 1285880 726369 343584 134272 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 0.972 0.979 0.983 0.988 0.993 0.998 1 1 1 1 1 1

If pb denotes the single bit error probability and wi denotes the number of words with weight i

3.2 Examples 45

being decoded incorrectly (taken from the table above), then the probability that decoding does
not lead back to the zero message is given by

P(transmitted word not decoded back to 0) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j .

Note that w0 = 0, obviously. Due to symmetry this is already the probability that an arbitrary
word is not decoded correctly. Overall:

P(decoding error) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j = 18p2 − 72p3 + 414p4 − 1680p5 − 807p6 +O(p7)

Assuming pb = 0.1, we find P(decoding error) = 0.134197324635424.

If we would decode this concatenated code by ordinary syndrome decoding we have the following
weight distribution for incorrectly decoded words (14693704 from 16777216 words were decoded
incorrectly):

Errors 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 0 0 0 56 924 15064 129907 632184 1664832 2465040 2704156

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0 0 0 0.001 0.007 0.044 0.177 0.483 0.849 0.988 1

Errors 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 1 1 1 1 1 1 1 1 1 1 1 1

Thus we obtain the following expansion:

P(decoding error) = 56p5 − 140p6 + 8008p7 − 39073p8 + 65448p9 +O(p10)

Again, assuming pb = 0.1 we find P(decoding error) = 0.000881642838120140, which is a better
result.

In Figure 3.3 we plotted the error probability curves for varying pb. The normal blue curve is for
the decoding algorithm as described in Algorithm 15, the stroked line is the curve for “standard”
syndrome decoding.

Remark.
Comparing the examples in Sections 3.2.2 and 3.2.3 we see that the hamming distance on the outer
code clearly has an impact of the decoding capability of both decoding algorithms investigated!

3.2.4 MatrixCode[12,4, 5] ◦̃ Golay[24,12, 8]
In this example we want to analyze a very simple concatenation by using the same linear [12, 4,5]-
code as above as the outer code and the binary extended [24, 12,8]-Golay code as the inner code.
The respective generator matrices are given by

Gout =













1 0 0 0 1 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1 1 0 0 0

0 0 1 0 1 1 1 1 0 1 1 1

0 0 0 1 1 1 1 0 1 1 1 0













,

46 3 Code concatenations

Figure 3.3: Error probability curves

and

Gin =























































1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1























































.

Practically, the implementation of the encoding algorithm is very easy this time and simply consists
of the calculation of c ← m · Gout · Gin. As described in Lemma 3.1, we can find the generator
matrix for the resulting concatenated code, which is

Gout·Gin = G =













1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0

0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0













The minimum distance for the code generated by G is 8, which can be computed easily with the
help of Sage. Therefore, 3 errors can be corrected using syndrome decoding.

Running some calculations for the extended binary Golay code we find that

3.2 Examples 47

• there is 1 code word with Hamming weight 0 where we can extract one message of weight
0.

• there are 759 code words of weight 8 where we can extract 12, 60, 180, 255, 180, 60 and
12 messages of weight 1, 2, 3, 4, 5, 6 and 7, respectively.

• there are 2576 code words of weight 12 where we can extract 6, 40, 240, 600, 804, 600,
240, 40, 6 and 6 words of weight 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively.

• there are 759 code words of weight 16 where we can extract 12, 60, 180, 255, 180, 60 and
12 words of weight 5, 6, 7, 8, 9, 10 and 11, respectively.

• there is 1 code word of weight 24 which comes from a message of weight 12.

In order to guarantee that decoding works correctly, the message obtained in the first step of
decoding must not contain more than 2 errors, as the outer code can only correct two errors.

Now, let us assume we encode the zero message with the method above and want to decode the
(erroneous) transmitted word. Brute-force computation shows that from 224 = 16777216 possible
transmitted words, 15728640 are decoded incorrectly (using two step syndrome decoding). Once
again the same exact number as before! The weight distribution for the words decoded incorrectly
(i.e. in our case the number of errors in each word) is as follows:

Errors 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 0 0 7035 31192 103068 253992 599268 1098692 1757498 2340412 2589743

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0 0 0.662 0.734 0.766 0.734 0.815 0.840 0.896 0.938 0.958

Errors 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2453532 1932018 1295844 730191 346104 134596 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 0.983 0.985 0.991 0.993 1 1 1 1 1 1 1 1

If pb denotes the single bit error probability and wi denotes the number of words with weight i
being decoded incorrectly (taken from the table above), then the probability that decoding does
not lead back to the zero message is given by

P(transmitted word not decoded back to 0) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j .

Note that w0 = 0, obviously. Due to symmetry this is already the probability that an arbitrary
word is not decoded correctly. Overall:

P(decoding error) =
24
∑

j=0

w j · p
j
b · (1− pb)

24− j = 7035p4 − 109508p5 + 847070p6 +O(p7).

Assuming pb = 0.1, we find P(decoding error) = 0.148754405145761.

If we would decode this “concatenated” code by ordinary syndrome decoding we have the following

48 3 Code concatenations

weight distribution for incorrectly decoded words (15728640 out of 16777216 words got decoded
incorrectly):

Errors 1 2 3 4 5 6 7 8 9 10 11 12

incorr. dec. words 0 0 0 35 616 10484 90952 413684 1086732 1893816 2491716 2704075

Number of words 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156

dec. failure ratio 0 0 0 0.003 0.015 0.078 0.263 0.562 0.831 0.966 0.998 1

Errors 13 14 15 16 17 18 19 20 21 22 23 24

incorr. dec. words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

Number of words 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1

dec. failure ratio 1 1 1 1 1 1 1 1 1 1 1 1

This yields the following expansion:

P(decoding error) = 35p4 − 84p5 + 543p6 − 32324p7 + 44223p8 +O(p9).

Therefore, assuming pb = 0.1 we find P(decoding error) = 0.00538887888517034, which is a
better result.

In Figure 3.4 we plotted the error probability curves for varying pb. On the left side is the curve for
the two-step decoding algorithm, on the right side is the curve for “standard” syndrome decoding.

Figure 3.4: Error probability curves

3.3 Associated matrices 49

3.3 Associated matrices
For the following considerations let p be a prime number. In this section we want to investigate
how we can determine whether a given matrix P ∈ GF(p)k×k is an associated matrix to some
ω ∈ GF(pk) with respect to some basis of GF(pk). At first we want to prove that this problem is
related to finding eigenvectors and eigenvalues.

Lemma 3.6.
Let ζ ∈ GF(pk) be a primitive element with minimal polynomial f ∈ GF(p)[x]. If Pω ∈ GF(p)k×k is
the associated matrix to some ω ∈ GF(pk) with respect to the basis B = {α1, . . . ,αk} of GF(pk),
then the equation

ω · (α1, . . . ,αk)
t = Pω · (α1, . . . ,αk)

t

holds, so (α1, . . . ,αk) is a right eigenvector of Pω to the eigenvalue ω.

Proof. As noted in the proof of Lemma 3.3, the rows of Pω are the images of the basis vectors.
Therefore, if

ω ·α j =
k
∑

i=1

a ji ·αi ⇒ [ω ·α j]B = (a j1, . . . , a jk),

and the matrix Pω is given by

Pω =









a11 · · · a1k
...

. . .
...

ak1 · · · akk









.

Finally, we have

Pω · (α1, . . . ,αk)
t =

k
∑

i=1

(a1i , . . . , aki)
t ·αi =

� k
∑

i=1

a1iαi , . . . ,
k
∑

i=1

akiαi

�t

= (ωα1, . . . ,ωαk)
t =ω · (α1, . . . ,αk)

t .

Remark.
Note that the converse of Lemma 3.6 is not true in general. This is because the components of an
arbitrary eigenvector to some eigenvalue ω of a matrix P are not necessarily linearly independent
and thus may not form a basis. However, if the linear independency holds, the statement can be
reversed.

Next we want investigate to what extend the observed structure can be exploited in order to yield
a criterion for checking whether such a matrix has an element associated to it in the extension
field with respect to some basis or not.

The first criterion we want to give is rather weak (primarily because it is a necessary statement),
but in some situations it might be useful to check which eigenvalues of a matrix are uninteresting
for the purpose above.

Lemma 3.7.
Let P ∈ GF(p)k×k and ζ be a generating element of GF(pk) with minimal polynomial f ∈ GF(p)[x].

50 3 Code concatenations

Let ϕ : GF(pk)→ GF(p)k denote the function which maps vectors α ∈ GF(pk) to their representa-
tion regarding the basis B = {ζk−1,ζk−2, . . . ,ζ, 1}, i.e.

ϕ

k−1
∑

j=0

a j · ζ j

!

= (ak−1, ak−2, . . . , a1, a0).

Also let Φ : GF(pk)k→ GF(p)k×k be defined through

Φ(α1, . . . ,αk) =









ϕ(α1)
...

ϕ(αk)









,

so Φ maps k elements from GF(pk) to a matrix where each row is given by the representation
of α j regarding B. If P is associated to an eigenvalue ω ∈ GF(pk) with respect to some basis of
GF(pk), and if {v1, . . . , vr} is a basis of the eigenspace E P

ω, then the inequality

r
∑

j=1

rank(Φ(v j))≥ k

holds.

Proof. From Lemma 3.6 we know that P is the associated matrix to ω if and only if there is
an eigenvector w ∈ E P

ω where the components of w, i.e. w1, w2, . . . , wk are linearly independent
over GF(pk). Obviously, this is equivalent to det(Φ(w)) 6= 0, which is the case if and only if
rank(Φ(w)) = k.

Furthermore, the following chain of equations holds because of v1, . . . , vr being a basis of E P
ω, Φ

being a homomorphism with respect to the addition, as well because of Lemma 3.3:

Φ(w) = Φ

r
∑

j=1

c j · v j

!

=
r
∑

j=1

Φ(c j · v j) =
r
∑

j=1









ϕ(c j · v
(1)
j)

...

ϕ(c j · v
(k)
j)









=
r
∑

j=1









ϕ(v(1)j) · C j
...

ϕ(v(k)j) · C j









=
r
∑

j=1









ϕ(v(1)j)
...

ϕ(v(k)j)









· C j =
r
∑

j=1

Φ(v j) · C j ,

where C j denotes the matrix associated to c j with respect to the basis B. Finally, as rank(A+ Ã)≤
rank(A) + rank(Ã), we find

k = rank(Φ(w)) = rank

r
∑

j=1

Φ(v j) · C j

!

≤
r
∑

j=1

rank(Φ(v j) · C j)≤
r
∑

j=1

rank(Φ(v j)).

The following theorem is the outcome of some discussions with Prof. Heuberger and characterizes
associated matrices. The first part of the proof follows an approach in [1, p. 424, Theorem 6].

3.3 Associated matrices 51

Theorem 3.8 (Criterion for associated matrices).
Let P ∈ GF(p)k×k be a quadratic matrix and let χP(x) := det(x · Ik − P) ∈ GF(p)[x] denote its
characteristic polynomial.

Then P is the associated matrix to ω ∈ GF(pk) with respect to some basis if and only if the
minimal polynomial of ω is the only prime factor of χP over GF(p) and P is diagonalizable.

Proof. At first, let P be the matrix associated to ω ∈ GF(pk) with respect to the basis {α1, . . . ,αk}.
Let the minimal polynomial of ω be given by the monic polynomial g(x) = x` + c1 x`−1 + · · · +
c`−1 x + c`. Due to Theorem 1.9 we know that the powers of ω, i.e. 1, ω, ω2, . . ., ω`−1 form a
basis of the vector space GF(p)(ω) over the field GF(p). Furthermore, let ϑ1, . . . ,ϑr be a basis of
GF(pk) over GF(p)(ω).

Theorem 1.6 – the degree multiplication theorem – states that for the vector space GF(pk) over
GF(p) we need k = r · ` basis vectors. Such a basis is given by

B = {ϑ1,ωϑ1,ω2ϑ1, . . . ,ω`−1ϑ1,ϑ2, . . . ,ω`−1ϑ2, . . . ,ω`−1ϑr},

which is shown in the proof of Theorem 1.6.

We denote the matrix representation of the linear map t 7→ t ·ω with respect to the basis B with
Q. As can be easily seen, Q is a block diagonal matrix with the `× ` matrices

Q1 = · · ·=Qr =



















0 1

0 1
...

. . .

0 1

−c` −c`−1 −c`−2 · · · −c1



















on the main diagonal, as for t =ωi · ϑ j, we have t ·ω=ωi+1ϑ j for 0≤ i < `− 1 and especially

t =ω`−1ϑ j implies that t ·ω=ω`ϑ j = (−c` − c`−1 ·ω− . . .− c1 ·ω`−1)ϑ j .

These matrices are Frobenius companion matrices, and due to Lemma 1.22 their characteristic
polynomial equals g, the minimal polynomial of ω. Furthermore, Q is in Frobenius normal form
as described in Theorem 1.23.

Finally, the characteristic polynomial of Q obviously is g r – and as P is similar to Q, they have
the same characteristic polynomial. Therefore, g is the only prime factor of χP . Regarding the
diagonalizability of Q it suffices to show that the block matrices Q j are diagonalizable. This holds
because the eigenvalues of the companion matrices Q j of the minimal polynomial of ω are the `
conjugates of ω – which are pairwise distinct due to Lemma 1.21.

Now let us assume that χP = g r for some irreducible g and let P be diagonalizable. We will
show that P is associated to a root ω of g with respect to some basis by proving that P has an
eigenvector to the eigenvalue ω which has linearly independent components – this directly implies
that P is associated to ω.

Due to the given properties of P, we already know the Frobenius normal form of P, which is
shaped like the matrix Q from the first part of the proof. This is due to Lemma 1.24 and the
remark afterwards. Analogous to above, we construct a basis B of GF(pk) over GF(p) with

B = {ϑ1,ωϑ1,ω2ϑ1, . . . ,ω`−1ϑ1,ϑ2, . . . ,ω`−1ϑ2, . . . ,ω`−1ϑr}.

52 3 Code concatenations

This basis consists of ` · r = k elements. Now consider the vector v ∈ GF(pk)k, whose entries are
the elements of B:

v = (ϑ1,ωϑ1,ω2ϑ1, . . . ,ω`−2ϑr ,ω
`−1ϑr).

Some simple computation over GF(pk) = GF(p)[x]/(g(x)) shows that v is a eigenvector of Q to
the eigenvalue ω. Furthermore, due to construction, v has linearly independent components.

As the rational normal form of P is Q, there is a regular matrix S over GF(p) such that Q = S−1PS.
Furthermore, due to our considerations above, we have Qv =ω · v. Therefore,

S−1PSv =ω · v ⇒ P(Sv) =ω · (Sv) ⇒ P ṽ =ω · ṽ,

where ṽ = Sv. As v had linearly independent components, and S is regular, ṽ has to have linearly
independent components, too.

Overall, we have shown that under the given assumptions, P has an eigenvector to the eigenvalue
ω, whose components are linearly independent over GF(p) – and therefore, P is associated to ω
with respect to the basis consisting of the components of the vector Sv.

Example 3.5.
We consider the matrix

P =













0 1 0 1

1 0 1 1

1 1 0 0

0 1 1 0













from Section 3.1.1. We already know that P is structurally equivalent to ω = x2 + x ∈
GF(2)[x]/(x4 + x + 1)' GF(24). As ω satisfies

ω2 +ω+ 1= (x2 + x)2 + (x2 + x) + 1= x4 + x + 1= 0,

and the minimal polynomial of ω surely cannot be of degree 1 (as ω 6∈ GF(2)), we have found the
minimal polynomial gω(t) = t2+ t +1 of ω. The characteristic polynomial χP has to have degree
4, and its only irreducible factor may be gω(t) – therefore, we find

χP(t) = (gω(t))
2 = (t2 + t + 1)2 = t4 + t2 + 1,

which can also be verified easily by computing the characteristic polynomial of P directly.

Example 3.6.
We want to investigate whether the matrix

P =

































4 2 2 0 4 0 3 0

1 1 1 2 3 2 2 1

1 2 0 1 3 1 3 2

1 3 4 2 1 3 3 3

1 0 0 3 3 3 2 1

3 0 0 1 1 3 3 2

4 2 4 3 2 1 1 3

0 0 1 4 4 4 1 0

































3.3 Associated matrices 53

is an associated matrix to some ω ∈ GF(58). To do so, we compute the characteristic polynomial
of P and find its irreducible factors. We find

χP(t) = t8 + t7 + t6 + t4 + 3t3 + 2t2 + t + 1= (t4 + 3t3 + t2 + 2t + 4)2 = (t4 − 2t3 − 4t2 − 3t − 1)2

where t4 + 3t3 + t2 + 2t + 4 is irreducible, which means that Theorem 3.8 can be applied,
if P additionally is diagonalizable. This is also the case, as can be verified with Sage by
matrix.rational_form(format="bottom"), which delivers the rational canonical form of P.
In our case, it has the form

PF =



































0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 3 4 2 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 3 4 2



































,

which is a block diagonal matrix with Frobenius companion matrices on the main diagonal. There-
fore we know that P is diagonalizable and due to Theorem 3.8, P is an associated matrix to a
root ω of gω(t) = t4 − 2t3 − 4t2 − 3t − 1 in GF(58).

A Implementations

A.1 Elementary calculations
1 impor t t ime
2 impor t i t e r t o o l s
3

4 de f c o d eP r o p e r t i e s (C) :
5 """ c a l c u l a t e s minimum d i s t a n c e and r e t u r n s a mat r i x where the
6 e n t r y on p o s i t i o n (i , j) i s the number o f code words o f we ight
7 j b e l o ng i n g to a message o f we ight i . c oun t i ng s t a r t s a t 0 . """
8 i f not i s i n s t a n c e (C , L inea rCode) :
9 r a i s e Excep t i on (" Va l u eE r r o r ")

10 t i = t ime . t ime ()
11 d = C . minimum_distance ()
12 p r i n t ("Minimum d i s t a n c e : %s (%s sec .) " %(d , t ime . t ime ()− t i))
13 n = C . l e n g t h () ; k = C . d imens ion ()
14 Z = zero_matr i x (k+1,n+1)
15 msg_iter = i t e r t o o l s . p roduc t ([0 , 1] , r e p e a t=k)
16

17 f o r msg i n msg_iter :
18 mw = sum(msg)
19 cw = sum(v e c t o r (ZZ , v e c t o r (msg) ∗C . gen_mat ()))
20 Z [mw, cw] += 1
21

22 p r i n t (" C a l c u l a t i o n s f i n i s h e d a f t e r %s sec . " % (t ime . t ime ()− t i))
23 r e t u r n Z

Listing A.1: Minimum distance and message errors

1 impor t t ime
2

3 de f f i n F i e l d (q) :
4 """ t h i s method r e t u r n s GF(q) i f q i s pr ime or a l i s t [GF(q) , a]
5 where a g e n e r a t e s GF(q) . """
6 i f (not i s i n s t a n c e (q , I n t e g e r) o r q < 2 or not q . is_prime_power ()) :
7 r a i s e Excep t i on (" Va l u eE r r o r ")
8 i f q . i s_pr ime () :
9 r e t u r n GF(q)

10 e l s e :
11 F.<a> = GF(q , ’ a ’)
12 r e t u r n [F , a]
13

14 de f f i e l d E x t (F , po l y) :
15 """ g e n e r a t e s the e x t e n s i o n f i e l d K o f F by a d j o i n i n g a r oo t
16 o f the i r r e d u c i b l e po l ynom ia l po l y to F (i . e . by c o n s t r u c t i n g

A.1 Elementary calculations 55

17 the f a c t o r r i n g F [x] / (po l y)) . """
18 i f not F . i s _ f i e l d () :
19 r a i s e Excep t i on (" Va l u eE r r o r : F i e l d ! ")
20 R.<x> = Po lynomia lR ing (F , ’ x ’)
21 po l y = po l y (x)
22 i f (po l y (x) not i n R or not po l y (x) . i s _ i r r e d u c i b l e ()) :
23 r a i s e Excep t i on (" Va l u eE r r o r : Po l ynomia l ! ")
24

25 K = R. quo t i e n t (po l y (x) , ’ a ’)
26 a = K. gen ()
27 r e t u r n [K, a]

Listing A.2: Construction of finite fields and field extensions

1 impor t t ime
2

3 de f con s tCo r r (b a s eF i e l d , e x t F i e l d , omega) :
4 """ mat r i x r e p r e s e n t a t i o n o f m u l t i p l i c a t i o n wi th omega
5 ove r K wi th r e s p e c t to the po l ynom ia l b a s i s (i n r e v e r s e d o r d e r) """
6 K = ba s e F i e l d
7 F = e x t F i e l d
8 i f omega not i n F :
9 r a i s e Excep t i on (" Va l u eE r r o r ")

10

11 deg = F . deg r ee () /K. deg r ee ()
12 a = F . gen ()
13 P = zero_matr i x (K, deg)
14 f o r k i n range (deg) :
15 v = v e c t o r (a^k ∗ omega)
16 f o r j i n range (deg) :
17 P[deg−1−k , deg−1− j] = v [j]
18 r e t u r n P

Listing A.3: Construction of an associated matrix – Algorithm 9

1 impor t t ime
2 l o ad . / con s tCo r r . sage
3

4 de f checkCor r (b a s eF i e l d , e x t F i e l d , A) :
5 """ r e t u r n s the c o r r e s p ond i n g f i e l d e l ement and the t r a n s f o rma t i o n
6 mat r i x such tha t P^{−1} ∗ A ∗ P = B, where B i s the mat r i x
7 gene r a t ed by con s tCo r r (K, F , a l pha) . """
8 K = ba s e F i e l d
9 F = e x t F i e l d

10 A = mat r i x (K, A)
11 i f not A . minpo ly () . i s _ i r r e d u c i b l e () :
12 p r i n t ("Matr i x does not co r r e spond to any f i e l d e l ement . ")
13 r e t u r n []
14 e l s e :
15 A = mat r i x (F , A)
16 a lpha = − A. minpo ly () . f a c t o r () [0] [0] [0] #f i r s t r o o t o f min . po l y .
17 B = mat r i x (F , c on s tCo r r (K, F , a lpha))
18 T1 = A. jordan_form (t r a n s f o rma t i o n=True) [1]
19 T2 = B. jordan_form (t r a n s f o rma t i o n=True) [1]
20 P = T1 ∗ T2 . i n v e r s e () # rows o f P a r e a b a s i s o f e x t F i e l d .

56 A Implementations

21 r e t u r n [a lpha , P]

Listing A.4: Check for being an associated matrix – Theorem 3.8

A.2 Decoding and error generation
1 impor t t ime
2 impor t i t e r t o o l s
3

4 de f g e n e r a t e_co s e t l e a d e r s (C) :
5 """ g e n e r a t i o n o f c o s e t l e a d e r s used du r i ng syndrome decod ing .
6 computing i n t e n s i v e i f n−k i s l a r g e . """
7 i f not i s i n s t a n c e (C , L inea rCode) :
8 r a i s e Excep t i on (" Va l u eE r r o r ")
9 G = C. gen_mat ()

10 H = C. check_mat ()
11 n = C . l e n g t h ()
12 k = C . d imens ion ()
13 t i l = t ime . t ime ()
14 d_cs l = {}
15 j = 0
16 e r r o r i t = i t e r t o o l s . comb ina t i on s (range (n) , j)
17 wh i l e (l e n (d_cs l) < 2^(n−k)) :
18 t r y :
19 e r r o r = g e n e r r o r (e r r o r i t . nex t () , n)
20 syn = v e c t o s t r (H∗ e r r o r)
21 i f (syn not i n d_cs l) :
22 d_cs l [syn] = e r r o r
23 excep t S t o p I t e r a t i o n :
24 p r i n t (" E r r o r s o f we ight %s p r o c e s s e d a f t e r %s sec . " %(j , t ime . t ime

() − t i l))
25 j = j+1
26 e r r o r i t = i t e r t o o l s . comb ina t i on s (range (n) , j)
27 pas s
28 r e t u r n d_cs l
29

30 de f g e n e r r o r (pos , n) :
31 """ e r r o r g e n e r a t i o n . r e t u r n s a n b i t e r r o r v e c t o r w i th
32 ones on g i v en p o s i t i o n s . """
33 vec = ze ro_vec to r (GF(2) , n)
34 f o r p i n pos :
35 vec [p] = 1
36 r e t u r n vec
37

38 de f v e c t o s t r (v) :
39 """ c on v e r s i o n from v e c t o r (space complex !) to s t r i n g . """
40 r e t u r n ’ ’ . j o i n (s t r (w) f o r w i n v)

Listing A.5: Coset leader generation

1 impor t t ime
2 impor t random
3

4 de f a ddb i t s (b1 , b2) :

A.2 Decoding and error generation 57

5 bi tsum = ’ ’
6 f o r j i n range (l e n (b1)) :
7 i f b1 [j] == b2 [j] :
8 bi tsum = bitsum + ’ 0 ’
9 e l s e :

10 bi tsum = bitsum + ’ 1 ’
11 r e t u r n b i t sum
12

13 c l a s s p a r a l l e l C h a n n e l :
14 de f __init__(s e l f , l eng th , a l pha =0.08 , beta=1) :
15 s e l f . l e n g t h = l e ng t h
16 s e l f . a l pha = a lpha
17 s e l f . be ta = beta
18 s e l f .w = r . r b e t a (s e l f . l eng th , s e l f . a lpha , s e l f . be ta) . sage ()
19 s e l f . prob = [el_w ∗0 .5 f o r el_w i n s e l f .w]
20 de f eva l_s im (s e l f) :
21 ev = ’ ’
22 f o r j i n range (s e l f . l e n g t h) :
23 i f s e l f . prob [j] <= random . random () :
24 ev = ev + ’ 0 ’
25 e l s e :
26 ev = ev + ’ 1 ’
27 r e t u r n ev
28 de f e r ro r_s im (s e l f) :
29 """ r e t u r n s an e r r o r s t r i n g f o r a p a r a l l e l channe l . """
30 r e t 1 = s e l f . eva l_s im ()
31 r e t 2 = s e l f . eva l_s im ()
32 r e t u r n a ddb i t s (r e t1 , r e t 2)
33 de f en ro lment (s e l f , d eg r ee=10) :
34 """ r e t u r n s e s t ima t ed i n s t a b i l i t y pe r b i t . """
35 p_est = ze ro_vec to r (s e l f . l e n g t h)
36 f o r k i n range (deg r ee) :
37 p_est = p_est + v e c t o r ([f l o a t (s) / deg r ee f o r s i n s e l f . eva l_s im ()])
38 p r i n t (" Enro lment o f deg r ee %s f i n i s h e d . E s t ima t e s : " %deg r ee)
39 p r i n t (p_est)
40 r e t u r n p_est

Listing A.6: Parallel channel error model

1 impor t t ime
2 l o ad . / cose t − l e a d e r s . sage
3

4 c l a s s decode r :
5 de f __init__(s e l f , Code_in , c on c a t e na t i o n=Fa l s e , Code_out=None) :
6 s e l f . Code_in = Code_in
7 s e l f . Code_out = Code_out
8 s e l f . c on c a t e na t i o n = conca t ena t i o n
9 s e l f . d_csl_in = gen e r a t e_co s e t l e a d e r s (Code_in)

10 s e l f . k_in = Code_in . d imens ion ()
11 s e l f . n_in = Code_in . l e n g t h ()
12 s e l f . H_in = Code_in . check_mat ()
13 i f c o n c a t e n a t i o n :
14 s e l f . k_out = Code_out . d imens ion ()
15 s e l f . n_out = Code_out . l e n g t h ()
16 s e l f . d_csl_out = gen e r a t e_co s e t l e a d e r s (Code_out)

58 A Implementations

17 s e l f . r = lcm (s e l f . n_out , s e l f . k_in)
18 s e l f . t_in = s e l f . r / s e l f . k_in
19 s e l f . t_out = s e l f . r / s e l f . n_out
20 s e l f . H_out = Code_out . check_mat ()
21 p r i n t ("Decoder f o r a conca t ena ted code i n i t i a l i z e d . ")
22 e l s e :
23 p r i n t ("Decoder f o r a l i n e a r code i n i t i a l i z e d . ")
24

25 de f synDecode (s e l f , word) :
26 """ i f c on c a t e na t i o n=Fa l s e , s imp l y decode a g i v en
27 codeword based on i t s syndrome . the paramete r
28 d_cs l i s the d i c t i o n a r y r e t u r n e d by g e n e r a t e_co s e t l e a d e r s .
29 o t h e rw i s e : b i n a r y conca t ena t i on , two−s t ep syndrome decod ing !
30 c au t i o n : codes have to be i n s t anda rd form ! """
31 i f not s e l f . c o n c a t e na t i o n :
32 syn = v e c t o s t r (s e l f . H_in∗word)
33 r e t u r n s e l f . d_csl_in [syn] + word
34 e l s e :
35 b lock s_ in = [v e c t o r (word [j ∗ s e l f . n_in : (j +1)∗ s e l f . n_in]) \
36 f o r j i n range (s e l f . t_in)]
37 f o r k i n range (s e l f . t_in) :
38 b lock s_ in [k] = (s e l f . d_csl_in [v e c t o s t r (s e l f . H_in∗ b lock s_ in [k])

] + b lock s_ in [k]) [0 : s e l f . k_in]
39 cw_out = v e c t o r (sum ([l i s t (cw) f o r cw i n b l ock s_ in] , []))
40 b locks_out = [v e c t o r (cw_out [j ∗ s e l f . n_out : (j +1)∗ s e l f . n_out]) \
41 f o r j i n range (s e l f . t_out)]
42 f o r k i n range (s e l f . t_out) :
43 b locks_out [k] = (s e l f . d_csl_out [v e c t o s t r (s e l f . H_out∗ b locks_out

[k])] + blocks_out [k]) [0 : s e l f . k_out]
44 r e t u r n v e c t o r (sum ([l i s t (cw) f o r cw i n b locks_out] , []))

Listing A.7: Syndrome decoder

1 impor t t ime
2 l o ad . / e r r o r g e n . sage
3 l o ad . / syndromeDec . sage
4

5 c l a s s s o f tDecode r :
6 de f __init__(s e l f , Code , enr_degree=50, e r a s u r e s =1, a lpha =0.08) :
7 s e l f . a l pha = a lpha
8 s e l f . Code = Code
9 s e l f . n = Code . l e n g t h ()

10 s e l f . k = Code . d imens ion ()
11 s e l f . d_cs l = g en e r a t e_co s e t l e a d e r s (Code)
12 s e l f . parCh = p a r a l l e l C h a n n e l (Code . l e n g t h () , a l pha=s e l f . a l pha)
13 s e l f . p_est = l i s t (s e l f . parCh . en ro lment (enr_degree))
14 i f (not e r a s u r e s i n ZZ or e r a s u r e s > s e l f . n − s e l f . k) :
15 r a i s e Excep t i on (" Va l u eE r r o r : e r a s u r e s ")
16 e l s e :
17 p_est_sorted = s o r t e d (s e l f . p_est , r e v e r s e=True)
18 l s t = [s e l f . p_est . i nd e x (p_est_sorted [k]) f o r k i n range (e r a s u r e s)]
19 s e l f . bad_bits = s o r t e d (l s t , r e v e r s e=True)
20 p r i n t (" De l e t ed columns %s . " %s e l f . bad_bits)
21 s e l f . redCode = LinearCode (Code . gen_mat () . de l e te_co lumns (l s t))
22 s e l f . dec = decode r (s e l f . redCode)

A.2 Decoding and error generation 59

23 p r i n t (" So f t decode r f o r a l i n e a r code i n i t i a l i z e d . ")
24 de f so f tDecode (s e l f , word) :
25 word = l i s t (word)
26 f o r pos i n s e l f . bad_bits :
27 d e l word [pos]
28 word = v e c t o r (word)
29 r e t u r n s e l f . dec . synDecode (word)
30 de f getMessage (s e l f , codeword) :
31 r e t u r n s e l f . redCode . gen_mat () . s o l v e_ l e f t (codeword)
32 de f s e l f T e s t (s e l f , e v a l s) :
33 """ t e s t s the decode r ’ s q u a l i t y by r e p e a t e d l y c h a l l e n g i n g
34 i t w i th the e r r on eou s z e r o word (e r r o r s a c co r d i n g to
35 the r e l a t e d p a r a l l e l channe l added) . """
36 corr_dec = 0
37 e r r v e c = ze ro_vec to r (s e l f . n +1)
38 wghvec = ze ro_vec to r (s e l f . n +1)
39 no t i f_ s t e p = min (10000 , e v a l s //20)
40 p r i n t (" Beg inn ing decode r s e l f t e s t . ") ; t i = t ime . t ime ()
41 f o r k i n range (e v a l s) :
42 e r r = s e l f . parCh . e r ro r_s im ()
43 word = v e c t o r ([i n t (s) f o r s i n e r r])
44 wgh = sum(word)
45 wghvec [wgh] = wghvec [wgh] + 1
46 i f s e l f . so f tDecode (word) == ze ro_vec to r (s e l f . redCode . l e n g t h ()) :
47 corr_dec += 1
48 e l s e :
49 e r r v e c [wgh] += 1
50 i f mod(k , n o t i f_ s t e p) == 0 :
51 p r i n t ("%s e v a l u a t i o n s done a f t e r %s , %s " %(k , t ime . t ime ()− t i ,

n (k/ e v a l s)))
52 r e t u r n [e v a l s , corr_dec , n (corr_dec / e v a l s) , wghvec , e r r v e c]

Listing A.8: Soft decoder

1 impor t t ime
2 l o ad . / e r r o r g e n . sage
3 l o ad . / syndromeDec . sage
4

5 c l a s s s o f tDecode r :
6 de f __init__(s e l f , Code , enr_degree=50, e r a s u r e s =1, parCh=None) :
7 s e l f . Code = Code
8 s e l f . n = Code . l e n g t h ()
9 s e l f . k = Code . d imens ion ()

10 s e l f . d_cs l = g en e r a t e_co s e t l e a d e r s (Code)
11 i f i s i n s t a n c e (parCh , p a r a l l e l C h a n n e l) :
12 s e l f . parCh = parCh
13 e l s e :
14 r a i s e Excep t i on (" Va l u eE r r o r : parCh")
15 s e l f . p_est = l i s t (s e l f . parCh . en ro lment (enr_degree))
16 i f (not e r a s u r e s i n ZZ or e r a s u r e s > s e l f . n − s e l f . k) :
17 r a i s e Excep t i on (" Va l u eE r r o r : e r a s u r e s ")
18 e l s e :
19 p_est_sorted = s o r t e d (s e l f . p_est , r e v e r s e=True)
20 l s t = [s e l f . p_est . i nd e x (p_est_sorted [k]) f o r k i n range (e r a s u r e s)]
21 s e l f . bad_bits = s o r t e d (l s t , r e v e r s e=True)

60 A Implementations

22 p r i n t (" De l e t ed columns %s . " %s e l f . bad_bits)
23 s e l f . redCode = LinearCode (Code . gen_mat () . de l e te_co lumns (l s t))
24 s e l f . dec = decode r (s e l f . redCode)
25 p r i n t (" So f t decode r f o r a l i n e a r code i n i t i a l i z e d . ")
26

27 de f so f tDecode (s e l f , word) :
28 word = l i s t (word)
29 f o r pos i n s e l f . bad_bits :
30 d e l word [pos]
31 word = v e c t o r (word)
32 r e t u r n s e l f . dec . synDecode (word)
33

34 de f getMessage (s e l f , codeword) :
35 r e t u r n s e l f . redCode . gen_mat () . s o l v e_ l e f t (codeword)

Listing A.9: Modified soft decoder (for parallelization)

A.3 Simulations and examples
1 impor t t ime
2 impor t i t e r t o o l s
3 l o ad . / syndromeDec . sage
4

5 de f s imu l a t i o n (Code_in , Code_out=None , e v a l s =100 , p_b=0.08 , s imp l e=Fa l s e) :
6 """ random input , number o f c o r r e c t l y decoded words
7 g e t s r e t u r n e d .
8 s imp l e = True −−> on l y i n n e r code i s c o n s i d e r e d .
9 s imp l e = Fa l s e −−> 2− s t ep decod ing .

10 p_b −−> b i t w i s e e r r o r r a t e . """
11 corr_dec = 0 ; t i = t ime . t ime ()
12 no t i f_ s t e p = min (10000 , e v a l s //20)
13 i f s imp l e :
14 dec = decode r (Code_in)
15 f o r k i n range (e v a l s) :
16 e r r = r . rbinom (dec . Code_in . l e n g t h () , 1 , p_b) . sage ()
17 i f dec . synDecode (e r r) == ze ro_vec to r (l e n (e r r)) :
18 corr_dec = corr_dec + 1
19 i f mod(k , n o t i f_ s t e p)==0:
20 p r i n t ("%s e v a l u a t i o n s done a f t e r %s sec . , %s " %(k , t ime . t ime−

t i , n (k/ e v a l s)))
21 r e t u r n [e v a l s , corr_dec , n (corr_dec / e v a l s)]
22 e l s e :
23 dec = decode r (Code_in , c on c a t e na t i o n=True , Code_out=Code_out)
24 t = lcm (Code_out . l e n g t h () , Code_in . d imens ion ()) /Code_in . d imens ion ()
25 f o r k i n range (e v a l s) :
26 e r r = r . rbinom (dec . Code_in . l e n g t h () ∗ t , 1 , p_b) . sage ()
27 cw = dec . synDecode (e r r)
28 i f cw == ze ro_vec to r (l e n (cw)) :
29 corr_dec = corr_dec + 1
30 i f mod(k , n o t i f_ s t e p)==0:
31 p r i n t ("%s e v a l u a t i o n s done a f t e r %s sec . , %s " %(k , t ime . t ime ()

− t i , n (k/ e v a l s)))
32 r e t u r n [e v a l s , corr_dec , n (corr_dec / e v a l s)]
33

A.3 Simulations and examples 61

34

35 de f e v a l u a t i o n (Code_in , Code_out=None , p_b=0.08 , s imp l e=Fa l s e) :
36 """ t r y i n g to decode a l l p o s s i b l e codewords back
37 to the z e r o word . number o f i n c o r r e c t l y decoded
38 words and we ight d i s t r . o f i n c o r r . dec . words ge t
39 r e t u r n e d . """
40 t i = t ime . t ime () ; i n co r r_dec = 0
41 i f s imp l e :
42 dec = decode r (Code_in)
43 e r r v e c = ze ro_vec to r (Code_in . l e n g t h ()+1)
44 no t i f_ s t e p = min (10000 , 2∗∗Code_in . l e n g t h () //25)
45 l i = i t e r t o o l s . p roduct ([0 , 1] , r e p e a t=Code_in . l e n g t h ())
46 f o r k i n range (2∗∗Code_in . l e n g t h ()) :
47 word = v e c t o r (GF(2) , l i . nex t ())
48 cw = dec . synDecode (word)
49 i f cw != ze ro_vec to r (l e n (cw)) :
50 i n co r r_dec = inco r r_dec + 1
51 wgh = sum(v e c t o r (ZZ , word))
52 e r r v e c [wgh] = e r r v e c [wgh] + 1
53 i f mod(k , n o t i f_ s t e p) == 0 :
54 p r i n t ("%s e v a l u a t i o n s done a f t e r %s sec . , %s " %(k , t ime . t ime ()

− t i , n (k /2∗∗Code_in . l e n g t h ())))
55 r e t u r n [incor r_dec , e r r v e c]
56 e l s e :
57 dec = decode r (Code_in , c on c a t e na t i o n=True , Code_out=Code_out)
58 r = lcm (Code_out . l e n g t h () , Code_in . d imens ion ())
59 t = r /Code_in . d imens ion ()
60 conc_len = t ∗Code_in . l e n g t h ()
61 e r r v e c = ze ro_vec to r (conc_len +1)
62 no t i f_ s t e p = min (10000 , 2∗∗ conc_len //25)
63 l i = i t e r t o o l s . p roduct ([0 , 1] , r e p e a t=conc_len)
64 f o r k i n range (2∗∗ conc_len) :
65 word = v e c t o r (GF(2) , l i . nex t ())
66 cw = dec . synDecode (word)
67 i f cw != ze ro_vec to r (l e n (cw)) :
68 i n co r r_dec = inco r r_dec + 1
69 wgh = sum(v e c t o r (ZZ , word))
70 e r r v e c [wgh] = e r r v e c [wgh] + 1
71 i f mod(k , n o t i f_ s t e p) == 0 :
72 p r i n t ("%s e v a l u a t i o n s done a f t e r %s sec . , %s " %(k , t ime . t ime ()

− t i , n (k /2∗∗ conc_len)))
73 r e t u r n [incor r_dec , e r r v e c]

Listing A.10: Simulation and evaluation

1 impor t t ime
2 l o ad . / s imAndEval . sage
3

4 G_out = HammingCode (3 , GF(2)) . gen_mat () . augment (v e c t o r (GF(2) , [1 , 1 , 1 , 0]))
5 G_in = G_out
6 C_out = Linea rCode (G_out) ; C_in = LinearCode (G_in)
7

8 G = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0] ,
[0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0] , [0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0] ,
[0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1]])

62 A Implementations

9 C = LinearCode (G)
10

11 ### choose which s imu l a t i o n i s to be per fo rmed !
12 #p r i n t ("One s i n g l e decod ing s t ep : ")
13 #p r i n t (e v a l u a t i o n (Code_in=C, s imp l e=True))
14 #p r i n t ("\n")
15 p r i n t ("Two decod ing s t e p s : ")
16 p r i n t (e v a l u a t i o n (C_in , Code_out=C_out))

Listing A.11: Hamming ◦̃ Hamming – Example 3.2.1

1 impor t t ime
2 l o ad . / s imAndEval . sage
3

4 G_in = HammingCode (3 , GF(2)) . gen_mat () . augment (v e c t o r (GF(2) , [1 , 1 , 1 , 0]))
5 G_out = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0] , [0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0] ,

[0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1] , [0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0]])
6 C_in = LinearCode (G_in) ; C_out = Linea rCode (G_out)
7

8 G = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1] ,
[0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1] ,
[0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0] ,
[0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1]])

9 C = LinearCode (G)
10

11 p r i n t ("One s i n g l e decod ing s t ep : ")
12 p r i n t (e v a l u a t i o n (Code_in=C, s imp l e=True))
13 p r i n t ("\n")
14 p r i n t ("Two decod ing s t e p s : ")
15 p r i n t (e v a l u a t i o n (C_in , Code_out=C_out))

Listing A.12: Matrix Code ◦̃ Hamming – Example 3.2.2

1 impor t t ime
2 l o ad " . / sim−and−e v a l . sage "
3

4 G_in = HammingCode (3 , GF(2)) . gen_mat () . augment (v e c t o r (GF(2) , [1 , 1 , 1 , 0]))
5 G_out = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0] , [0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1] ,

[0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0] , [0 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1]])
6 C_in = LinearCode (G_in) ; C_out = Linea rCode (G_out)
7

8 G = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0] ,
[0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1] ,
[0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1] ,
[0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1]])

9 C = LinearCode (G)
10

11 p r i n t ("One s i n g l e decod ing s t ep : ")
12 p r i n t (e v a l u a t i o n (Code_in=C, s imp l e=True))
13 p r i n t ("\n")
14 p r i n t ("Two decod ing s t e p s : ")
15 p r i n t (e v a l u a t i o n (C_in , Code_out=C_out))

Listing A.13: Matrix Code 2 ◦̃ Hamming – Example 3.2.3

A.3 Simulations and examples 63

1 impor t t ime
2 l o ad " . / sim−and−e v a l . sage "
3

4

5 G_out = mat r i x (GF(2) , [[1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0] , [0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0] ,
[0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1] , [0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0]])

6 C_in = ExtendedBinaryGo layCode () ; C_out = LinearCode (G_out)
7 G_in = C_in . gen_mat ()
8

9 G = G1 ∗ G2
10 C = LinearCode (G)
11

12 p r i n t ("One s i n g l e decod ing s t ep : ")
13 p r i n t (e v a l u a t i o n (Code_in=C, s imp l e=True))
14 p r i n t ("\n")
15 p r i n t ("Two decod ing s t e p s : ")
16 p r i n t (e v a l u a t i o n (C_in , Code_out=C_out))

Listing A.14: Matrix Code ◦̃ Golay – Example 3.2.4

1 impor t t ime
2 impor t i t e r t o o l s
3 impor t mu l t i p r o c e s s i n g
4 l o ad " . / mod i f i edSo f tDec . sage "
5

6 de f ergSum (e rg) :
7 r e t u r n [sum ([e rg [j] [0] f o r j i n range (l e n (e rg))]) , [
8 sum ([e rg [j] [1] [0] f o r j i n range (l e n (e rg))]) ,
9 sum ([e rg [j] [1] [1] f o r j i n range (l e n (e rg))]) ,

10 sum ([e rg [j] [1] [2] f o r j i n range (l e n (e rg))]) ,
11 sum ([e rg [j] [1] [3] f o r j i n range (l e n (e rg))])]]
12

13 de f v e c t o rP roduc t (G, l i) :
14 i f (l e n (l i) == 1) :
15 r e t u r n G[l i [0]]
16 e l s e :
17 v1 = G[l i [0]]
18 v2 = vec t o rP roduc t (G, l i [1 : l e n (l i)])
19 r e t u r n v e c t o r (GF(2) , [v1 [k] ∗ v2 [k] f o r k i n range (l e n (v1))])
20

21 de f genGene ra to rMat r i x (m, r) : #l e n g t h 2^m, o r d e r r
22 G = ones_matr ix (GF(2) , 1 , 2∗∗m)
23 he = t r a n s p o s e (mat r i x (GF(2) , l i s t (i t e r t o o l s . p roduc t ([0 , 1] , r e p e a t=m))))
24 G = G. s t a c k (he)
25 i n d_ l i s t = range (2 , r+1)
26 f o r j i n i n d_ l i s t :
27 c h o o s e_ l i s t = l i s t (i t e r t o o l s . comb ina t i on s (range (1 , m+1) , j))
28 f o r perm i n c h o o s e_ l i s t :
29 G = G. s t a c k (v e c t o rP roduc t (G, perm))
30 r e t u r n G
31

32 G = genGene ra to rMat r i x (4 , 1) #l e ng t h : 16 , d imens ion : 5
33 C = LinearCode (G)
34 H = C. check_mat ()
35

64 A Implementations

36 t ime_e lapsed = t ime . t ime ()
37

38 de f mp_eval_al l (n r_eva l s) :
39 r e s u l t = []
40 wh i l e (l e n (r e s u l t) < 125) :
41 t r y :
42 channe l = p a r a l l e l C h a n n e l (l e n g t h =16, a lpha =0.24/(1 −0.24))
43 decode r s = [so f tDecode r (C , enr_degree=300 , e r a s u r e s=j , parCh=

channe l) f o r j i n range (4)]
44 e r r o rCoun t = ze ro_vec to r (C . l e n g t h () + 1)
45 decod ingEr ro rCount = [ze ro_vec to r (C . l e n g t h () + 1) f o r j i n range

(4)]
46 s t a r tT ime = t ime . t ime ()
47 p r i n t (" Beg inn ing to c h a l l e n g e decode r s . A l r eady e v a l u a t e d : %s " %

l e n (r e s u l t))
48 f o r k i n range (n r_eva l s) :
49 e r r = channe l . e r ro r_s im ()
50 word = v e c t o r ([i n t (s) f o r s i n e r r])
51 wgh = sum(word)
52 e r r o rCoun t [wgh] += 1
53 f o r j i n range (l e n (decode r s)) :
54 i f d e code r s [j] . s o f tDecode (word) != ze ro_vec to r (C . l e n g t h ()

− j) :
55 decod ingEr ro rCount [j] [wgh] += 1
56 p r i n t ("Decoder c h a l l e n g e f i n i s h e d a f t e r %s sec . " %(t ime . t ime ()−

s t a r tT ime))
57 r e s u l t . append ([e r ro rCount , decod ingEr ro rCount])
58 excep t :
59 p r i n t ("Dimens ion e r r o r %s e v a l u a t i o n s done . " %l e n (r e s u l t))
60 r e t u r n ergSum (r e s u l t)
61

62 proc = mu l t i p r o c e s s i n g . Pool (8)
63 o v e r a l l _ r e s u l t = proc .map(mp_eval_all , [10000 , 10000 , 10000 , 10000 , 10000 ,

10000 , 10000 , 10000])
64 proc . c l o s e ()
65 proc . j o i n ()
66

67 t ime_e lapsed = t ime . t ime () − t ime_e lapsed
68 p r i n t ("Channel s im u l a t i o n s done a f t e r %s sec . ! " %(t ime_e lapsed))

Listing A.15: Reed Muller on parallel channel – performance test (parallelized)

Bibliography

[1] Senon I. Borewicz and Igor R. Šafarevič. Zahlentheorie. Birkhäuser Verlag Basel und
Stuttgart, 1966.

[2] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, third edition, 2004.

[3] Gerd Fischer. Lehrbuch der Algebra. Vieweg, 2008.

[4] G. David Forney. Concatenated codes. Massachusetts Institute of Technology, 1965.

[5] John B. Fraleigh. A First Course In Abstract Algebra. Addison Wesley, seventh edition, 2003.

[6] D. R. Hankerson, D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger,
and J. R. Wall. Coding Theory And Cryptography – The Essentials. Pure And Applied
Mathematics, second edition, 2000.

[7] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, revised edition, 1994.

[8] W. Müller. Lecture: Codierungstheorie, 2012, summer semester. Alpen-Adria Universität
Klagenfurt.

[9] John G. Proakis. Digital Communications. McGraw-Hill Higher Education, fourth edition,
2001.

[10] W.A. Stein et al. Sage Mathematics Software (Version 6.0). The Sage Development Team,
2013. http://www.sagemath.org.

65

	1 Algebraic preliminaries
	1.1 Basic structures
	1.2 Fields and field extensions
	1.3 Finite fields
	1.4 Frobenius normal form

	2 Coding theory
	2.1 Elements of coding theory
	2.2 Selected linear codes and their properties
	2.3 Soft decoding over a different channel model

	3 Code concatenations
	3.1 Definition and properties
	3.1.1 Equivalency of binary concatenation and Galois concatenation

	3.2 Examples
	3.2.1 Ham[8,4,4] Ham[8,4,4]
	3.2.2 MatrixCode[12,4,5] Ham[8,4,4]
	3.2.3 MatrixCode[12,4,4] Ham[8,4,4]
	3.2.4 MatrixCode[12,4,5] Golay[24,12,8]

	3.3 Associated matrices

	A Implementations
	A.1 Elementary calculations
	A.2 Decoding and error generation
	A.3 Simulations and examples

	Bibliography

